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Abstract. We consider a problem intimately related to the creation of
maxima under Gaussian blurring: the number of modes of a Gaussian
mixture in D dimensions. To our knowledge, a general answer to this
question is not known. We conjecture that if the components of the
mixture have the same covariance matrix (or the same covariance matrix
up to a scaling factor), then the number of modes cannot exceed the
number of components. We demonstrate that the number of modes can
exceed the number of components when the components are allowed to
have arbitrary and different covariance matrices.

We will review related results from scale-space theory, statistics and ma-
chine learning, including a proof of the conjecture in 1D. We present a
convergent, EM-like algorithm for mode finding and compare results of
searching for all modes starting from the centers of the mixture com-
ponents with a brute-force search. We also discuss applications to data
reconstruction and clustering.

1 Introduction

We propose a mathematical conjecture about Gaussian mixtures (GMs): that,
under certain conditions, the number of modes cannot exceed the number of
components. Although we originally came across this conjecture in a pattern
recognition problem (sequential data reconstruction), it is intimately related
to scale-space theory (since some GMs are the convolution of a delta mixture
with a Gaussian kernel) and statistical smoothing (since Gaussian kernel density
estimates are GMs). Bounding the number of modes and the region where they
lie, and finding all these modes, is of interest in these areas. The widespread
use of GMs makes the conjecture relevant not only theoretically but also in
applications of these areas, such as data reconstruction, image segmentation or
clustering.

We state formally the conjecture and prove part of it in Sect. 2, and review
related proof approaches in Sect. 3. We show the convergence of an algorithm
that tries to find all modes in Sect. 4 and discuss applications in Sect. 5. An
extended version of this paper appears as [1].



2 The Conjecture

Consider a GM density of M > 1 components in R
D for D ≥ 1, with mix-

ture proportions {πm}
M
m=1 ⊂ (0, 1) satisfying

∑M

m=1 πm = 1, component means
{µm}

M
m=1 ⊂ R

D and positive definite covariance matrices {Σm}
M
m=1:

p(x)
def
=

M
∑

m=1

p(m)p(x|m)
def
=

M
∑

m=1

πmp(x|m) ∀x ∈ R
D x|m ∼ ND(µm,Σm).

In general, there is no explicit expression for the modes of p, i.e., no analytic
solution for the stationary points in eq. (1); we do not even know how many
modes p has. Intuitively, it seems reasonable that the number of modes of p will
not exceed the number M of components in the GM: the more the different com-
ponents interact (depending on their mutual separation and on their covariance
matrices), the more they will coalesce and the fewer modes will exist. Besides,
modes should always appear inside the region enclosed by the component cen-
troids {µm}

M
m=1—more precisely, in their convex hull3. Based on this reasoning,

Carreira-Perpiñán [2] (see also [3]) proposed the following conjecture.

Conjecture. Let p(x) =
∑M

m=1 p(m)p(x|m), where x|m ∼ ND(µm,Σm), be a
mixture of M D-variate normal distributions. Then p(x) has M modes at most,
all of which are in the convex hull of {µm}

M
m=1, if one of the following conditions

holds:

1. D = 1 (one-dimensional mixture).
2. D ≥ 1 and the covariance matrices are arbitrary but equal: Σm = Σ ∀m =

1, . . . ,M (homoscedastic mixture).
3. D ≥ 1 and the covariance matrices are isotropic: Σm = σ2

mID (isotropic
mixture).

Several parts of this conjecture hold, namely the modes (and all other stationary
points) lie in the convex hull, and for D = 1 the number of modes does not
exceed M . We will prove this below. Besides, the conditions of the conjecture
are necessary. Figure 1 gives examples of a GM with nonisotropic, different
component covariance matrices that has more modes than components and the
modes lie outside the convex hull of the centroids. Also, if the kernel p(x|m) is
not Gaussian one can construct examples where the conjecture does not hold.
This may seem counterintuitive, since one may expect that localised, tapering
kernels would behave like the Gaussian. However, small modes can typically arise
where kernels interact—although it may occur only rarely. The necessity that
the kernel be Gaussian has been established in scale-space theory (see Sect. 3.2).

The Modes Lie in the Convex Hull for Any Dimension D. All modes lie in the
convex hull of the centroids for the case of isotropic GMs. One proof is given by
the stationary-point eq. (3), which also shows that in generic cases the modes
must lie strictly in the interior of the convex hull and not on its boundary. An
alternative proof is given in [2, p. 218].

3 Defined as the set
{

x : x =
∑

M

m=1
λmµ

m
with {λm}M

m=1 ⊂ [0, 1] and
∑

M

m=1
λm = 1

}

.
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Fig. 1. GMs in dimension D ≥ 2 that have different, non-isotropic covariances do not
generally verify conjecture 2. The left graph shows a contour plot for a bicomponent
GM with π1 = π2 = 1

2
, µ1 = ( 0.6

0
), µ2 = ( 0

0.6
), Σ1 = ( 0.65 0

0 0.1
) and Σ2 = ( 0.1 0

0 0.65
).

This GM has three modes (marked “4”): two nearly coincident with the centroids µ
m

(marked “+”) and a third one near the meeting point of the components’ principal
axes. All the modes are outside the convex hull of the centroids (marked by the thick
line). More complicated arrangements can result in a multiplicity of modes, as shown
in the right graph (inspired by Fig. 2 of [4]).

The Homoscedastic Case is Equivalent to the Homoscedastic Isotropic One. The
following theorem shows that the modes problem for a homoscedastic GM with
a given arbitrary covariance Σ is equivalent to that of another homoscedastic
GM with isotropic covariance σ2I (for a certain σ). Thus, one can try to prove
a result for the simple case of isotropic covariances and then the result will also
hold for Σm = Σ arbitrary. The reason is that, by rotating and rescaling the
coordinate axes, we can spherise each component.

Theorem 1. The mixtures p(x) =
∑M

m=1 πm |2πΣ|−
1
2 e−

1
2 (x−µ

m
)T Σ−1(x−µ

m
)

(arbitrary but equal covariances) and p(u) =
∑M

m=1 πm(2π)−
D

2 e−
1
2‖u−νm‖2

(unit
covariances), related by a rotation and scaling, have the same number of modes,
which lie in the respective centroid convex hulls.

Proof. Let Σ−1 = UΛUT be the spectral decomposition of Σ−1, with U or-
thogonal and Λ diagonal and positive definite. Consider the coordinate trans-

formation u
def
= Λ

1
2 UT x (orthogonal rotation followed by scaling), so that p(u) =

∑M

m=1 πm(2π)−
D

2 e−
1
2‖u−νm‖2

and∇xp = UΛ
1
2∇up, and define νm

def
= Λ

1
2 UT µm.

Since UΛ
1
2 is nonsingular, ∇xp = 0 ⇔ ∇up = 0 and so the stationary points

are preserved by the transformation.
Now, if x is a point in the convex hull of {µm}

M
m=1 then x =

∑M

m=1 λmµm

where {λm}
M
m=1 ⊂ [0, 1] and

∑M

m=1 λm = 1. So u = Λ
1
2 UT x =

∑M

m=1 λmΛ
1
2 UT µm =

∑M

m=1 λmνm which is in the convex hull of {νm}
M
m=1. ut



Theorem 1 shows that case 2 of conjecture 2 is a particular case of case 3 (case 1
is also a particular case of case 3, obviously).

The Conjecture Holds for D = 1. We can prove this using the scale-space theory
proofs of non-creation of maxima with Gaussian blurring (Sect. 3.2). The intu-
itive idea is that, by alternating the operations of “planting” a delta function (of
value πm) at a centroid location µm and applying Gaussian blurring (to fatten
the delta) we can create any isotropic GM. If planting a delta adds a single
mode and Gaussian blurring never creates modes (this latter result given by the
mentioned proofs), then the number of modes will never exceed the number of
components M . Our proof is by induction. Note that the only step that requires
D = 1 is the application of the scale-space theorem.

Theorem 2. In 1D, any Gaussian mixture with M components has at most M
modes.

Proof. By induction on M . The statement holds trivially for M = 1. Assume
it holds for M − 1 components and consider an arbitrary GM p with M > 1
components. Consider the component with narrowest variance and call this σ2

M ,
perhaps by reordering the components, so that σM < σm ∀m < M (in the
nongeneric case of ties, simply choose any of the narrowest ones and the argument
holds likewise). Now apply Gaussian deblurring of variance σ2

M , recalling that
the convolution of two isotropic Gaussians of variances σ2

a and σ2
b is a Gaussian of

variance σ2
a+σ2

b (the semigroup structure). We obtain a mixture density p′ where
each component for m = 1, . . . ,M−1 is a Gaussian of mixing proportion πm and
variance σ2

m − σ2
M , and component M is a delta function of mixing proportion

πM . Thus, p′ is a mixture of a delta and a GM with M − 1 components. By the
induction hypothesis the latter has M − 1 modes at most, so p′ has M modes
at most. Now apply Gaussian blurring to p′. By the scale-space theorems of
Sect. 3.2, no new maxima can appear, and so the original GM p has M modes
at most. ut

The following corollary results from the fact that all marginal and conditional
distributions of a GM (of arbitrary covariances) are also GMs.

Corollary 1. Any 1D projection (marginal or conditional distribution) of any
Gaussian mixture in D dimensions with M components has at most M modes.

3 Approaches to Proving the Conjecture

We review results from different fields that concern the conjecture. Additional
results applicable only in particular cases are given in [2].

3.1 System of Equations for the Stationary Points of the Density

In [2] the problem was approached by trying to determine the stationary (or
critical) points of the GM density p as follows. Consider the case with Σm =



Σ, m = 1, . . . ,M (homoscedastic GM) and assume x is a stationary point of p.
Then

∇p(x) =
M
∑

m=1

p(x,m)Σ−1(µm − x) = 0 =⇒ x =
M
∑

m=1

p(m|x)µm. (1)

This is a nonlinear system of D equations and D unknowns x1, . . . , xD ⊂ R. Since
p(m|x) ∈ (0, 1) for all m and

∑M

m=1 p(m|x) = 1, x is a convex linear combination
of the centroids and so all stationary points lie in the convex hull of the centroids.
Instead, write x =

∑M

m=1 λmµm with λm ∈ (0, 1) and
∑M

m=1 λm = 1. Then we
can consider (m = 1, . . . ,M):

λm = p(m|x) =
πme−

1
2u

T

m
Σ−1

um

∑M

m′=1 πm′e−
1
2u

T

m′
Σ−1

u
m′

um
def
= x−µm =

M
∑

m′=1

λm′µm′−µm

(2)
as a nonlinear system of M equations and M unknowns λ1, . . . , λM ∈ (0, 1)

subject to
∑M

m=1 λm = 1.

For M = 2 with λ
def
= λ1, λ2 = 1 − λ, and π

def
= p(1), p(2) = 1 − π,

eq. (2) reduces to the transcendental equation λ = 1
1+e−α(λ−λ0) with α = (µ1 −

µ2)
T Σ−1(µ1−µ2) ∈ (0,∞) and λ0 = 1

2 + 1
α

log 1−π
π
∈ (−∞,∞). This can have

at most 3 roots in (0, 1), as can be easily seen geometrically in Fig. 2, and so at
most 2 can be maxima.

Unfortunately, for higher M the system becomes very difficult to study. Be-
sides, if a counterexample to the conjecture does exist, it is likely to require a
nontrivial number of components M in D ≥ 2, which makes very difficult to
look for such a counterexample in terms of the λm’s.

In case Σm = σ2
mI, m = 1, . . . ,M (isotropic components), we get the system

λm = q(m|x)
def
=

p(m|x)σ−2
m

∑M

m′=1 p(m′|x)σ−2
m′

=
πmσ

−(D+2)
m e−

1
2‖

um

σm
‖2

∑M

m′=1 πm′σ
−(D+2)
m′ e

− 1
2

∥

∥

∥

u
m′

σ
m′

∥

∥

∥

2 (3)

again with x =
∑M

m=1 λmµm, where λm ∈ (0, 1) and
∑M

m=1 λm = 1, and um as
in eq. (2). In effect, λm equals the responsibility p(m|x) but reweighted by the
inverse variance and renormalised. An analogous analysis shows that there are
3 stationary points at most for the case M = 2 but becomes difficult in general.

A further problem with this approach is that the equations apply to all
stationary points (maxima, minima and saddles) rather than to maxima only.

Note that the modes must lie strictly in the interior of the convex hull and
not on its boundary, since p(m|x) and q(m|x) < 1 (except in non-generic cases
such as when all the centroids are equal or some σm is zero).

3.2 Scale-Space Theory

We give here a short summary of the creation of maxima with Gaussian blurring
in the scale space framework. The central issue of linear Gaussian scale space [5]



PSfrag replacements

000

0.50.50.5

111

−1−1−1 000 111 222
λλλ

Fig. 2. Three possible cases for the solutions of the equation λ = 1

1+e
−α(λ−λ0) .

is the generation of a family of functions I(x; s) by convolution or blurring of the
original D-dimensional function I(x) (the “greyscale image”) with a Gaussian
kernel of scale s = σ2:

I(x; s)
def
= (Gs ∗ I) (x) =

∫

(2πs)−
D

2 e−
1
2s

‖y‖2

I(x− y) dy x ∈ R
D

with I(x) ≡ I(x; 0). As the scale increases, I(x; s) represents coarser structure.
Several researchers (among others [6, 7, 8, 9]) proved that the Gaussian kernel
never creates new maxima in 1D and, further, is the only kernel to do so. Their
proofs are typically based on the following points. (1) Causality principle: since
the Gaussian kernel is the Green’s function of the diffusion equation, the family
I(x; s) is the solution of the diffusion equation (where the time is given by
the scale s) with initial condition I(x; 0) = I(x): ∂I

∂s
= 1

2∇
2
x
I. (2) Particular

properties of the blurring process and the Gaussian kernel, such as semigroup
structure, homogeneity or isotropy. (3) The implicit function theorem applied
to the variables x and s guarantees that the maxima trajectories x = x(s)
(along which the gradient ∇xI is zero) are continuously differentiable except at
bifurcation points4 where the Hessian of I with respect to x becomes singular and
the topology changes. A concave level surface corresponds to the annihilation
of a pair (a maximum with a minimum or saddle-point), while a convex one
corresponds to the creation of a pair. The fact that the family satisfies the
diffusion equation forbids the latter.

However, this does not hold in 2D (counterintuitive as it may seem, and
though some of the mentioned proofs claimed it did) as originally evidenced
by a counterexample proposed by Lifshitz and Pizer [10]: the original image is
unimodal, made up by a low hill from whose summit a narrow ramp ascends
over a deep valley towards a high hill (which contains the maximum). Gaussian
blurring produces a dip in the ramp, creating a new maximum on the low hill,
that later annihilates with the dip. This and further examples are analysed by
Kuijper and Florack [11, 12], who also suggest that such created maxima are
rare (being associated with elongated structures) and short-lived in scale space.

The definitive explanation of the creation of maxima was given by Damon
[13] using Morse theory and catastrophe theory. Thom’s theorem classifies the
behaviour at bifurcation points of a family of functions dependent on parameters
(such as the scale). This cannot be applied directly because the family is not un-
constrained, but must obey the diffusion equation. Damon showed that maxima
4 Also called degenerate critical points, top-points or catastrophes.



creations are associated with an umbilic catastrophe that occurs generically, i.e.,
does not disappear by perturbing the function.

In summary, in 2D or higher, there exist functions upon which Gaussian
blurring results in occasional, but generic, creations of maxima as the scale
increases. In 1D no such functions exist: Gaussian blurring never creates maxima,
and is the only kernel to do so—for any other kernel, there exist functions on
which it creates maxima.

How does this apply to the GM case? Our original “image” is a delta mixture
I(x) =

∑M

m=1 πmδ(x− µm), which by convolution with a Gaussian of variance
s = σ2 results in a homoscedastic isotropic GM with component covariances
Σm = σ2ID. At zero scale the mixture has M modes, one on each centroid
µm. Therefore, in 1D the scale-space theorems state that no new modes appear
as σ increases, which proves the conjecture for the homoscedastic case; and our
Theorem 2 extends the proof to the isotropic case. In 2D or higher, the possibility
that the Gaussian blurring may create modes does not necessarily disprove the
conjecture. Firstly, it could be that for mixtures of Gaussians or deltas new
modes can never appear; we have never succeeded to replicate a sequence of
events such as that of [10]. Perhaps an approach based on catastrophe theory but
restricted to initial images which are delta mixtures would resolve this question.
Secondly, even if new modes can appear when blurring a GM, the total number
of modes may still never exceed M . In other words, a situation of mode creation
may require a large number of Gaussian components that interact to result in a
GM with only a few modes before and after the creation. A brute-force search
has failed to find counterexamples of the conjecture (see Sect. 4.3).

Note also that all catastrophes, being stationary points, must lie in the inte-
rior of the convex hull of the centroids (or, nongenerically, on its boundary), as
mentioned in Sect. 2.

3.3 Kernel Density Estimation in 1D

Given a data sample {xn}Nn=1 ⊂ R, Silverman [14] considers the 1D Gaussian
kernel density estimate p(x;h) (Sect. 5.2). This is, of course, a homoscedastic
isotropic GM of centroids {xn}

N
n=1, variance h2 and and equal mixing propor-

tions πn = 1
N

. In his proof, which we believe is not known to the scale-space
community, Silverman shows that the number of maxima of p(x;h) (or generally
of ∂mp/∂xm for integer m ≥ 0) is a right continuous decreasing function of h.
His proof is based on the total positivity and the semigroup structure of the
Gaussian kernel and the variation diminishing property of functions generated
by convolutions with totally positive kernels. However, the proof uses the counts
of sign changes of the mixture derivative and so it seems difficult to extend it to
dimensions higher than 1.

4 Algorithms for Finding All the Modes

We now turn to the practically important question of finding all the modes of
a GM. No direct solution exists, so we need to use numerical iterative methods.



Carreira-Perpiñán [15] suggested starting a mode-seeking algorithm from every
centroid to locate all the modes. He gave two hill-climbing algorithms applicable
to GMs with components of arbitrary covariance: a gradient-quadratic one and
a fixed-point iteration one. Here we deal only with the latter because it allows to
define in a unique way a basin of attraction for each mode, which is relevant both
for the conjecture and for mean-shift algorithms. We also prove its convergence
by deriving it as an EM algorithm.

4.1 The Fixed-Point Iteration Algorithm as an EM Algorithm

By equating the gradient of the GM density to zero, using Bayes’ theorem and
rearranging we obtain a fixed-point iterative scheme [15]:

x(τ+1) = f(x(τ)) with f(x)
def
=

(

M
∑

m=1

p(m|x)Σ−1
m

)−1
M
∑

m=1

p(m|x)Σ−1
m µm. (4)

Following a suggestion from the second author, Carreira-Perpiñán [2] showed
that this algorithm can also be derived as an expectation-maximisation (EM)
algorithm [16, 17] as follows5. Consider the following density model with param-
eters v = (v1, . . . , vD)T and fixed {πm,µm,Σm}

M
m=1:

p(x|v) =
M
∑

m=1

πm |2πΣm|
− 1

2 e−
1
2 (x−(µ

m
−v))T Σ−1

m
(x−(µ

m
−v)).

That is, x|v is a D-dimensional GM where component m has mixing proportion
πm (fixed), mean vector µm − v (µm fixed) and covariance matrix Σm (fixed).
Varying v results in a rigid translation of the whole GM as a block rather than
the individual components varying separately. Now consider fitting this model
by maximum likelihood to a data set {xn}Nn=1 and let us derive an EM algorithm
to estimate the parameters v. Call zn ∈ {1, . . . ,M} the (unknown) index of the
mixture component that generated data point xn. Then:

E step The complete-data log-likelihood, as if all {zn}Nn=1 were known, and

assuming iid data, is
∑N

n=1 Ln,complete(v) =
∑N

n=1 log p(xn, zn|v) and so its
expectation with respect to the current posterior distribution is

Q(v|v(τ))
def
=

N
∑

n=1

Ep(zn|xn,v(τ)) {Ln,complete(v)}

=

N
∑

n=1

M
∑

zn=1

p(zn|xn,v(τ)) log{p(zn|v)p(xn|zn,v)}

=
N
∑

n=1

M
∑

zn=1

p(zn|xn,v(τ)) log p(xn|zn,v) + K

where K
def
=
∑N

n=1

∑M

zn=1 p(zn|xn,v(τ)) log πzn
is independent of v.

5 We recently learned of an independent derivation by Y. Weiss (unpubl. manuscript).



M step The new parameter estimates v(τ+1) are obtained from the old ones
v(τ) as v(τ+1) = arg maxv Q(v|v(τ)). To perform this maximisation, we
equate the gradient of Q with respect to v to zero:

∂Q

∂v
=

N
∑

n=1

M
∑

zn=1

p(zn|xn,v(τ))
1

p(xn|zn,v)

∂p(xn|zn,v)

∂v
= 0. (5)

Solving for v in eq. (5) results in

v(τ+1) =

(

N
∑

n=1

M
∑

zn=1

p(zn|xn,v(τ))Σ−1
zn

)−1
N
∑

n=1

M
∑

zn=1

p(zn|xn,v(τ))Σ−1
zn

(µzn
− xn).

If now we choose the data set as simply containing the origin, {xn}
N
n=1 = {0},

rename z1 = m and omit x1 = 0 for clarity, we obtain the M step as:

v(τ+1) =

(

M
∑

m=1

p(m|v(τ))Σ−1
m

)−1
M
∑

m=1

p(m|v(τ))Σ−1
m µm (6)

which is formally identical to the iterative scheme of eq. (4).

General properties of the EM algorithm for GMs [16, 18, 17] show that the
convergence of (6) is global and linear. Firstly, at every iteration τ , the it-
erative scheme (6) will either increase or leave unchanged the log-likelihood
∑N

n=1 log p(xn|v) = log p(0|v) so, correspondingly, the iterative scheme (4) will
monotonically increase the density value p(x) or leave it unchanged. Thus, (4)
converges from any initial value of x to a local stationary point of p(x) [17,
Th. 3.2]. Although convergence can occur to a saddle point or to a minimum as
well as to a mode. Since both saddle points and minima are unstable for maximi-
sation, a small random perturbation will cause the EM algorithm to diverge from
them. Thus, practical convergence will almost always be to a mode. Secondly,
its convergence rate is linear (first-order) and so is very slow except when the
mixture components are very separated, in which case the convergence becomes
superlinear. Note in Fig. 3 the slow crawl along ridges of the density and how
the iterates may be attracted to saddle points, to then deviate towards a mode.

The EM view of the fixed-point algorithm should also be applicable to mix-
tures of other kernels.

4.2 Particular Cases

In the case of isotropic GMs the fixed-point scheme reduces to:

x(τ+1) =

M
∑

m=1

q(m|x(τ))µm q(m|x) =
p(m|x)σ−2

m
∑M

m′=1 p(m′|x)σ−2
m′

(7)

where p(m|x) is the posterior probability or responsibility of component m given
point x and the q(m|x) values are the responsibilities p(m|x) reweighted by the



inverse variance and renormalised. For homoscedastic GMs, this simplifies even
more with q(m|x) = p(m|x) so that the new point x(τ+1) is the conditional mean
of the GM under the current point x(τ). This is formally akin to clustering by
deterministic annealing [19], to algorithms for finding pre-images in kernel-based
methods [20] and to mean-shift algorithms (Sect. 5.2).

In both cases, each iterate is a convex linear combination of the centroids,
as are the stationary points, and so the sequence lies in the interior of the
convex hull of the centroids. In general for finite mixtures of densities from
the exponential family, the EM algorithm always stays in the convex hull of a
certain set of parameters [18, eq. (5.3)].

4.3 Brute-Force Search for Counterexamples

Whether starting the algorithm from each centroid can indeed find all modes
depends on the conjecture. It certainly does not hold in the general case where
the covariance matrices are not isotropic and different, since then we can have
more modes than centroids (although we may expect the algorithm to find many
of the modes). Deriving an efficient algorithm to find all modes for this case is
difficult, because we do not even know where to look for the modes: they need
not lie inside the convex hull of the centroids, and may lie far away from them.

What happens in the cases where the conjecture may hold? Even if the num-
ber of modes is fewer than or equal to the number of components, some modes
might conceivably not be reachable from any centroid. Since we can associate
almost every point x ∈ R

D with a unique mode (except for saddles, minima and
points converging to them), we can define the basin of attraction of each mode
as the region of R

D of all points that converge to that mode. The claim that
the algorithm finds all modes if started from every centroid is equivalent to the
claim that the basin of attraction of every mode contains at least one centroid.

Theoretically, this question seems as difficult as the modes conjecture, so
we decided to run a brute-force search to look for counterexamples (we thank
Geoff Hinton for suggesting us this idea). We uniformly randomly generated
M = 30 centroids in the rectangle [0, 1] × [0, 0.7], mixing proportions πm ∈
(0, 1) and isotropic covariance matrices with σm ∈ [0.05, 0.15]. Then we run the
algorithm starting (a) from every centroid and (b) from every point in a grid of
100×70 of the rectangle. Call πa and πb the number of modes found in each case,
respectively. We repeated the process 1500 times and considered only those cases
where πa 6= πb; cases where πa = πb cannot disprove the modes conjecture since
by construction πa ≤M . A difference πa 6= πb was considered a false alarm if due
to a single mode appearing as two or more with a small numerical difference6.
We found 3 differences in the homoscedastic GM case (all false alarms) and 10
in the isotropic case (7 genuine, 3 false alarms). One of the genuine differences is
shown in Fig. 3(right column): note how the green basin of attraction at the top

6 The implementation of the algorithm considers that two modes are the same if their
distance is less than a user parameter min diff that has a very small value [15]. This
helps to remove duplicated modes, but can occasionally fail.



right contains no centroids. The associated mode lies in a very flat area of the
density, as indicated by the lack of contours7; the same happened in all other
cases. We conclude that, in the isotropic case, it is possible (but rare) that a
mode may not be reachable from any centroid.

In all our experiments the number of modes found by brute-force search πb

was ≤ M . This reinforces our belief that the modes conjecture holds, or that if
it does not, then it may fail only rarely. The results also show that the algorithm
almost always finds all the modes when the component covariances are isotropic,
perhaps always when they are equal.

Figure 4 shows that, unlike a Voronoi tessellation, the basins of attraction
need be neither convex (left plot) nor connected sets (right plot). The points
on the basin boundaries are either saddle points or minima, or converge to a
saddle point. Note the following: (1) the basins often have very thin streaks
extending for long distances, sandwiched between other basins; (2) one basin
can be completely included in another; and (3) some points (typically minima)
lie in the boundary of several basins simultaneously. Also, the sharper a mode is
(e.g. for high πm and low σm), the smaller its basin is. However, such small-basin
modes will not be missed since they will lie near a centroid.

The brute-force search extension to 3D is computationally prohibitive.

5 Applications

The conjecture and mode-finding algorithms are relevant in statistical and ma-
chine learning applications such as function approximation, data visualisation,
data reconstruction, clustering or image processing. The basic idea is that modes
can be associated with important structure in an empirical distribution. We dis-
cuss the problems of regression and clustering.

5.1 Multivalued Regression and Data Reconstruction

In traditional nonlinear regression, one wants to derive a (parametric or non-
parametric) mapping y = f(x) given data pairs {(xn,yn)}Nn=1 ⊂ R

D ×R
E . The

mapping f assigns a unique value y to every input x; often some unimodal noise
model is also assumed (e.g. Gaussian noise for a sum-squared error function).
However, this is an unreasonable model if p(y|x) can be multimodal; typically
this occurs when inverting a non-injective forward mapping such as g(x) = x2.
Representing p(y|x) as a mixture model has been proposed in a number of con-
texts. For example it arises with the mixture of experts model [21] (see also
the mixture density networks [22, §6.4]), where the number of mixtures is cho-
sen in some fashion. Also, the Nadaraya-Watson estimator [23] gives rise to
an N -component mixture for p(y|x). Carreira-Perpiñán [24] proposed a flexible
way to represent multivalued mappings by first estimating a probability den-
sity function p(x,y) for the joint variables from the training data, and then

7 It might be argued that perhaps such modes are not really modes, but lie in the
limit of numerical accuracy.



Homoscedastic GM: Isotropic GM:
Σm = σ2I, m = 1, . . . , M Σm = σ2

mI, m = 1, . . . , M

Fig. 3. The fixed-point iterative algorithm for exhaustive mode finding in 2D. The
left column shows an example of homoscedastic GM (Σm = σ2I) and the right one
an example of isotropic GM (Σm = σ2

mI). The latter is a very rare case where the
algorithm did not find all modes (compare the top and bottom rows: in the top-row
plot, a mode is missing at the top right). All parameters µ

m
, πm, σm and σ were

drawn randomly. The GM modes are marked “4” and the GM centroids “+”. The
thick-line polygon is the convex hull of the centroids. Top row : contour plot of the
GM density p(x). Each original component is indicated by a grey disk of radius σ or
σm centred on the corresponding mean vector µ

m
(marked “+”). Middle row : plot

of the Hessian character (dark colour: positive definite; white: indefinite; light colour:
negative definite). The search paths from the centroids are given. Bottom row : plot of
the basins of attraction of each mode (i.e., the geometric locus of points that converge
to each mode). Figures 3 and 4 may require to be viewed in colour to appreciate the
different basins.



Fig. 4. Basins of attraction of each mode for examples that are heteroscedastic GMs
with isotropic components. Left : basins may not be convex sets. Right : basins may not
be connected sets (note the sample search paths).

defining a multivalued mapping y = f(x) as the collection of modes of the con-
ditional distribution p(y|x). It is computationally convenient to model p(x,y)
as a homoscedastic GM8, since then computing p(y|x) or any other conditional
distribution is trivial, and we can use the algorithms of [15] (such as that of
Sect. 4.1) to find the modes. Since (ideally at least) every mode corresponds to
a branch of the multivalued mapping and vice versa it is of interest to locate all
the modes of the conditional distribution, which leads us to the conjecture.

These ideas can be used to reconstruct missing data in a sequence of vectors
t1, . . . , tN in a two-step procedure. First, at each vector in the sequence, one
finds all the modes of the conditional distribution p(tn,M|tn,P), where tn,M

(resp. tn,P) means the missing variables (resp. present) at vector tn. This gives
several candidate reconstructions for each vector. Second, a unique candidate at
each n is selected by minimising a continuity constraint (such as the trajectory
length) over the whole sequence. This results in a unique reconstruction of the
whole sequence. This method was applied [2] to inverse mappings in speech (the
acoustic-to-articulatory mapping) and robotics (the inverse kinematics).

5.2 Clustering

Given an unlabelled training set {xn}Nn=1 ⊂ R
D, we want to obtain a clustering

of these points and classify a new data point x. One possible clustering approach
is as follows. First, compute a kernel density estimate from the data of kernel K
and window width h > 0 (which controls the amount of smoothing [23]):

p(x;h) =
1

NhD

N
∑

n=1

K

(

x− xn

h

)

. (8)

8 Or any other model that results in it, such as the generative topographic mapping
[25] or kernel density estimation.



Then associate each mode of it with a cluster. If we define an iterative mode
seeking algorithm such as gradient ascent or our EM algorithm, then we can
assign a new point x to the mode to which the algorithm converges if started
from x. It is of interest to know how many modes exist at a given width h, which
brings us to the conjecture when Gaussian kernels are used.

Perhaps the earliest proposal of this approach was the mean-shift algorithm of
Fukunaga and Hostetler [26], recently extended in [27] and [28]. The mean-shift
algorithm was defined as

x←m(x) =

∑N

n=1 K
(

x−xn

h

)

xn
∑N

n=1 K
(

x−xn

h

)

where m(x) − x is called the mean shift. The algorithm was derived for the
Epanechnikov kernel for computational convenience (since it has finite support)
as gradient ascent on log p(x) with a variable step size; no convergence proof was
given. For the Gaussian kernel it coincides with our algorithm for homoscedastic
GMs of eq. (7) with q(m|x) = p(m|x)—thus, the mean-shift algorithm with
the Gaussian kernel (and probably other kernels) is an EM algorithm, which
proves it has first-order convergence from any starting point. Comaniciu and
Meer [28], in an image segmentation application, gave a different convergence
proof for the mean-shift algorithm for certain isotropic kernels (including the
Gaussian and Epanechnikov) and noted empirically its slow convergence for the
Gaussian kernel. Note that the fact that the clusters defined by mean-shift may
not be connected sets (Fig. 4) could be undesirable for some applications. Related
clustering methods have been proposed [29, 30, 9, 31]. The mode trajectories in
the scale space of h have also been used as a tool for data visualisation [32].

In scale-space clustering the mode-finding algorithms of [15] can also be used
in a fast incremental way, where the modes at scale s1 are found from the modes
at scale s0 < s1 (rather than starting from every centroid). If the number of
modes decreases with the scale, this will not miss any mode.

6 Conclusion

We have presented theoretical and experimental evidence for the conjecture that,
in any dimension, the number of modes of a Gaussian mixture where all com-
ponents are isotropic or equal cannot exceed the number of components (and
proven it in 1D). It may hold even if Gaussian blurring of a delta mixture can
create modes. A possible approach to (dis)prove the conjecture is to particu-
larise Morse theory to Gaussian blurring of delta mixtures. Practically, it seems
that the conjecture will hold for almost all isotropic Gaussian mixtures and that
hill-climbing algorithms started from each centroid of the mixture will usually
find all modes. The conjecture may also typically hold for mixtures of certain
non-gaussian kernels even though these are known to create modes upon blur-
ring. Our derivation of the fixed-point iterative algorithm (which can also be
seen as a mean-shift algorithm) as an EM algorithm guarantees it has first-order
convergence from any starting point.
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