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Abstract. The equivalent kernel [1] is a way of understanding how
Gaussian process regression works for large sample sizes based on a con-
tinuum limit. In this paper we show how to approximate the equiva-
lent kernel of the widely-used squared exponential (or Gaussian) kernel
and related kernels. This is easiest for uniform input densities, but we
also discuss the generalization to the non-uniform case. We show further
that the equivalent kernel can be used to understand the learning curves
for Gaussian processes, and investigate how kernel smoothing using the
equivalent kernel compares to full Gaussian process regression.

1 Introduction

Consider the supervised regression problem for a dataset D with entries (xi, yi)
for i = 1, . . . , n. Under Gaussian Process (GP) assumptions the predictive mean
at a test point x∗ is given by

f̄(x∗) = k>(x∗)(K + σ2I)−1y, (1)

where K denotes the n × n matrix of covariances between the training points
with entries k(xi,xj), k(x∗) is the vector of covariances k(xi,x∗), σ2 is the noise
variance on the observations and y is a n×1 vector holding the training targets.
See e.g. [2] for further details.

We can define a vector of functions h(x∗) = (K + σ2I)−1k(x∗) . Thus we
have f̄(x∗) = h>(x∗)y, making it clear that the mean prediction at a point x∗ is
a linear combination of the target values y. Gaussian process regression is thus
a linear smoother, see [3, section 2.8] for further details. For a fixed test point
x∗, h(x∗) gives the vector of weights applied to targets y. Silverman [1] called
h>(x∗) the weight function.

Understanding the form of the weight function is made complicated by the
matrix inversion of K+σ2I and the fact that K depends on the specific locations
of the n datapoints. Idealizing the situation one can consider the observations
to be “smeared out” in x-space at some constant density of observations. In this
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case analytic tools can be brought to bear on the problem, as shown below. By
analogy to kernel smoothing Silverman [1] called the idealized weight function
the equivalent kernel (EK).

The structure of the remainder of the paper is as follows: In section 2 we
describe how to derive the equivalent kernel in Fourier space. Section 3 derives
approximations for the EK for the squared exponential and other kernels. In
section 4 we show how use the EK approach to estimate learning curves for
GP regression, and compare GP regression to kernel regression using the EK. A
summary of our key results can be found in the short proceedings paper [4].

2 Gaussian Process Regression and the Equivalent

Kernel

It is well known (see e.g. [5]) that the posterior mean for GP regression can be
obtained as the function which minimizes the functional

J [f ] =
1

2
‖f‖2

H +
1

2σ2

n
∑

i=1

(yi − f(xi))
2, (2)

where ‖f‖H is the RKHS norm corresponding to kernel k. (However, note that
the GP framework gives much more than just this mean prediction, for example
the predictive variance and the marginal likelihood p(y) of the data under the
model.)

Let η(x) = E[y|x] be the target function for our regression problem and write
E[(y − f(x))2] = E[(y − η(x))2] + (η(x) − f(x))2. Using the fact that the first
term on the RHS is independent of f motivates considering a smoothed version
of equation (2),

Jρ[f ] =
ρ

2σ2

∫

(η(x) − f(x))2dx +
1

2
‖f‖2

H,

where ρ has dimensions of the number of observations per unit of x-space
(length/area/volume etc. as appropriate). If we consider kernels that are station-
ary, k(x,x′) = k(x−x′), the natural basis in which to analyse equation (2) is the
Fourier basis of complex sinusoids so that f(x) is represented as

∫

f̃(s)e2πis·xds
and similarly for η(x). Thus we obtain

Jρ[f ] =
1

2

∫

(

ρ

σ2
|f̃(s) − η̃(s)|2 +

|f̃(s)|2
S(s)

)

ds, (3)

as ‖f‖2
H =

∫

|f̃(s)|2/S(s)ds where S(s) is the power spectrum of the kernel k,
S(s) =

∫

k(x)e−2πis·xdx. Jρ[f ] can be minimized using calculus of variations to

obtain f̃(s) = S(s)η(s)/(σ2/ρ + S(s)) which is recognized as the convolution

f(x∗) =

∫

h(x∗ − x)η(x)dx (4)
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Here the Fourier transform of the equivalent kernel h(x) is

h̃(s) =
S(s)

S(s) + σ2/ρ
=

1

1 + σ2/(ρS(s))
. (5)

The term σ2/ρ in the first expression for h̃(s) corresponds to the power spectrum
of a white noise process, whose delta-function covariance function becomes a
constant in the Fourier domain. This analysis is known as Wiener filtering; see,
e.g. [6, §14-1]. Notice that as ρ → ∞, h(x) tends to the delta function.

To see the relation between the EK and the weights h(x∗) for prediction from
a finite data set, one notes that the integral in equation (4) can be approximated
by the discrete sum (1/ρ)

∑

i h(x∗ −xi)yi; the factor 1/ρ represents the average
volume element associated with each of the discrete training inputs. The EK
h(x∗ − xi) should therefore approximate the scaled weights ρh(x∗). We will see
this confirmed below.

3 The EK for the Squared Exponential and Related

Kernels

For certain kernels/covariance functions the EK h(x) can be computed exactly
by Fourier inversion. Examples include the Ornstein-Uhlenbeck process in D = 1
with covariance k(x) = e−α|x| (see [6, p. 326]), splines in D = 1 corresponding
to the regularizer ‖Pf‖2 =

∫

(f (m))2dx [1, 7], and the regularizer ‖Pf‖2 =
∫

(∇2f)2dx in two dimensions, where the EK is given in terms of the Kelvin
function kei [8].

We now consider the commonly used squared exponential (SE) kernel k(r) =
exp(−r2/2`2), where r2 = ||x − x′||2. (This is sometimes called the Gaus-
sian or radial basis function kernel.) Its Fourier transform is given by S(s) =
(2π`2)D/2 exp(−2π2`2|s|2), where D denotes the dimensionality of x (and s)
space.

From equation (5) we obtain

h̃SE(s) =
1

1 + b exp(2π2`2|s|2) ,

where b = σ2/ρ(2π`2)D/2. We are unaware of an exact result in this case, but the
following initial approximation is simple but effective. For large ρ, b will be small.
Thus for small s = |s| we have that h̃SE ' 1, but for large s it is approximately
0. The change takes place around the point sc where b exp(2π2`2s2

c) = 1, i.e.
s2

c = log(1/b)/2π2`2. As exp(2π2`2s2) grows quickly with s, the transition of h̃SE

between 1 and 0 can be expected to be rapid, and thus be well-approximated by
a step function.

Proposition 1 The approximate form of the equivalent kernel for the squared-

exponential kernel in D-dimensions is given by

hSE(r) =
(sc

r

)D/2

JD/2(2πscr).
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Fig. 1. Plot of the asymptotic form of the EK (sc/r)J1(2πscr) for D = 2 and ρ = 1225.

Proof: hSE(s) is a function of s = |s| only, and for D > 1 the Fourier integral
can be simplified by changing to spherical polar coordinates and integrating out
the angular variables to give

hSE(r) = 2πr

∫ ∞

0

(s

r

)ν+1

Jν(2πrs)h̃SE(s) ds (6)

' 2πr

∫ sc

0

(s

r

)ν+1

Jν(2πrs) ds =
(sc

r

)D/2

JD/2(2πscr).

where ν = D/2− 1, Jν(z) is a Bessel function of the first kind and we have used
the identity zν+1Jν(z) = (d/dz)[zν+1Jν+1(z)]. �

Note that in D = 1 by computing the Fourier transform of the boxcar func-
tion we obtain hSE(x) = 2scsinc(2πscx) where sinc(z) = sin(z)/z. This is con-
sistent with Proposition 1 and J1/2(z) = (2/πz)1/2 sin(z). The asymptotic form
of the EK in D = 2 is shown in Figure 1.

Notice that sc scales as (log(ρ))1/2 so that the width of the EK (which is
proportional to 1/sc) will decay very slowly as ρ increases. In contrast for a
spline of order m (with power spectrum ∝ |s|−2m) the width of the EK scales as
ρ−1/2m [1].

If instead of R
D we consider the input set to be the unit circle, a stationary

kernel can be periodized by the construction kp(x, x′) =
∑

n∈Z
k(x − x′ + 2nπ).

This kernel will be represented as a Fourier series (rather than with a Fourier
transform) because of the periodicity. In this case the step function in Fourier
space approximation would give rise to a Dirichlet kernel as the EK (see [9,
section 4.4.3] for further details on the Dirichlet kernel).

We now show that the result of Proposition 1 is asymptotically exact for
ρ → ∞, and calculate the leading corrections for finite ρ. The scaling of the
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width of the EK as 1/sc suggests writing hSE(r) = (2πsc)
Dg(2πscr). Then from

equation (6) and using the definition of sc

g(z) =
z

sc(2πsc)D

∫ ∞

0

(

2πscs

z

)ν+1
Jν(zs/sc)

1 + exp[2π2`2(s2 − s2
c)]

ds

= z

∫ ∞

0

( u

2πz

)ν+1 Jν(zu)

1 + exp[2π2`2s2
c(u

2 − 1)]
du (7)

where we have rescaled s = scu in the second step. The value of sc, and hence ρ,
now enters only in the exponential via a = 2π2`2s2

c . For a → ∞, the exponential
tends to zero for u < 1 and to infinity for u > 1. The factor 1/[1 + exp(. . .)]
is therefore a step function Θ(1 − u) in the limit and Proposition 1 becomes
exact, with g∞(z) ≡ lima→∞ g(z) = (2πz)−D/2JD/2(z). To calculate corrections
to this, one uses that for large but finite a the difference ∆(u) = {1+exp[a(u2−
1)]}−1 − Θ(1 − u) is non-negligible only in a range of order 1/a around u = 1.
The other factors in the integrand of equation (7) can thus be Taylor-expanded
around that point to give

g(z) = g∞(z)+z

∞
∑

k=0

Ik

k!

dk

duk

[

( u

2πz

)ν+1

Jν(zu)

]∣

∣

∣

∣

u=1

, Ik =

∫ ∞

0

∆(u)(u−1)k du

The problem is thus reduced to calculating the integrals Ik . Setting u = 1 + v/a
one has

ak+1Ik =

∫ 0

−a

[

1

1 + exp(v2/a + 2v)
− 1

]

vk dv +

∫ ∞

0

vk

1 + exp(v2/a + 2v)
dv

=

∫ a

0

(−1)k+1vk

1 + exp(−v2/a + 2v)
dv +

∫ ∞

0

vk

1 + exp(v2/a + 2v)
dv

In the first integral, extending the upper limit to ∞ gives an error that is expo-
nentially small in a. Expanding the remaining 1/a-dependence of the integrand
one then gets, to leading order in 1/a, I0 = c0/a2, I1 = c1/a2 while all Ik with
k ≥ 2 are smaller by at least 1/a2. The numerical constants are −c0 = c1 =
π2/24. This gives, using that (d/dz)[zν+1Jν(z)] = zνJν(z) + zν+1Jν−1(z) =
(2ν + 1)zνJν(z) − zν+1Jν+1(z):

Proposition 2 The equivalent kernel for the squared-exponential kernel is given

for large ρ by hSE(r) = (2πsc)
Dg(2πscr) with

g(z) =
1

(2πz)
D

2

{

JD/2(z) +
z

a2

[

(c0 + c1(D − 1))JD/2−1(z) − c1zJD/2(z)
]

}

within an expansion in 1/a; the neglected terms are O(1/a4).

For e.g. D = 1 this becomes g(z) = π−1{sin(z)/z−π2/(24a2)[cos(z)+z sin(z)]}.
Here and in general, by comparing the second part of the 1/a2 correction with the
leading order term, one estimates that the correction is of relative size z2/a2. It
will therefore provide a useful improvement as long as z = 2πscr < a; for larger
z the expansion in powers of 1/a becomes a poor approximation because the
correction terms (of all orders in 1/a) are comparable to the leading order.
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3.1 Accuracy of the approximation

To evaluate the accuracy of the approximation we can compute the EK numer-
ically as follows: Consider a dense grid of points in R

D with a sampling density
ρgrid. For making predictions at the grid points we obtain the smoother matrix
K(K +σ2

gridI)−1, where3 σ2
grid = σ2ρgrid/ρ, as per equation (1). Each row of this

matrix is (up to a factor ρgrid) an approximation to the EK at the appropriate
location, as this is the response to a y vector which is zero at all points except
one. Note that in theory one should use a grid over the whole of R

D but in prac-
tice one can obtain an excellent approximation to the EK by only considering a
grid around the point of interest as the EK typically decays with distance. Also,
by only considering a finite grid one can understand how the EK is affected by
edge effects.

Figure 2 shows plots of the weight function for ρ = 100, the EK computed
on the grid as described above and the analytical sinc approximation. These are
computed for parameter values of `2 = 0.004 and σ2 = 0.1, with ρgrid/ρ = 5/3.
To reduce edge effects, the interval [−3/2, 3/2] was used for computations, al-
though only the centre of this is shown in the figure. There is quite good agree-
ment between the numerical computation and the analytical approximation,
although the sidelobes decay more rapidly for the numerically computed EK.
This is not surprising because the absence of a truly hard cutoff in Fourier space
means one should expect less “ringing” than the analytical approximation pre-
dicts. The figure also shows good agreement between the weight function (based
on the finite sample) and the numerically computed EK. The insets show the
approximation of Proposition 2 to g(z) for ρ = 100 (a = 5.67, left) and ρ = 104

(a = 9.67, right). As expected, the addition of the 1/a2-correction gives better
agreement with the numerical result for z < a. Numerical experiments also show
that the mean squared error between the numerically computed EK and the
sinc approximation decreases like 1/ log(ρ). The is larger than the näıve esti-
mate (1/a2)2 ∼ 1/(log(ρ))4 based on the first correction term from Proposition
2, because the dominant part of the error comes from the region z > a where
the 1/a expansion breaks down.

3.2 Other kernels

Our analysis is not in fact restricted to the SE kernel. First of all, it trivially
extends to automatic-relevance determination kernels, which are obtained from

3 To understand this scaling of σ2
grid consider the case where ρgrid > ρ which means

that the effective variance at each of the ρgrid points per unit x-space is larger,
but as there are correspondingly more points this effect cancels out. This can be
understood by imagining the situation where there are ρgrid/ρ independent Gaussian
observations with variance σ2

grid at a single x-point; this would be equivalent to one
Gaussian observation with variance σ2. In effect the ρ observations per unit x-space
have been smoothed out uniformly.
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Fig. 2. Main figure: plot of the weight function ρh(x∗) corresponding to ρ = 100
training points per unit length, plus the numerically computed equivalent kernel at
x∗ = 0 and the sinc approximation from Proposition 1. Insets: numerically evaluated
g(z) together with sinc and Proposition 2 approximations for ρ = 100 (left) and ρ = 104

(right).

the SE kernel by allowing separate lengthscales for each input dimension, i.e.

k(x) = exp

(

− x2
1

2`2
1

− · · · − x2
D

2`2
D

)

One can write this as k(x) = exp(−||L−1x||2/2) with L a diagonal matrix con-
taining the lengthscales `1, . . . `D. This could be further extended to arbitrary
linear transformations on input space, where L also has nonzero off-diagonal ele-
ments. Making the replacement x̃ = L−1x in the Fourier transform defining the
power spectrum S(s), and following through how this affects the EK as defined
in equation (5), one easily finds that

h(x) = |L|−1 h1

(

L−1x, ρ|L|
)

(8)

where h1(x, ρ) is the EK for the isotropic case with ` = 1 and data point density
ρ. Equation (8) tells us that the EK is stretched or squashed by exactly the
same transformation matrix L as the underlying covariance kernel. The scaling
of the density ρ by the determinant |L| is also reasonable: what is relevant is the
number of data points per “correlation volume”. The latter can be defined e.g.
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as the size of the region in x-space where k(x) is above some threshold value,
and is proportional to |L|. In the isotropic case one has |L| = `D, and the general
result in equation (8) is consistent with the fact that, in our earlier results, ρ
always appeared in the combination ρ`D.

The identity (8) holds for linear transformations applied to any isotropic
kernel. In the following we therefore only consider the latter; the power spectrum
S(s) then depends on s = |s| only. We can again define from equation (5) an
effective cutoff sc on the range of s in the EK via σ2/ρ = S(sc), so that h̃(s) =
[1+S(sc)/S(s)]−1. The EK will then have the limiting form given in Proposition
1 if h̃(s) approaches a step function Θ(sc−s), i.e. if it becomes infinitely “steep”
around the point s = sc for sc → ∞. A quantitative criterion for this is that
the slope |h̃′(sc)| should become much larger than 1/sc, the inverse of the range
of the step function. Since h̃′(s) = S′(s)S(sc)S

−2(s)[1 + S(sc)/S(s)]−2, this
is equivalent to requiring that −scS

′(sc)/4S(sc) ∝ −d log S(sc)/d log sc must
diverge for sc → ∞. The result of Proposition 1 therefore applies to any kernel
whose power spectrum S(s) decays more rapidly than any positive power of 1/s.

A trivial example of a kernel obeying this condition would be a superposi-
tion of finitely many SE kernels with different lengthscales `2; the asymptotic
behaviour of sc is then governed by the smallest `. A less obvious case is the
“rational quadratic” k(r) = [1 + (r/l)2]−(D+1)/2 which has an exponentially de-
caying power spectrum S(s) ∝ exp(−2π`s). (This relationship is often used in
the reverse direction, to obtain the power spectrum of the Ornstein-Uhlenbeck
(OU) kernel exp(−r/`).) Proposition 1 then applies, with the width of the EK
now scaling as 1/sc ∝ 1/ log(ρ).

The previous example is a special case of kernels which can be written as
superpositions of SE kernels with a distribution p(`) of lengthscales `, k(r) =
∫

exp(−r2/2`2)p(`) d`. This is in fact the most general representation for an
isotropic kernel which defines a valid covariance function in any dimension D,
see [10, §2.10]. Such a kernel has power spectrum

S(s) = (2π)D/2

∫ ∞

0

`D exp(−2π2`2s2)p(`) d` (9)

and one easily verifies that the rational quadratic kernel, which has S(s) ∝
exp(−2π`0s), is obtained for p(`) ∝ `−D−2 exp(−`2

0/2`2). More generally, be-
cause the exponential factor in equation (9) acts like a cutoff for ` > 1/s, one

estimates S(s) ∼
∫ 1/s

0
`Dp(`) d` for large s. This will decay more strongly than

any power of 1/s for s → ∞ if p(`) itself decreases more strongly than any
power of ` for ` → 0. Any such choice of p(`) will therefore yield a kernel to
which Proposition 1 applies.

3.3 Non-Uniform Input Densities

We next discuss how the above results generalize to the case where the input
density p(x) is not uniform. The smoothed version of the functional J [f ] in
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equation (2) is now

Jρ[f ] =
n

2σ2

∫

(η(x) − f(x))2p(x)dx +
1

2
‖f‖2

H, (10)

To minimize this over f one decomposes the latter into eigenfunctions of the
covariance kernel, rather than Fourier modes as before. The eigenfunctions are
defined by the property

∫

k(x,x′)φs(x
′)p(x′)dx′ = λsφs(x)

where the λs are the associated eigenvalues. We index both by a subscript s
to emphasize the similarity with the Fourier wavevector s we had so far; in
particular, λs is the analogue of S(s) above4. The eigenfunctions φs can always
be chosen as normalized and orthogonal with respect to the input density, so that
∫

φs(x)φs′ (x)p(x)dx = δss′ and the covariance function has the decomposition
k(x,x′) =

∑

s λsφs(x)φs(x
′). In terms of the components of f and η along

the eigenfunctions, f̃s =
∫

f(x)φs(x)p(x)dx and similarly for η̃s, the smoothed
functional (10) can then be written as

Jρ[f ] =
n

2σ2

∑

s

(η̃s − f̃s)
2 +

1

2

∑ f̃2
s

λs
.

Minimization over the f̃s then gives f̃s = η̃s/[1+σ2/(nλs)] or, after reassembling
f(x) =

∑

s f̃sφs(x),

f(x∗) =
∑

s

η̃sφs(x∗)

1 + σ2/(nλs)
=

∫

h(x∗,x)p(x)η(x)dx′ (11)

where the equivalent kernel is now defined as

h(x∗,x) =
∑

s

1

1 + σ2/(nλs)
φs(x∗)φs(x) . (12)

One sees from this that, in general, the EK h(x∗,x) for non-uniform input den-
sities is a function of its two arguments separately rather than just of their
difference x∗ − x as in the uniform case. Also, the eigenfunctions φs(x) depend
in a nontrivial manner on the input density and will not be known a priori.

To gain more insight into the behaviour of the EK for non-uniform input
densities we now consider the specific case of one-dimensional inputs x with

4 More precisely, if the input density p(x) is uniform (= 1/V ) over a large cubic box
of size V = LD, then the eigenfunctions φs(x) = exp(2πis ·x) are indexed by Fourier
wavevectors s whose components are multiples of 1/L, and the eigenvalues are related
to the power spectrum by λs = V −1S(s). The resulting EK (12) reproduces the one
derived earlier in (5) once it is multiplied by p(x) = 1/V and the limit V → ∞ is
taken; see also the discussion later in the text.
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Gaussian density p(x) = (2π)−1/2 exp(−x2/2) and a SE kernel. In that case the
eigenfunctions are known to be [11]

φs(x) = c1/4(2s−1s!)−1/2e−(c−1/4)x2

Hs(
√

2cx) s = 0, 1, . . . ,

where c = [1/16 + 1/(4l2)]1/2 and Hs(·) is the s-th Hermite polynomial. The
associated eigenvalues decay exponentially, λs = l[2l(c − 1/4)]2k+1. The frac-
tion in equation (12) again drops from ' 1 to ' 0, around the eigenfunction
index sc where λsc

' σ2/n. One can show that this drop becomes increasingly
steep as nλ0/σ2 grows large, and imposing a hard cutoff at sc according to
h(x,x′) ≈

∑sc

s=0 φs(x)φs(x
′) should then give a good approximation to the EK.

This approximation can in fact be evaluated in closed form because the eigen-
functions are, apart from s-independent factors, normalized orthogonal polyno-
mials. The Christoffel-Darboux formula [12, eq. 22.12.1] then gives for the hard
cutoff approximation to the EK

h(x, x′) ≈
√

sc + 1

4c

φsc+1(x)φsc
(x′) − φsc

(x)φsc+1(x
′)

x − x′
. (13)

In the results below, we have also calculated the unapproximated EK from equa-
tion (12), using the exact eigenfunctions and eigenvalues. We have compared this
with a grid-based calculation: if K is the covariance matrix on a grid of density
ρgrid, one can show that the appropriate estimate for the product h(x,x′)p(x′)
at the grid points is ρgridK[K + σ2ρgrid(nP )−1]−1 where P is the diagonal ma-
trix containing p(x) at the grid points. This is directly analogous to the grid
estimator we used for uniform input density, except for the replacement of the
data point density ρ by nP . Numerically the grid estimate appears more robust,
in particular for small ` where a larger number of eigenfunctions contribute to
the EK.

A new issue in the case of non-uniform input densities is that both the EK
h(x∗,x) and the combination h(x∗,x)p(x) are meaningful. The former should
approximate the weights h(x∗) one obtains for predicting at x for a given train-
ing sample of n discrete points. Indeed, the integral on the right-hand side of
equation (11) is approximated by the discrete sum (1/n)

∑

i h(x∗,xi)yi so that
h(x∗,xi) approximates (n times) the weight given to training output yi. Figure 3
shows that this correspondence holds rather well.

The fact that the combination of the EK with the input density, h(x∗,x)p(x),
could be relevant is suggested by comparing the EK prediction (4) for the uniform
case with its non-uniform analogue (11). This shows that h(x∗,x)p(x) plays the
role of an effective smoothing kernel applied to the target function η(x). We
plot this combination in figure 4 and compare it to the result of the hard cutoff
approximation (13), for sample size n = 100 and noise level σ2 = 0.1. On the
left, where the covariance function lengthscale is ` = 0.5, the approximation
is reasonable; as in the case of uniform input density, making the cutoff hard
produces more ringing. In the plot on the right, where ` = 0.2, this effect is
rather more pronounced. This is consistent with the fact that the hard cutoff



11

−3 −2 −1 0 1 2 3 4

−2

0

2

4

6

8

10
Weights
EK

Fig. 3. The EK for Gaussian input density p(x) and an SE covariance function with
` = 0.5, at noise level σ2 = 0.1 and for n = 100 data points. Solid line: numerically
calculated EK h(x∗, x) for x∗ = 1. Markers: weights h(x∗) for prediction at the same
point, for a random sample of n = 100 training inputs. The weights are multiplied by
a factor of n to show the correspondence with the EK.

approximation should improve as nλ0/σ2 becomes large: this ratio is ≈ 390 for
the situation on the left but ≈ 181 on the right.

Finally, one suspects that the EK for non-uniform input densities should re-
duce to the one for uniform densities if it is sufficiently peaked. More precisely,
if the combination h(x∗,x)p(x) is concentrated in a region x ≈ x∗ that is suffi-
ciently small for p(x) to be regarded as constant there, then it should coincide
with the corresponding EK h(x∗−x) for a uniform input density of ρ = np(x∗).
If ρ is large enough, one should be able to approximate further by using the
asymptotic form of the EK from Proposition 1.

We test this intuition in figure 5, for a covariance function with lengthscale
` = 0.2. For prediction at x∗ = 0, 1 and 2 we observe that the EK calculated for
uniform ρ provides a good approximation to the EK for the actual non-uniform
p(x), and the quality of asymptotic form from Proposition 1 is similar to the
uniform case. As |x∗| increases, the approximation of uniform density becomes
worse. This arises from two trends. On the one hand, the width of the EK itself
increases. On the other, the lengthscale over which p(x) varies – which is ∼ 1/x
for x > 1 – decreases. Eventually these two lengths therefore become comparable,
and the variation of p(x) can then no longer be neglected.
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Fig. 4. EK times input density, h(x∗, x)p(x), for Gaussian p(x), n = 100, σ2 = 0.1,
and prediction point x∗ = 1. The lengthscale of the covariance function is ` = 0.5 on
the left, and ` = 0.2 on the right. The dashed lines show the corresponding results for
the hard cutoff approximation (13).

4 Understanding GP Learning Using the Equivalent

Kernel

We now turn to using EK analysis to get a handle on average case learning
curves for Gaussian processes. Here the setup is that a function η is drawn from
a Gaussian process, and we obtain ρ noisy observations of η per unit x-space
at random x locations; note that for simplicity we revert to the case of uniform
input density in this section. We are concerned with the mean squared error
(MSE) between the GP prediction f and η. Averaging over the noise process,
the x-locations of the training data and the prior over η we obtain the average
MSE ε as a function of ρ. See e.g. [13] and [14] for an overview of earlier work
on GP learning curves.

To understand the asymptotic behaviour of ε for large ρ, we now approximate
the true GP predictions with the EK predictions from noisy data, given by
fEK(x) =

∫

h(x − x′)y(x′)dx′ in the continuum limit of “smoothed out” input
locations. We assume as before that y = target + noise, i.e. y(x) = η(x) + ν(x)
where E[ν(x)ν(x′)] = (σ2

∗/ρ)δ(x − x′). Here σ2
∗ denotes the true noise variance,

as opposed to the noise variance assumed in the EK; the scaling of σ2
∗ with ρ is

explained in footnote 1. For a fixed target η, the MSE is ε = (
∫

dx)−1
∫

[η(x) −
fEK(x)]2dx. Averaging over the noise process ν and target function η gives in
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Fig. 5. EK times input density, h(x∗, x)p(x) for Gaussian p(x), ` = 0.2, n = 100,
σ2 = 0.1, and x∗ = 0, 1, 2, 3. Shown are the numerically calculated EK (solid lines), the
EK calculated for a constant data point density ρ = np(x∗) equal to the local density
at x∗ (dashed), and the approximation from Proposition 1 evaluated for the same ρ
(dotted, shown for x∗ = 1 only).

Fourier space

ε =

∫

{

Sη(s)[1 − h̃(s)]2 + (σ2
∗/ρ)h̃2(s)

}

ds

=
σ2

ρ

∫

(σ2/ρ)Sη(s)/S2(s) + σ2
∗/σ2

[1 + σ2/(ρS(s))]2
ds (14)

where Sη(s) is the power spectrum of the prior over target functions. In the case
S(s) = Sη(s) and σ2 = σ2

∗ where the kernel is exactly matched to the structure
of the target, equation (14) gives the Bayes error εB and simplifies to

εB = (σ2/ρ)

∫

[1 + σ2/(ρS(s))]−1ds (15)

(see also [6, eq. 14-16]). Interestingly, this is just the analogue (for a continuous
power spectrum of the kernel rather than a discrete set of eigenvalues) of the
lower bound of [14] on the MSE of standard GP prediction from finite datasets.
In experiments this bound provides a good approximation to the actual average
MSE for large dataset size n [13]. This supports our approach of using the EK
to understand the learning behaviour of GP regression.
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Fig. 6. Log-log plot of ε against log(ρ) for the OU and Matern-class processes (α =
2, 4 respectively). The dashed lines have gradients of −1/2 and −3/2 which are the
predicted rates.

Treating the denominator in the expression (3) for εB again as a hard cutoff
at s = sc, which is justified for large ρ, one obtains for an SE target and learner
ε = εB ≈ σ2sc/ρ ∝ (log(ρ))D/2/ρ. Note that the Bayes error εB also indicates the
mean-squared size of the errorbar of our predictions, i.e. the predictive variance,
whether or not kernel and noise level match the target. This can be seen from
the terms quadratic in f in the functional Jρ[f ], equation (3).

To get analogous predictions of the MSE for the mismatched case, one can
write equation (14) as

ε =
σ2
∗

ρ

∫

[1 + σ2/(ρS(s))] − σ2/(ρS(s))

[1 + σ2/(ρS(s))]2
ds +

∫

Sη(s)

[S(s)ρ/σ2 + 1]2
ds.

The first integral is smaller than (σ2
∗/σ2)εB and can be neglected as long as ε �

εB. In the second integral we can again make the cutoff approximation—though
now with s having to be above sc – to get the scaling ε ∝

∫∞

sc

sD−1Sη(s) ds. For

target functions with a power-law decay Sη(s) ∝ s−α of the power spectrum
at large s this predicts ε ∝ sD−α

c ∝ (log(ρ))(D−α)/2. So we generically get slow
logarithmic learning, consistent with the observations in [15]. For D = 1 and
an OU target (α = 2) we obtain ε ∼ (log(ρ))−1/2, and for the Matern-class
covariance function k(r) = (1 + r/`) exp(−r/`) (which has power spectrum ∝
(3/`2 + 4π2s2)−2, so α = 4) we get ε ∼ (log(ρ))−3/2. These predictions were
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tested experimentally using a GP learner with SE covariance function (` = 0.1
and assumed noise level σ2 = 0.1) against targets from the OU and Matern-
class priors (with ` = 0.05) and with noise level σ2

∗ = 0.01, averaging over
100 replications for each value of ρ. To demonstrate the predicted power-law
dependence of ε on log(ρ), in Figure 6 we make a log-log plot of ε against log(ρ).
The dashed lines show the gradients of −1/2 and −3/2 and we observe good
agreement between experimental and theoretical results for large ρ. We note
that the predictive variance εB ∼ 1/ρ (up to log-factors, see above) decays
much faster than the true MSE ε, illustrating the possibility of overconfident
predictions in mismatched scenarios.

5 Using the Equivalent Kernel in Kernel Regression

Above we have used the EK to understand how standard GP regression works.
One could alternatively envisage using the EK to perform kernel regression, on
given finite data sets, producing a prediction ρ−1

∑

i h(x∗ − xi)yi at x∗. Intu-
itively this seems appealing as a cheap alternative to full GP regression, partic-
ularly for kernels such as the SE where the EK can be calculated analytically,
at least to a good approximation. We now analyse how such an EK predictor
would perform compared to standard GP prediction.

Letting 〈·〉 denote averaging over noise, training input points and the test
point and setting fη(x∗) =

∫

h(x,x∗)η(x)dx, the average MSE of the EK pre-
dictor is

εpred =

〈[

η(x) − 1

ρ

∑

i

h(x,xi)yi

]2〉

=

〈

[η(x) − fη(x)]2 +
σ2
∗

ρ

∫

h2(x,x′)dx′

〉

+
1

ρ

〈
∫

h2(x,x′)η2(x′)dx′

〉

− 1

ρ

〈

f2
η (x)

〉

=
σ2

ρ

∫

(σ2/ρ)Sη(s)/S2(s) + σ2
∗/σ2

[1 + σ2/(ρS(s))]2
ds +

〈η2〉
ρ

∫

ds

[1 + σ2/(ρS(s))]2

Here we have set 〈η2〉 = (
∫

dx)−1
∫

η2(x) dx =
∫

Sη(s) ds for the spatial average
of the squared target amplitude. Taking the matched case, (Sη(s) = S(s) and
σ2
∗ = σ2) as an example, the first term in εpred (which is the one we get for the

prediction from “smoothed out” training inputs, see equation (14)) is of order
σ2sD

c /ρ, while the second one is ∼ 〈η2〉sD
c /ρ. Thus both terms scale in the same

way, but the ratio of the second term to the first is the signal-to-noise ratio
〈η2〉/σ2, which in practice is often large. The EK predictor will then perform
significantly worse than standard GP prediction, by a roughly constant factor,
and we have confirmed this prediction numerically. This result is somewhat sur-
prising given the good agreement between the weight function h(x∗) and the
EK that we saw in figure 2, leading to the conclusion that the detailed structure
of the weight function is important for optimal prediction from finite data sets.
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Fig. 7. Plot of the weight function corresponding to ρ = 100 training points/unit length
(dots), plus the numerically computed equivalent kernel at x∗ = 0.036 (thick solid line)
and the sinc approximation from Proposition 1 (thin line).

One suspects intuitively that the suboptimal performance of the EK smoother
must be related to the underlying assumption of uniformly distributed inputs.
We therefore show in figure 7 a situation with the same parameters as in fig-
ure 2, but now for prediction at x∗ = 0.036. In the training set for this figure
there are two training points very near to this location, at x = 0.0359 and
x = 0.0362. One sees that the effect of this is to depress the weights of these and
nearby points significantly, causing deviations from the weights estimated from
the EK. This phenomenon is easiest to understand in the limiting case where
two training inputs essentially coincide, and there is no output noise. The true
GP predictor then halves the weights these points would have if they were far
apart: effectively, only one of the two points is used for prediction because the
second one contributes no further information about the target function. The
EK smoother, on the other hand, produces weights which are not sensitive to
the locations of the training points in this way, and effectively overcounts the
signal provided by the two nearby inputs. This problem would not be present
when inputs are located on a regular grid, and indeed we find numerically that
then the EK performs very similarly to the full GP predictor.

If the above picture is correct, then the EK smoother should not only gen-
eralize relatively poorly, but also provide a suboptimal fit to the training data.
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To check this, we worked out the average training error of the EK smoother,

εtrain =
1

n

∑

i

〈



yi −
1

ρ

∑

j

h(x,xj)yj





2
〉

with the average taken as before over the noise process, the locations of the
training inputs and the prior over the underlying target function η. The averages
can be performed as in the calculation of the prediction error, but the number
of terms is larger because the case where i = j need to be treated separately.
With the abbreviation H = h(0)/ρ = ρ−1

∫

[1 + σ2/(ρS(s))]−1ds the result can
be written as

εtrain−(εpred+σ2
∗) = H2(σ2

∗+〈η2〉)−2H

{

σ2
∗ +

∫

Sη(s)

[

1 − 1

1 + σ2/(ρS(s))

]

ds

}

(16)
The difference on the left-hand side is that between the training error and the
noisy prediction error. One expects both of these quantities to tend to σ2

∗ for
large datasets; the noisy prediction error εpred + σ2

∗ clearly approaches the limit
from above, while the training error εtrain normally does so from below. For the
EK smoother one finds, by estimating the dominant term on the right-hand side
of equation (16) for the matched case (and for kernels where the approximation
of the integrals in terms of a hard cutoff on s works),

εtrain − σ2

(εpred + σ2) − σ2
→ 〈η2〉 − σ2

〈η2〉 + σ2
for ρ → ∞

For small noise, σ2 � 〈η2〉, the training error of the EK smoother thus actually
decreases towards its limiting value, in the same manner as the noisy prediction
error. This is consistent with our expectation that the EK smoother provides a
suboptimal fit to the training data. Only for large noise, σ2 > 〈η2〉, do we recover
the conventional behaviour whereby the training error approaches its limit value
from below. This makes sense: in this regime even the full GP predictor will not
ignore the second of two outputs corresponding to nearby input points, because
significant output noise needs to be averaged out before the target function is
learned.

6 Summary and Conclusion

In summary, we have derived accurate approximations for the equivalent kernel
(EK) of GP regression with the widely used squared exponential kernel, and
have shown that the same analysis in fact extends to a whole class of kernels. We
discussed how our results generalize to cases with non-uniform input densities,
and saw for the example of a Gaussian density that the resulting EK can often
be approximated in a reasonable manner by taking the data point density to be
uniform at its local value.
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We have also demonstrated that EKs provide a simple means of understand-
ing the learning behaviour of GP regression, even in cases where the learner’s
covariance function is not well matched to the structure of the target function.
In future work, it will be interesting to explore in more detail the use of the EK
in kernel smoothing. This is suboptimal compared to standard GP regression
as we saw. However, it does remain feasible even for very large datasets, and
may then be competitive with sparse methods for approximating GP regression.
From the theoretical point of view, the average error of the EK predictor which
we calculated may also provide the basis for useful upper bounds on GP learning
curves.
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