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Figure 1: Data driven synthesis of 3D objects. (Left) Given an input collection of oriented surface points from an object class we learn
a low-dimensional shape embedding using a deep probabilistic auto-encoder. (Middle) Samples from the prior embedding distribution can
be passed through the decoder to obtain novel shape examples complete with point orientations (not shown). (Right) Smooth meshes are
constructed by making use of the sampled point orientations.

Abstract
We introduce a generative model of part-segmented 3D objects: the shape variational auto-encoder (ShapeVAE). The ShapeVAE
describes a joint distribution over the existence of object parts, the locations of a dense set of surface points, and over surface
normals associated with these points. Our model makes use of a deep encoder-decoder architecture that leverages the part-
decomposability of 3D objects to embed high-dimensional shape representations and sample novel instances. Given an input
collection of part-segmented objects with dense point correspondences the ShapeVAE is capable of synthesizing novel, realistic
shapes, and by performing conditional inference enables imputation of missing parts or surface normals. In addition, by
generating both points and surface normals, our model allows for the use of powerful surface-reconstruction methods for
mesh synthesis. We provide a quantitative evaluation of the ShapeVAE on shape-completion and test-set log-likelihood tasks
and demonstrate that the model performs favourably against strong baselines. We demonstrate qualitatively that the ShapeVAE
produces plausible shape samples, and that it captures a semantically meaningful shape-embedding. In addition we show that
the ShapeVAE facilitates mesh reconstruction by sampling consistent surface normals.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modelling—

1. Introduction

The computer graphics industry relies to a large extent on the 3D
content created by artists, modellers, designers and animators. The
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content creation process is time consuming and intensive even for
highly skilled graphics artists. 3D Content is often created from
scratch, despite the fact that vast collections of 3D models exist in
online repositories and private collections. These shape collections
contain considerable information about the styles, structures and
textures of object classes. It is desirable to leverage this information
with tools that can aid designers in the modeling process. Such
tools can help by enforcing data-driven constraints, providing
completions of partially designed objects, or even through the
synthesis of whole shapes.

The ability to automatically synthesize and analyze 3D objects is
useful not only for graphics applications, but in computer vision,
where there has been a recent focus on the use of 3D shape rep-
resentations in scene understanding tasks; see [ZSSS13, SHM∗14,
CSCS15]. A detailed representation of object shape allows for
complex 3D reasoning, and a model of shape variability aids the
performance of recognition tasks in images. Structures such as 3D
bounding boxes [PT11,LS10], wireframe models [ZSSS13], or 3D
CAD models [CSCS15] have been used as shape representations
and successfully recognized in images.

In this work we present the shape variational auto-encoder (Shape-
VAE), a model of structural and local shape variability that captures
a distribution over the co-existence of object parts, the locations of
3D surface points, and the surface normals associated with these
points. We make use of the representation described by Huang
et al. consisting of a collection of dense point correspondences,
segmented into the object’s constituent parts and augment it with
point normals [HKM15]. We take a powerful class of deep gen-
erative model, the variational autoencoder, and introduce a novel
architecture that leverages the hierarchichal part-structure of 3D
objects. Our model is capable of generating plausible, novel point
cloud objects, and by generating consistent point normals, we
can take advantage of powerful surface reconstruction methods
to reconstruct smooth mesh geometry. We demonstrate that the
ShapeVAE achieves strong performance in a shape completion
task in comparison to a linear baseline, while producing samples
of a higher quality. We further show that the ShapeVAE learns
a semantically meaningful latent space, and that by sampling
both point sets and surface normals, the ShapeVAE enables the
use of powerful surface reconstruction techniques. In addition the
ShapeVAE is considerably more efficient to train compared to
related work, and it allows for efficient sampling and missing data
imputation.

2. Related work

Our methods relate to statistical models of objects and shapes as
well as general deep generative models. We provide an overview of
the most relevant prior work.

Shape synthesis and generative shape models. Generative mod-
els of 3D objects have been proposed for a range of shape represen-
tations including 3D voxel images [WSK∗15,GFRG16], keypoints
[HKM15], and meshes [KCKK12, ZB15, YAMK15]. Early work
includes active shape models [CTCG95]; statistical models of
corresponding landmark points that have been used to model face
shape [LTC97], medical images [HM09], and cars [ZSSS13]. Such

models are often applied to relatively few landmark points, and as
such are more useful for analysis rather than synthesis of whole
objects.

Much of the recent work on generative shape models has focused
on voxel representations of 3D objects. Wu et al. model the joint
distribution of voxels and object class labels with a convolutional
deep belief network [WSK∗15]. The authors use the model to
recognise object classes and reconstruct 3D objects from a single
depth image. Girdhar et al. use a 3D convolutional auto-encoder
to establish a compressed vector representation of 3D objects that
can be predicted and reconstructed in real images [GFRG16]. A
3D generative adversarial network with convolutional structure
was used by Wu et al. to synthesize voxel objects [WZX∗16].
Volumetric representations have the advantage that different objects
are directly comparable on the voxel level, whereas triangulated
meshes do not have an explicit parameterization that is consistent
across instances. However naive volumetric methods are limited
in terms of resolution, as the dimensionality is cubic in the width
of the voxel grid. In addition, voxel grids require modelling of
many redundant dimensions, such as empty space inside or outside
the object itself, although recent work using octree representations
seeks to address this [TDB17].

Our methods model object surfaces in addition to the structural
variability associated with the presence or absence of certain parts.
Other work has similarly made use of the part-decomposability
of objects in their shape models, either by explicitly recombining
part instances from a database [KCKK12, AKZM14, ZCM13], or
by incorporating parts as a modelling structure [FAvK∗14, ZB15].
Kalogerakis et al. learn a generative model over continuous and
discrete geometric features of object parts and synthesize shapes
by matching the generated features to object parts in database
[KCKK12]. Averkiou et al. fit templates consisting of deformable
cuboids to large collections of 3D objects and obtain a low-
dimensional hierarchical embedding, that captures semantic simi-
larity between the input objects [AKZM14]. The authors designed a
method for interactive object synthesis in which a user can explore
the embedding space, and create new objects by deforming parts
from nearby objects. Fish et al. also used a parts-based method in
which they modelled the geometric relationships between shape
parts [FAvK∗14]. For each shape, unary relations such as the
relative length of a part, and binary relations, e.g. the angle between
two parts were captured. In related work Zuffi et al. develop a
parts-based ‘stitched puppet’ model of human shape which allows
for the shape and pose of body parts to be modelled separately,
while encouraging connecting parts to be close together [ZB15].
This allows for shape variation to be captured on various levels:
on the global level articulated pose is modelled, and on the local
level continuous shape deformation is modelled. Our methods are
different in that although we make use of object parts, we also
use a highly detailed shape representation consisting of dense point
clouds.

Recent work using dense point clouds includes PointNet
[QSMG16], in which unordered point sets are processed using
deep networks with a symmetric pooling function. Such networks
were shown to be effective in semantic segmentation and object
classification tasks. However, PointNet is not a generative model

Accepted version of the paper to appear in Computer Graphics Forum 36(5), presented at the Symposium on Geometry Processing, July 2017



C. Nash & C. Williams / The shape variational autoencoder: A deep generative model of part-segmented 3D objects 3

of point sets, but rather it maps input point sets to output such
as a model classification, or part segmentation. In related work,
a conditional generative model of unordered point sets was intro-
duced in [FSG16], where given an image, a collection of 3D output
points was synthesized that captures the coarse shape of objects
in the image. The closest work to ours is Huang et al. in which
part-segmented 3D keypoints are modelled with the beta shape
machine (BSM), a variant of a multi-layer Boltzmann machine
that captures global and local shape variation with a similar part-
oriented structure [HKM15]. This model is demonstrated to be
effective at generating plausible shapes, as well as for shape
segmentation and fine grained classification tasks. Unlike the BSM
which is an undirected probabilistic model, the models in this
paper are directed, and as such training and sampling is more
rapid, and we may more easily scale to high-dimensional data.
When we model surface normals as well as points we double the
dimensionality of the data-space, and being able to efficiently train
in very high-dimensional space becomes important.

Deep generative models. Our generative model of oriented point
clouds makes use of a variant of a probabilistic model known as a
variational autoencoder (VAE) in the machine learning literature
[KW14]. In a VAE a prior distribution is specified over latent
variables, and data is generated by mapping the latent variables
through a non-linear function implemented by a neural network.
Variational autoencoders are used to model images [KW14] and
voxel data [BLRW16] and been shown to learn semantically mean-
ingful representations of the data. The variational autoencoder is an
example of a deep generative model (DGM): a class of generative
model that employs deep neural network architectures.

Other DGMs include deep Boltzmann machines (DBMs) [SH09].
DBMs are undirected models that have been used to capture com-
plex distributions over speech data [MDH12], images [EHWW14,
RHSW11] and part-segmented objects [HKM15]. Although DBMs
are flexible, they can be difficult and time-consuming to train,
and are more complicated to sample from than directed models.
Generative adversarial networks (GANs) are a powerful class of
DGN in which a generator network maps low-dimensional latent
samples to the data space, and a discriminator network is trained to
distinguish between real and fake samples [GPM∗14]. By training
the generator neural network to to fool the discriminator, samples
are pushed closer to the true data distribution. GANs have been
used to model images [GPM∗14, DCSF15] and voxels [WZX∗16],
and are notable for producing sharp, high-quality samples. How-
ever, GANs do not explicitly describe a probability distribution
over data and as such are difficult to evaluate.

In this work we take the VAE, a powerful class of deep gen-
erative model that enables efficient sampling, density estimation
and conditional inference, and introduce structure that captures the
hierarchical part-structure of 3D objects.

3. Overview

Our goal is to take a collection of segmented input objects with
dense point correspondences and to learn a generative model of 3D
shape such that we can synthesize novel examples, complete partial
objects, and embed 3D objects in a low-dimensional latent space. In

this section we provide an overview of our deep generative shape
model, a description of the data sets used, and the required pre-
processing.

Generative model for oriented point clouds. The core of our
method is a generative model that describes a probability distri-
bution over surface points, surface normals, and part existences for
large collections of 3D objects. The relationships between these
variables in 3D objects is highly complex due to hierarchical part
relationships, symmetry relationships, as well as local smoothness
and other structural constraints. Our model is a variant of a
variational auto-encoder: a powerful generative model capable of
capturing complex distributions over high-dimensional data. The
VAE consists of an encoder network that maps data to a low-
dimensional latent code, and a decoder that maps the latent code
to a reconstruction of the the data. In doing so the VAE is forced
to make the hidden code highly informative about its associated
data. We equip our VAE with a hierarchical architecture in which
higher layers capture global, structural relationships in objects, and
lower levels capture variability within object parts. After training
the ShapeVAE we gain the ability to sample new instances, perform
shape completion and a lower bound on the likelihood of unseen
instances. We also obtain a compact shape descriptor in the form of
the highest level latent variables, and an encoder network that can
map a data instance to this high-level description efficiently.

Data and pre-processing. Our methods assume a collection of
consistently aligned and scaled 3D shapes for which point-wise
correspondences, consistently-oriented surface normals and consis-
tent segmentations are available. We assume that each object class
has a fixed number of parts, and that these parts can be present or
absent for any particular object example. For example an airplane
can have up to 6 parts: the fuselage, two wings, two horizontal tail
fins, and one vertical tail fin. In most instances a plane will have all
of these parts, but in some cases the vertical of horizontal tail fins
may not be present. Figure 6a shows some example planes with
part segmentations. We make use of such collections provided by
Huang et al. [HKM15], and note that there exist effective methods
for automatic analysis of 3D object databases that obtain correspon-
dences and segmentations as an output [HKM15, KLM∗13]. The
datasets we use feature chair and airplane object classes with 3701,
and 1509 examples respectively. The 3D meshes were originally
collected from the Trimble Warehouse online repository by Kim et
al. [KLM∗13].

4. Generative model for oriented point clouds

In this section we describe our generative model of 3D objects, the
shape variational autoencoder. The ShapeVAE aims to model the
joint distribution over part existences, surface points and surface
normals. This task is made challenging by a number of factors.
The dimensionality of the data can be extremely high, with an
object class with 5000 surface points having 15000 variables
describing point locations, and a further 15000 variables describing
surface normals. This poses difficulties for modelling, as even with
thousands of data examples, only a tiny portion of this 30000-
dimensional space can be covered. Beyond this, there are a range
of complex dependencies that must be captured in order to be able
to synthesize plausible shapes. The model must capture symmetry,
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Figure 2: Generative models of part-segmented shapes: Filled circles represent visible variables, unfilled circles represent latent variables,
and diamonds represent deterministic variables. (a) Latent variables z are sampled from a prior distribution, and existence variables e are
sampled from a learned distribution. Conditioned on these variables the continuous variables x (Surface points and normals) are generated.
(b) Latent variables and existences are mapped deterministically to intermediate part representation variables up for each part p. The part
representations are then mapped separately to generate data variables. (c) Visible continuous variables are mapped to latent variables through
intermediate part representation variables. Learned biases bp are introduced for parts p that are not present. (d) The ShapeFA baseline model
has linear connections between latent variables, part representations and continuous data variables.

functional relationships, local continuity and smoothness, and be
able to handle multi-modality in the data. Consider for example the
chair object class: plausible shapes feature chair legs that match in
style, and shapes, and attach to the seat appropriately. Chairs can
vary at a part level in terms of the style of the chair back or legs,
but also at the object level, in which objects can belong to one of
a number of distinct styles. Theses styles induce multi-modality
in the data-distribution, indeed Huang et al. demonstrated that on
this dataset the marginal distributions of surface point locations can
have complex multi-modal distributions [HKM15].

Although the modelling task is challenging, there are a number of
simplifying features that we can exploit. The data-dimensionality
is very high, however the data is highly structured, such that the
intrinsic dimensionality of the data is much smaller. Take a chair
leg for example, in our data this object part consists of around
100 keypoints, but the locations of these keypoints are highly
dependent, such that knowledge of only a few points would enable
reasonable estimation of the rest. Moreover, the variability across
different examples is restricted: legs tend to vary in their length,
width, angle, and the location at which they join the base of the
chair. As such chair legs possess far fewer degrees of freedom
that the 600 dimensions which describe the keypoints and surface
normals. We can also make use of the global structure of 3D
objects; that they have parts, that the parts are organized in typical
arrangements, and so we can design our model in a way that makes
use of these known structures. By incorporating a hierarchical
part structure in our model, we introduce an inductive bias that
favours part decomposability, and a factored relationship between
global and local variability. We also can take advantage of recently
developed deep learning methods, that can compress the data more
effectively than comparable linear methods.

Data description. We represent objects using the following fea-
tures:

• Part existences: For an object class with P possible parts we
describe the existence or non-existence of object parts using a
binary vector e ∈ {0,1}P, where part p is present if ep = 1 and
not present if ep = 0.
• Surface points: The surface of an object can be approximated

with a collection of surface points. For some objects not all parts
will be present, and so the associated surface points will also not
be present. We denote these with a missing data symbol m. For an
object with D possible surface points we have a vector k ∈ (R∪
m)3D of point positions. These surface points have a consistent
order across examples in a dataset, such that the point dimension
kr

i on object r is in correspondence with point dimension ks
i on

object s.
• Surface normals: We can describe the surface of an object

in more detail by also including the orientation of the surface
points. As with the surface points we describe the surface
normals with a vector n ∈ (R∪m)3D.

As our modelling process is identical for keypoints and normals,
for convenience we use x = [k,n] to refer to the collection of all
continuous variables. Our generative model aims to model the joint
distribution of part existences, surface points, and surface normals
p(e,x).

Model structure. We model the joint distribution of existences,
points, and surface normals by first modelling the marginal distri-
bution of the existences p(e), and then by modelling the continuous
variables conditional on the existences p(x|e). Let p(i) be the part
index associated with keypoint i, and let M(e) = {i|ep(i) = 0}
be the set of indices of missing variables for a particular object.
We can then write the set of missing keypoints and normals
as xm = {xi = [k1

i ,k
2
i ,k

3
3,n

1
i ,n

2
i ,n

3
i ]}i∈M and the set of visible

keypoints as xv = {xi}i /∈M where we drop the dependence on
e for notational convenience. The missing keypoints and normals
xm are completely determined by the part existences, and so they
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are simply assigned the missing data symbol m. Visible keypoints
and normals xv are generated using a latent variable model. This
latent variable model first draws samples z from a prior Gaussian
distribution over a latent space. These prior samples are then
mapped to the parameters of a diagonal Gaussian distribution using
parameterised functions µ(z,e) and σ2(z,e) where these parameter
functions are given by the decoder of the ShapeVAE:

p(z) =N (z|0,I) (1)

p(xv|e,z,θ) =N (xv|µ(z,e),σ2(z,e)) (2)

p(xm|e) = I[xm = [m, . . . ,m]]. (3)

Figure 2a shows a graphical model representing the model struc-
ture. In the following sections we describe the marginal distribu-
tion of the part existences, the encoder-decoder structure of the
ShapeVAE, the procedure for training the model parameters and
the baseline models that we use to evaluate the performance of
the ShapeVAE. The following sections assume some knowledge
of standard terminology in deep learning, and familiarity with the
standard VAE is useful. Full coverage is beyond the scope of this
work, and so we refer to Doersch’s tutorial for useful background
[Doe16].

Part existences. Part existence variables e are assumed to have
been generated by a categorical distribution p(e|φ). For an object
with P parts this is a distribution over 2P possible states, which
in the absence of independence assumptions requires 2P − 1 pa-
rameters. For each possible arrangement of part existences e, the
maximum likelihood estimate is simply the ration of the number of
times the arrangement occurs in the training set Ne divided by the
number of examples in the training set N:

p(e) = Ne
N

, (4)

In practice only a few arrangements of part existences occur in
object datasets, and so a maximum likelihood estimate assigns
most part combinations zero probability. The main limitation of this
model is that part arrangements that do not appear in the training
set will never be sampled by the generative model. However it is
straightforward to choose a prior distribution over the distribution
parameters such as a Dirichlet or to even manually choose a desired
distribution over part arrangements such that unseen arrangements
can be sampled.

ShapeVAE Decoder. The decoder of a variational autoencoder is
responsible for mapping from latent variables z to the parameters θ
of a conditional data distribution p(x|θ(z)). This mapping is imple-
mented using a fully-connected neural network. This conditional
data distribution is typically chosen such that the data variables x
are conditionally independent given the latent variables z, and so
that it naturally models the domain of the data variables. The condi-
tional independence of the data variables forces the latent variables
to explain the interdependence of the visible data variables. This
causes the model to learn a latent space in which the main modes
of variability are captured. In our case we additionally condition on
existence variables e, and as the keypoints and surface normal data
is continuous we map to the parameters of a diagonal Gaussian
distribution µ(z,e) and σ2(z,e). It is useful to set a minimum
variance σ2

min for each dimension of the decoder distribution, so
that the total variance is given by σ2

tot = σ2(z,e) + σ2
min. This

prevents the decoder from assigning very small variance to any
reconstructed training example, which helps reduce overfitting.
We treat the minimum variance as a hyperparameter that can be
adjusted depending on the task.

We take advantage of the part-structure of the data and use a
hierarchical decoder architecture in which global latent variables
z and existence variables e capture structure, style and shape char-
acteristics of the whole object, and a lower level part-representation
up captures variability within each part p. The decoder takes
latent variables and existence variables as input, and passes them
separately through fully-connected layers of size 256, before con-
catenating to form a layer of size 512. This intermediate layer is
then mapped to the part representation u(z,e) of size ∑k nup where
nup is the size of part p’s representation. We treat the size of each
up as a hyperparameter, and typically use 128 or 256 units per
part. This representation is then split into its constituent parts u =
[u1, . . . ,uP] and mapped to a fully-connected pre-parameter layer
hp(z,e) of size 512. Finally the output parameters are obtained
using a linear layer for the mean µp(z,e) = Linear(hp(z,e)), and
by applying a soft-plus non-linearity for the variance σ2

p(z,e) =
softplus(Linear(hp(z,e))) to ensure that the variance is pos-
itive. A simplified view of the decoder structure is shown in Figure
2b.

ShapeVAE Encoder. The encoder of the ShapeVAE aims to
approximate the posterior distribution over the latent variables
p(z|x,e) associated with the generator distribution p(x|z,e). As the
true posterior distribution p(z|x,e) is intractable to evaluate, we
make use of an approximate posterior q(z|x,e), and use variational
inference to learn the parameters of both the encoder and decoder
simultaneously. Similar to the decoder, the ShapeVAE decoder is
a neural network that maps from inputs x to the parameters of a
diagonal Gaussian µ(x) and σ2(x).

The ShapeVAE encoder reverses the architecture of the decoder but
is modified in order to process input parts which may be missing.
As shown in Figure 2c the encoder takes keypoints and normals x as
input and maps to a part representation u = [u1, . . . ,uP]. For parts
that are present, the input is mapped through an intermediate fully
connected layer of size 512, whereas parts that are missing simply
generate a learnable bias bp which is added in the appropriate
position to the the part representation. The part representation is
then concatenated and passed through to a fully-connected pre-
parameter layer of size 512. As with the decoder the pre-parameter
layer is mapped through linear and soft-plus layers to obtain means
and diagonal variances of the encoder distribution.

Training. We learn the parameters of the ShapeVAE encoder θ
and decoder φ using the auto-encoding variational Bayes algorithm
[KW14]. This algorithm maximizes a variational lower-bound
L(θ,φ,x) on the true log-likelihood:

L(θ,φ,x) = Eqφ(z|x) [logpθ(x|z)]−αDKL(qφ(z|x)‖p(z)). (5)

In the general case, the lower-bound is intractable, and so it is in-
stead approximated using a Monte-Carlo estimator, and optimized
using gradient based methods. For further details see [KW14].

The first term in the lower bound is the expected reconstruction
probability with respect to the encoder distribution. This term
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encourages the decoder to reconstruct its input from samples
drawn from the encoder distribution. The second term is the KL
divergence between the the ShapeVAE encoder distribution, and
the prior distribution over the latent space p(z). The KL divergence
is an asymmetric measure of distance between two probability
distributions, and maximizing the negative KL divergence encour-
ages the latent posterior to be close to the prior. In practice this
has the effect of pushing the means of the encoder distribution
towards 0, and the variances towards 1. This works as a regularizer,
as the decoder must be robust to the noisy inputs provided by
samples from the encoder distribution. The alpha parameter in the
variational lower bound allows the KL term to be weighted more
or less strongly in the optimization.

Baseline models. In order to evaluate the ShapeVAE we introduce
two baseline models. The first is a very simple baseline, in which a
separate diagonal Gaussian model is fitted to the points and surface
normals for each combination of existences in the training set. The
model is given by:

p(xv|e,θ) =N (xv|µe,σ
2
e ). (6)

Thus for each pattern of existences in the training set we take the
mean of the surface points and normals, and compute the variance
of each dimension.

We also introduce a more competitive baseline, the shape factor
analyzer (ShapeFA). In this model we replicate the hierarchical
structure of the ShapeVAE, but use linear connections between
layers, rather than arbitrary non-linear functions. This is inspired by
the widely-used factor analysis model in which latent variables are
linearly mapped to data variables, and diagonal Gaussian noise is
added. In our version, the model has two layers of linear mappings:
from top-level structural latent variables to a part representation,
and from the part representation to the object parts. As in the Shape-
VAE the top-level latent variables capture overall shape variability
in terms of style, symmetry and functional dependencies, while
the lower level latent variables capture local variability within a
particular part. Writing uv for the set of visible part representation
variables we have the following model:

p(z) =N (z|0,I) (7)

p(uv|z,e,θ) =N (uv|W(T)
e z+µ

(T)
e ,Ψ

(T)
e ) (8)

p(xp,np|up,θ) =N (xp|W(B)
p up +µ

(B)
p ,Ψ

(B)
p ), (9)

Where we use θ(B) and θ(T) to denote bottom and top-layer
parameters respectively. The advantage of this model is that by
integrating out the part representation variables we can evaluate the
log-likelihood exactly. We can also train it rapidly using the greedy
layer-wise procedure described by Tang et al. [TSH12]. Figure 2d
shows the structure of the ShapeFA.

5. Evaluation

We detail the performance of the ShapeVAE on shape completion,
and test set log-likelihood tasks, as well demonstrate the model’s
ability to synthesize 3D shapes. We examine features of the latent-
space learned by the ShapeVAE and compare surface reconstruc-
tion methods that can be used to convert sampled point clouds to

Incomplete Part completion Original

Figure 3: Shape completion. (Incomplete) Unseen examples with
missing parts. (Part completion) The missing parts are completed
by conditional inference with the ShapeVAE. (Original) Original
object.
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Figure 4: Point orientation recovery. (a) A test-set example
shown with ground-truth point orientations. (b) Point orientations
estimated using local plane fitting [HDD∗92]. (c) Point orientations
predicted by performing conditional-inference with the ShapeVAE.

Shape completion

Model Chairs Planes Bikes

ShapeVAE-8 0.124 0.106 0.168
ShapeVAE-64 0.121 0.104 0.168
ShapeFA-8 0.116 0.243 0.178
ShapeFA-64 0.155 0.267 0.255

Log-likelihood

Model Chairs Planes Bikes

ShapeVAE-8* 0.454 0.466 0.158
ShapeVAE-64* 0.486 0.551 0.206
ShapeFA-8 0.514 0.739 0.475
ShapeFA-64 0.466 0.648 0.300
Diag. Gaussian 0.001 0.057 −0.015
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meshes. For all plots of object samples or reconstructions we show
the mean E[x]p(x|z) of the data variables given the latents.

Training details. We trained ShapeVAEs with 8 and 64 latent
dimensions and part representations of size 256 per part using the
ADAM optimizer [KB15] with a learning rate of 10−4 for up to
500 passes through the training set in all our experiments. For
the quantitative experiments we used early stopping, where model
training was halted based on performance a validation set. For
sample synthesis we allowed the model to train for the full 500
passes through the training set. For the airplane and chair datasets
we used a batch size of 100, and for the bike dataset we use a
batch size of 64. We use a minimum variance of σ2

min = 10−3 and
KL weighting α = 102 in all our models. ShapeFAs with 8 and
64 latent dimensions, and part representations of size 128 per part
were trained as a baseline model. The ShapeVAE takes around 30
minutes to train on an Nvidia Titan X GPU for our largest dataset
consisting of 3701 chair. This is a order of magnitude faster than the
beta shape machine introduced by Huang et al. which is reported
to take 45 hours for the same dataset [HKM15].

Shape completion. We evaluate the ShapeVAE’s ability to com-
plete shapes, where the task is to infer missing keypoints or surface
normal variables given observations of the other variables. For
the ShapeVAE we perform conditional inference by initializing
the missing values with noise, and iteratively sampling the latent
variables conditioned on the data, and then the data variables given
the latents. This defines an MCMC chain that samples from the
conditional distribution as required [RMW14]. Two particularly
useful tasks are the completion of missing parts, and estimation of
surface normals for a given point cloud. Figure 3 shows examples
of plausible completions for the part-completion task, and Figure
4 shows normals recovered by the ShapeVAE given an input point
cloud.

In order to quantitatively test the shape completion abilities of
the ShapeVAE, we use the following experiment. We sample with
replacement 1000 objects from the test sets of each object class. We
then drop-out parts independently with probability 0.25, and reject
a part selection if all or none of the parts remain. The ShapeVAE
and ShapeFA are used to impute the missing parts and we compute
the mean squared error between the reconstructed values and the
true values. For both the ShapeVAE and ShapeFA we sample from
the conditional distribution of the missing parts given the visible
parts, and estimate the conditional mean by averaging over 25
samples, with an MCMC burn-in of 100 samples, and a gap of 10
between each chosen sample. This conditional mean is used as the
reconstruction estimate. The ShapeVAE outperforms the ShapeFA
in both the planes and bikes categories, and achieves similar results
in the chairs category as shown in Table ??.

Likelihood. A standard measure of a generative model’s perfor-
mance is test set log-likelihood: the average probability of a set of
unseen datapoints under the model. We evaluate the log-likelihood
obtained by the ShapeVAE against baseline models on each of
the four object classes. Although the ShapeVAE is a probabilistic
model it is not possible to evaluate the exact probability of a
data point, only a lower bound. As such we estimate the log-
likelihood using 10,000 importance-weighted samples [BGS15].
This provides a lower bound on the log-likelihood that is tighter
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Figure 5: Shape samples. (a) A collection of examples from the
chairs dataset. (b) Samples generated by a ShapeFA with 64 latent
dimensions. (c) Samples generated by a ShapeVAE with 64 latent
dimensions. Stylistic variability highlighted in green.
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Figure 6: Shape samples. (a) A collection of examples from the
airplanes dataset. (b) Samples generated by a ShapeFA with 64
latent dimensions. (c) Samples generated by a ShapeVAE with 64
latent dimensions. Stylistic variability highlighted in green.
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Figure 7: Shape samples. (a) A collection of examples from the
bike dataset. (b) Samples generated by a ShapeFA with 64 latent
dimensions. (c) Samples generated by a ShapeVAE with 64 latent
dimensions. Shape variability highlighted in green.

Figure 8: Symmetry. Symmetry score distribution for samples
from the ShapeVAE and the ShapeFA.

than the training lower bound, however it may still be significantly
lower than the true value. We compare with the ShapeFA and
diagonal Guassian baselines for which we can obtain an exact log-
likelihood score. Table ?? shows that although the ShapeVAE has
much better performance than the Gaussian baseline, the ShapeFA
with 8 latent dimensions achieves the best performance on all
datasets. However it should be emphasized that the reported score
for ShapeVAE models is a lower bound, and the true log-likelihood
score may be significantly higher.

Sample quality. We qualitatively investigate the extent to which
the ShapeVAE synthesizes quality 3D objects, as compared with
real data examples and the ShapeFA. Good samples are charac-
terised by realism: where objects demonstrate regular surfaces,
appropriate symmetry, functional plausibility in terms of part
attachments, as well as fine detail. Samples should also demonstrate
a wide range of shape variability, and capture the main modes of
variation in the object class. For example a model trained on chairs
data should be able to generate both wide benches, tall, thin chairs,
as well as armchairs and office chairs. Another desirable feature
of a model’s samples is novelty: shape samples should not simply
recreate instances from the training data set.

Figures 5, 6 and 7 show samples from the ShapeVAE alongside
data examples, and samples from the ShapeFA. The ShapeFA
produces samples that demonstrate a wide range of variability,
however they feature irregular surfaces and occasional asymmetry.
This is particularly evident for the airplane object class in which a
number of examples demonstrate misshapen features. By contrast

Figure 9: Latent space activity. The activity of each latent unit (as
defined in Section 5: Latent structure) sorted in descending order
for ShapeVAEs with 64 latent dimensions. The first units at which
the cumulative activity is greater than 90% is indicated.
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Figure 10: Latent features. Data reconstructions obtained by
varying a single latent unit through [−3, . . . ,3] while setting the
others to zero. Units are numbered in order of their activity (see
Figure 9.

the ShapeVAE produces samples that are realistic, with regular
surfaces and good symmetry. The samples also demonstrate a good
range of shape variability in terms of object style, with office chairs,
benches, tall chairs and standard four-leg chairs all well represented
for the chair object class, commercial jets, fighter jets and small
planes present in the airplane samples, and bulky motorbikes and
smaller off-road bikes present in the bike samples. However, neither
the ShapeVAE or ShapeFA produce samples with the level of fine-
detail present in the data examples. Features like chair backs with
slats, or ornamental legs are not present in the model samples. This
is consistent with the blurry image samples produces using VAEs
in the machine learning literature [LDC16]. It is arguable that the
assumption of independence of the data variables given the latent
variables enables the VAE to simply model fine details as noise.

To assess the extent to which the ShapeVAE produces symmetrical
samples, we compute a symmetry score. The symmetry score for
a particular object is defined as the average euclidean distance
between sampled points, and their nearest neighbors, after flipping
on some axis of symmetry. For chairs we use the axis that splits the
seat and back in half, for airplanes, we flip on the axis that extends
lengthways through the fuselage. Figure 8 shows the distribution
of symmetry scores for 1000 samples from a ShapeVAE with
64 latent dimensions, and a ShapeFA with 64 latent dimensions.
The ShapeVAE achieves better symmetry scores, with a notable
difference for the airplanes dataset.
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Figure 11: Latent space interpolation. (Source) Source 3D point
cloud. (Target) Target 3D point cloud. (Interpolations) ShapeVAE
Interpolations obtained by a linear interpolation in latent space.

Latent structure. In order to examine the latent structure learned
by the ShapeVAE we train a model with 2 latent dimensions, and
plot the latent space along with embeddings of a selection of the
training set in Figure 1 (left). The training set embeddings are
obtained by passing the input examples through the ShapeVAE
encoder. We see that semantically similar chair styles such as
benches, arm-chairs, tall chairs and ordinary chairs form clusters
in latent space, which indicates that the ShapeVAE with 2 latent
dimesions has learned global geometric structure such as the
relative height, width and depth of the 3D objects. By selecting
points close to these clusters, we can decode and obtain samples
of 3D objects (Figure 1 (middle)). The samples share some of the
main semantic characteristics of the training examples that they
are embedded close to. In this case the relatively narrow range of
variability of the sampled shapes can be attributed partly to the very
low-dimensional latent space.

For models with more latent dimensions it isn’t possible to visualise
the latent space in the same way, however we can demonstrate
some qualities of higher dimensional latent spaces by tracing a
straight line in latent space, and visualising the decoded objects
sampled along this line. Figure 11 shows examples of these interpo-
lations achieved using ShapeVAEs with 64 latent dimensions. The
interpolations are smooth, and each intermediate point produces a
plausible 3D object.

In previous work on VAEs it has been demonstrated that the
models often do not encode much information in a number of the
latent variables [BGS16, SRM∗16]. We use the measure of activity
described in [BGS16] which is the the variance across the data set
of examples transformed using the mean of the encoder distribution
for a particular dimension. If a latent unit varies across different
data examples, then it is reasonable to think that it is encoding
information useful for reconstruction. We plot the activity of the
latent units for ShapeVAEs with 64 latent dimensions in Figure 9.
The figure shows that for each object class, the activity of the latent
units drops significantly after about 10 units. This indicates that the
effective dimensionality of the ShapeVAE can be lower than the
pre-specified number of latent units. In Figure 10 we demonstrate
some examples of features learned by different latent dimensions
by varying a particular unit while keeping the others fixed. We see
that features encoded by latent units with high activity (unit 1, 5)
encode more significant shape changes than those with low activity
(unit 40). This reinforces the notion that the latent activity metric
captures the importance of the latent units.

Surface reconstruction. We reconstruct 3D meshes from sam-
pled point clouds using three methods: alpha shapes [EKS83],
template deformation [SSP07] and Poisson surface reconstruction
[KBH06]. For alpha shapes we use a radius r = 0.12. For template
deformation we use a variant of an embedded deformation in
which the deformation graph’s nodes are the keypoints of template
part, and we smoothly deform so as to match the corresponding
samples’ keypoints. For Poisson surface reconstruction we the
implementation of Kazhdan et al. with default parameters except
for the number of samples per node, which we set to 1.5 [KBH06].

Exemplar mesh reconstructions using alpha shapes, template defor-
mation and Poisson surface reconstruction for surface point clouds
sampled from trained ShapeVAEs are shown in Figure 12. We
qualitatively evaluate the mesh reconstructions in terms of mesh
quality and faithfulness of the reconstructed surface to the shape of
the sampled points. The alpha shapes reconstructions (Figure 12b)
are successful in capturing the coarse shape of the sampled points,
however as the method relies on reconstruction of the input points,
it produces noisy and uneven output. Triangulation-based methods
also suffer at object part boundaries where surfaces intersect. This
is clearly illustrated by the wing-fuselage intersection on the air-
plane example. The template deformation reconstructions (Figure
12c) make use of a database of existing object parts, which are then
deformed and repositioned so as to match the sampled points. As
such they inherit good-quality, human-designed mesh parts, which
combine to create a high-quality, noise-free mesh reconstruction.
However, template meshes can only be deformed to a limited extent
before becoming irregular, and so the extent to which a template
deformation can match an object sample is limited. In addition if
segmentations of meshes in the database are not exactly aligned
with real part boundaries, then issues can arise at the intersection
of parts in the synthesized mesh. This is highlighted in the chairs
example in which the chair arms are not quite compatible with
the chair seat. Figure 12d shows Poisson surface reconstructions
using the sampled point normals. The reconstructions are of better
quality than alpha shapes with respect to noise and artifacts, and
faithfully recover the shape of the point samples. However it
should be noted that in cases where the sampled points are sparse,
the Poisson surface reconstruction can fail, resulting in unusable
reconstructions.

6. Discussion

In this paper we have demonstrated that the ShapeVAE can effec-
tively model the high dimensional distribution over object shapes,
producing realistic and novel samples. We show that modern deep
learning methods are effective at scaling to very high dimensional-
ity data, and that by modelling both 3D surface points and surface
normals we enable the use of normal-based surface reconstruction
methods. Furthermore our models can be trained very quickly in
comparison to other methods, which increases the accessibility of
these methods to practitioners.

The most significant limitation of our method is the reliance on
input datasets containing consistent mesh segmentations as well
as dense correspondences. Although there exist methods for the
automatic establishment of correspondences and segmentations,
these methods are imperfect and can result in poor outputs. A
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Figure 12: Mesh reconstruction. (a) A sampled 3D point cloud with surface normals. Surface reconstruction using (b) alpha shapes, (c)
template deformation, and (d) Poisson surface reconstruction. (e) Surface reconstruction detail for (top left) point samples, (top right) alpha
shapes, (bottom left) template deformation and (bottom right) Poisson surface reconstruction.

significant issue is is that the notion of one-to-one point corre-
spondences for objects in diverse datasets such as chairs is ill-
founded. The result is that the input data for our method can
feature poor correspondences, which has a knock-on effect on
sample quality. We believe that a promising avenue for future
research is to represent objects using unordered point sets, which
would enable the use of large datasets without pre-processing, and
correspondence quality issues. Some work has already taken place
in this area, with deep learning methods applied to 3D point sets for
the purpose of object classification, semantic scene parsing and part
segmentation [QSMG16]. We believe there is potential to modify
these methods for generative modelling, which would enable the
synthesis of arbitrary point clouds.

Although the ShapeVAE’s samples display a good range of vari-
ability, they are somewhat lacking in fine detail in comparison with
the input point sets. This is an issue that has been documented in the
machine learning literature, in which VAE-based generative models
of images demonstrate blurriness and a lack of detail [DB16].
This effect has been attributed to the use of unimodal generative
distributions such as Gaussians. One solution to this issue that has
emerged in generative models is the use of generative adversarial
networks (GANs), which demonstrate mode-seeking behaviour,
and thus produce samples closer to the true data manifold than
alternative approaches. As such, a potential future direction is to
make use of GAN with a similar architecture to the ShapeVAE
decoder to generate objects.
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