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Abstract. A popular framework for the interpretation of image sequences is
based on the layered model; see e.g. Wang and Adelson [8], Irani et al. [2].
Jojic and Frey [3] provide a generative probabilistic model framework for this
task. However, this layered models do not explicitly account for variation due to
changes in the pose and self occlusion. In this paper we show that if the motion
of the object is large so that different aspects (or views) of the object are visible at
different times in the sequence, we can learn appearance models of the different
aspects using a mixture modelling approach.

1 Introduction

We are given as input a set of images containing views of multiple objects, and wish to
learn appearance models of each of the objects. A popular framework for this problem
is the layer-based approach which models an image as a composite of 2D layers each
one modelling an object in terms of its appearance and region of support or mask, see
e.g. [8] and [2].

A principled generative probabilistic framework for this task has been described
in [3], where the background layer and the foreground layers are synthesized using a
multiplicative or alpha matting rule which allows transparency of the objects. Learning
using an exact Expectation-Maximization (EM) algorithm is intractable and the method
in [3] uses a variational inference scheme considering translational motion of the ob-
jects. An alternative approach is that presented in [9] where the layers strictly combine
by occlusion and learning of the objects is carried out sequentially by extracting one
object at each stage.

Layered models do not explicitly represent variation in object appearance due to
changes in the pose of the object and self occlusion. In this paper we describe how the
generative model in [9] can be properly modified so that the pose of an object can vary
significantly. We achieve this by introducing a set of mask and appearance pairs each
one associated with a different viewpoint of the object. Such a model learns a set of
different views (or aspects, [4]) of an object.

To learn different viewpoint object models we consider video training data and we
first apply approximate tracking of the objects before knowing their full structure. This
provides an estimate of the transformation of the object in each frame so that by re-
versing the effect of the transformation (frame stabilization) the viewpoint models for
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that object can be learned using a mixture modelling approach. The tracking algorithm
finds first the background while moving foreground objects are tracked at later stages.
For the foreground objects our tracking algorithm is based on a dynamic appearance
model of the object (appearance and mask) which is updated recursively as we process
the frames.

The structure of the remainder of the paper is as follows: In section 2 we describe
the layered generative model which can learn a single aspect for each foreground object.
In section 3 we extent this model so that to learn multiple views of the same object. In
section 4 we describe an algorithm for tracking multiple objects in image sequence.
In section 5 we show some results in two video sequences and we conclude with a
discussion in section 6.

2 Generative Layered Model

For simplicity we will present the generative model assuming that there are two layers,
i.e. a foreground object and a static background. Later in this section we will discuss
the case of arbitrary number of foreground layers and a moving background.

Let b denote the appearance image of the background arranged as a vector. As-
suming that the background is static, b will have the same size as the data image size
(although note that for moving backgrounds, b will need to be larger than the image
size). Each entry bi stores the ith pixel value which can either be a grayscale intensity
value or a colour value. In our implementation we allow coloured images where bi is
a three-dimensional vector in the RGB space. However, for notation convenience next
we assume that bi is a scalar representing a grayscale value.

In contrast to the background, the foreground object occupies some region of the
image and thus to describe this layer we need both an appearance f and mask π. The
foreground is allowed to move so there is an underlying transformation j that e.g. cor-
responds to translational or affine motion and a corresponding transformation matrix
so that Tjf and Tjπ is the transformed foreground and mask, respectively. We assume
that the foreground and background strictly combine by occlusion, thus a pixel in an
observed image is either foreground or the background. This is expressed by a vector
of binary latent variables s, one for each pixel drawn from the distribution [9]

P (s|j) =
P∏

i=1

(Tjπ)si

i (1− Tjπ)1−si

i . (1)

Note that each variable si is drawn independently so that for pixel i, if (Tjπ)i � 0, then
the pixel will be ascribed to the background with high probability, and if (Tjπ)i � 1, it
will be ascribed to the foreground with high probability. Note that s is the binary mask
of the foreground object in an example image, while π is the prior untransformed mask
that captures roughly the shape of the object stored in f .

Selecting a transformation j using an uniform prior Pj over J possible values and
a binary mask s, an image x is drawn by a Gaussian

p(x|j, s) =
P∏

i=1

N(xi; (Tjf)i, σ
2
f )siN(xi; bi, σ

2
b )1−si , (2)
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where each pixel is drawn independently from the above conditional density.
To express the likelihood of an observed image p(x) we marginalise out the latent

variables which are the transformation j and the binary mask s. Particularly, we first
sum out s using (1) and (2) and obtain

p(x|j) =
P∏

i=1

(Tjπ)iN(xi; (Tjf)i, σ
2
f ) + (1− Tjπ)iN(xi; bi, σ

2
b ). (3)

Using now a uniform prior over the transformation Pj , the probability of an observed
image x is p(x) =

∑J
j=1 Pjp(x|j). Given a set of images {x1, . . . ,xN} we can adapt

the parameters θ = {b, f , π, σ2
f , σ2

b} maximizing the log likelihood using the EM al-
gorithm.

This model can be extended so that to have a moving background and L fore-
ground objects. For example, for two foreground layers with parameters (f1, π1, σ

2
1)

and (f2, π2, σ
2
2) and also a moving background the analogous of equation (3) is

p(x|j1, j2, jb) =
P∏

i=1

(Tj1π1)iN(xi; (Tj1f1)i, σ
2
1) + (1 − Tj1π1)i×

[
(Tj2π2)iN(xi; (Tj2f2)i, σ

2
2) + (1− Tj2π2)iN(xi; (Tbb)i, σ

2
b )

]
, (4)

where j1, j2 and jb denote the transformation of the first foreground object, the second
foreground object and the background, respectively.

Applying an exact EM algorithm to learn the parameters of the above model is in
general intractable. For example, for the case of L foreground objects that can be trans-
formed in J ways, there exist JL+1 configurations that can generate an observed image,
which grows exponentially with the number of objects. For this reason approximate al-
gorithms should be considered, e.g. in [3] an approximate variational method has been
applied.

3 Incorporating Multiple Viewpoints

In this section we generalize the layer-based model for multiple moving objects so that
the viewpoint of each foreground object can arbitrarily change. Section 3.1 describes the
generative layered model for changeable viewpoints and section 3.2 discusses training
the model.

3.1 Multiple Viewpoints

The layered model presented in section 2 assumes that each layer can change mainly
due to a 2D planar motion. However, in many video sequences this assumption will
be hardly true e.g. a foreground object can undergo 3D rotation so that at different
times we may see the object from different viewpoints. For example, Figure 2a shows
three frames of a sequence capturing a man walking; clearly the man’s pose changes
substantially during time. Next we generalize the layered model so that the appearance



Unsupervised Learning of Multiple Aspects of Moving Objects from Video 749

of a foreground object can be chosen from a set of possible appearances associated with
different viewpoints.

Assume again that there are two layers: one static background and one moving
foreground object. We introduce a discrete latent variable v, that can obtain V possible
values indexed by integers from 1 to V . For each value v we introduce a separate pair
of appearance fv and mask πv defined as in section 2. Each pair (fv, πv) models the
appearance of the object under a certain viewpoint.

To generate an image x we first select a transformation j and a viewpoint v using
uniform prior probabilities Pj and Pv respectively. Then we select a binary mask s from
the distribution

P (s|j, v) =
P∏

i=1

(Tjπ
v)si

i (1− Tjπ
v)1−si

i , (5)

and draw an image x from the Gausssian

p(x|j, v, s) =
P∏

i=1

N(xi; (Tjfv)i, σ
2
f )siN(xi; bi, σ

2
b )1−si . (6)

Note the similarity of the above expression with equation (2). The only difference is
that now the appearance f and mask π are indexed by v to reflect the fact that we have
also chosen a viewpoint for the foreground object.

To express the probability distribution according to which an image is generated we
sum first out the binary mask and the viewpoint variable and obtain

p(x|j) =
V∑

v=1

Pvp(x|j, v), (7)

where p(x|j, v) is given as in (3) with f and π indexed by v. Notice how the equation
(7) relates to equation (3). Clearly now p(x|j) is a mixture model of the type of model
given in (3). For example, if we choose to have a single viewpoint the latter expression
reduces to the former one.

It is straightforward to extent the above model to the case of L foreground layers
with varying viewpoints. In this case we need a separate viewpoint variable v� for each
foreground object and a set of appearance and mask pairs: {fv�

� , πv�

� }, v� = 1, . . . , V�.
For example, when we have two foreground objects and a moving background the con-
ditional p(x|j1, j2, jb, v1, v2) is given exactly as in (4) by introducing suitable indexes
to the foreground appearances and masks that indicate the choices made for the view-
point variables.

3.2 Learning the Model

Training the above model using an exact EM algorithm is intractable. For L foreground
objects and a moving background, each one undergoing J transformations and assum-
ing V aspects for each foreground object, the time complexity is O(JL+1V L). Approx-
imate training methods such as the variational EM algorithm of [3] or the one-object-at-
a-time method of [9] could be applied. However, it is clear that adding V views of each
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object will complicate the training process, and there is a danger of confusion between
views of one object and different objects.

A reliable method for training the model can be based on two stage learning frame-
work. In the first stage we compute the 2D planar transformations of a foreground object
in images, while in the second stage we learn the different viewpoint models by carrying
out simple clustering. Particularly, we first approximate the transformation of an object
in each frame, which is simply a motion according to which this frame is matched to
a reference frame. Given these transformations it is easy to reverse their effect so as to
transform each image into a reference frame where the viewpoint models for that object
can be learned using a mixture model. Intuitively, what is happening here is that we
are transforming the video so as to stabilize a given object; this greatly facilitates the
learning of the viewpoint models for that object.

Assuming a set of training images {x1, . . . ,xN} the steps of this algorithm are the
following:

1. Track first the background b in order to approximate the transformation jn
b of each

image xn and then learn the background by maximizing the log likelihood

Lb =
N∑

n=1

log pb(xn|jn
b ) =

N∑

n=1

log
P∏

i=1

pb(xn
i ; (Tjn

b
b)i) (8)

and pb(xi; (Tjb
b)i) is given by equation (12).

2. Compute all the planar transformations{jn
� } of a foreground object � using tracking

(see section 4)
3. Learn the parameters of the object by maximizing the log likelihood

L� =
N∑

n=1

log
V�∑

v�=1

Pv�
p(x|jn

� , jn
b , v�). (9)

In (9) the conditional density p(x|jn
� , jn

b , v�) is given by

p(x|jn
� , jn

b , v�) =
P∏

i=1

(Tj�
πv�

� )ipf�
(xi; (Tj�

fv�

� )i) + (1− Tj�
πv�

� )ipb(xi; (Tjn
b
b)i),

(10)
where we have replaced the Gaussian foreground and background pixel densities by the
following robustified counterparts

pf (xi; fi) = αfN(xi; fi, σ
2
f ) + (1 − αf )U(xi). (11)

and
pb(xi; fi) = αbN(xi; bi, σ

2
b ) + (1 − αb)U(xi). (12)

Here U(xi) is an uniform distribution in the range of all possible pixel values and αf

and αb express prior probabilities that a foreground (resp. background) pixel is not oc-
cluded. This robustification allow us to deal with occlusion caused by all the other fore-
ground objects except the �th object. Clearly, these objects can occlude the background
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and sometimes also the foreground object of interest. Thus, any time a foreground or
background pixel will be occluded that will be explained by the uniform component
U(xi) [5,9].

It is straightforward to maximize the log likelihood in (9) using the EM algorithm to
deal with the missing information concerning the viewpoint variable, the binary mask s
and the indicators of the outlier process. Once models for all objects have been learned
in this fashion it is possible to refine the masks and appearances by optimizing them
jointly, using an analogue of equation (4).

So far we have not discussed how we learn the background and approximate the
transformations of the foreground objects. We doing this based on tracking that is de-
scribed in the next section.

4 Tracking the Objects

In this section we present a tracking algorithm that applies to a sequence of frames
(x1, . . . ,xN ) and approximates the corresponding set of transformations (j1, . . . , jN)
that describe the motion of a single object.

We wish first to track the background and ignore all the other motions related to
the foreground objects. To introduce the idea of our tracking algorithm assume that
we know the appearance of the background b as well as the transformation j1

b that
associates b with the first frame. Since motion between successive frames is expected
to be relatively small we can determine the transformation j2

b for the second frame by
searching over a small discrete set of neighbouring transformations centred at j1

b and
inferring the most probable one, i.e. the one giving the highest likelihood pb(x2|j2

b ) (see
equation (8)), assuming a uniform prior. This procedure can be applied recursively to
determine the sequence of transformations in the entire video. However, the background
b is not known in advance, but we can still apply roughly the same tracking algorithm
by suitably initializing and updating the background b as we process the frames. This
algorithm is described in detain in [7]. Once tracking of the background is completed
we can learn its full structure by maximizing the log likelihood (8).

Assume now that the background has been learned. The pixels which are explained
by the background in each image xt are flagged by the background responsibilities
rt(jt

b) computed by the equation

ri(jb) =
αbN(xi; (Tjb

b)i, σ
2
b )

αbN(xi; (Tjb
b)i, σ2

b ) + (1 − αb)U(xi)
. (13)

Clearly the mask rt(jt
b) = 1 − rt(jt

b) roughly indicates all the pixels of frame xt that
belong to the foreground objects. By focusing only on these pixels we wish to start
tracking one of the foreground objects through the entire video sequence and ignore for
the moment the rest foreground objects.

Our algorithm tracks the first object by simultaneously updating its mask π1 and
appearance f1. The mask and the appearance are initialized so that π1 = 0.5 ∗ rt(jt

b)
and f1 = x1, where 0.5 denotes the vector with 0.5 values1. Due to this initialization

1 The value of 0.5 is chosen to express our uncertainty about whether these pixels will ultimately
be in the foreground mask or not.
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we know that the first frame is untransformed, i.e. j1
1 is the identity transformation.

To determine the transformation of the second frame and in general the transformation
jt+1
1 , with t ≥ 1, of the frame xt+1 we find the most probable value of jt+1

1 according
to the posterior

R(jt+1
1 ) ∝ exp

{
P∑

i=1

(wt+1
1 )i log

(
(Tjt+1

1
πt

1)i×

pf (xt+1
i ; (Tjt+1

1
f t
1)i)+(1− Tjt+1

1
πt

1)iU(xt+1
i )

)}
, (14)

where wt+1
1 = rt+1(jt+1

b ). R(jt+1
1 ) measures the goodness of the match at those pixels

of frame xt+1 which are not explained by the background. Note that as the objects
will, in general, be of different sizes, the probability R(jt+1

1 ) over the transformation
variable will have greater mass on transformations relating to the largest object. Recall
that pf (xt+1

i ; (Tjt+1
1

f1)i) includes an outlier component so that some badly misfit pixels
can be tolerated.

Once we determine jt+1
1 we update both the mask π1 and appearance f1. The mask

is updated according to

πt+1
1 = πt

1 + βπ

(
T−1

jt+1
1

[st+1(jt+1
1 )] − πt

1

)
, (15)

where T−1 denotes the inverse transformation and βπ takes values in the range [0, 1].
The vector st+1(jt+1

1 ) expresses the segmentation of the object in the frame xt+1 so
that each st+1

i (jt+1
1 ) stores the probability

st+1
i (jt+1

1 )=
(Tjt+1

1
πt

1)ipf1(x
t+1
i ; (Tjt+1

1
f t
1)i)

(Tjt+1
1

πt
1)ipf1(x

t+1
i ; (Tjt+1

1
f t
1)i) + (1 − Tjt+1

1
πt

1)ipb(xt+1
i ; (Tjt+1

b
b)i)

,

(16)
for the pixel i. The update (15) defines the new mask as a weighted average of the
stabilized segmentation in the current frame (i.e. T−1

jt+1
1

[st+1(jt+1
1 )]) and the previous

value of the mask. βπ is the weight of the stabilized segmentation in each current frame,
e.g. if βπ = 1, then πt+1

1 = T−1

jt+1
1

st+1(jt+1
1 ). The update for the foreground appearance

f1 is given by

f t+1
1 = f t

1 + βf

(
T−1

jt+1
1

[s(jt+1
1 ) ∗ rt+1(jt+1

1 ) ∗ xt+1] − f t
1

)
, (17)

where y ∗ z denotes the element-wise product of the vectors y and z. The vector
rt+1(jt+1

1 ) is defined similarly to equation (13) and stores the probabilities that the
pixels of the object in the current frame have not changed dramatically (e.g. due to oc-
clusion). Again the above update is very intuitive. For pixels which are ascribed to the
�th foreground (i.e. st+1(jt+1

1 ) ∗ rt+1(jt+1
1 ) � 1), the values in xn are transformed

by T−1

jt+1
1

into the stabilized frame which allows the foreground pixels found in the cur-

rent frame to be averaged with the old value f t in order to produce f t+1. Notice that f1
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adapts slowly to large changes of the object appearance (caused e.g. by occlusion) due
to the semantics of the vector rt+1(jt+1

1 ). Note also that as the frames are processed
tracking becomes more stable since π1 approximates the mask of a single object and f1
will contain a sharp and clear view for only the one object being tracked while the rest
of the objects will be blurred; see Figure 1b for an illustrative example.

Once the first object has been tracked we learn the different viewpoint models for
that object as explained in section 3.2. When these models has been learned we can
go through the images to find which pixels are explained by this object. Then we can
remove these pixels from consideration by properly updating each wt vector which
allows tracking a different object on the next stage. Note also that the new mask π�

when we track the �th object is initialized to 0.5 ∗ wt
�+1, while the appearance f� is

always initialized to the first frame x1.

5 Experiments

We will consider two video sequences: the Frey-Jojic (FJ) sequence available from
http://www.psi.toronto.edu/layers.html (see Figure 1) and the man-
walking (see Figure 2). We will also assume that the number of different aspects that
we wish to learn for each foreground object is known.

The FJ sequence consists of 44 118 × 248 images (excluding the black border); it
was also used in experiments shown in [3,9]. Three frames of this sequence are dis-
played in Figure 1a. This sequence can be well modelled by assuming a single view
for each of the foreground objects, thus we set V = 1 for both objects. The results in
Figure 1c were obtained using a 15 × 15 window of translations in units of one pixel
during the tracking stage. This learning stage requires EM which converged in about
30 iterations. Figure 1b shows the evolution of the initial appearance and mask (t = 1)
through frames 10 and 20 as we track the first object (Frey). Notice that as we process
the frames the mask focuses on only one of the two objects and the appearance remains
sharp only for this object. The real running time of our MATLAB implementation for
processing the whole sequence was 3 minutes.

The man-walking sequence consists of 85 144 × 360 coloured images. Figure 2a
displays three frames of that sequence. We assume that the number of different aspects
of the foreground object that we wish to learn is five, i.e. V = 5. Figure 2b shows the
learned appearance and mask pairs of the different viewpoint models for the foreground
object. When we applied the tracking algorithm we used a window of 15 × 15 transla-
tions in units of one pixel. Notice that each different pair of mask and appearance has
modelled a different pose of the man. However, some of the masks are noisy. We hope
to improve on that by adding spatial continuity constraints (e.g. using a MRF for the
binary variable s). Processing the whole video took about 20 mins, where the most of
the time was spent in fitting the mixture model for learning the object views.

6 Discussion

Above we have extended the generative model for learning multiple moving objects so
that to deal with large viewpoint variation. Particularly, we introduced multiple view-
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(a)

t = 1 t = 10 t = 20
(b)

(c)

Fig. 1. Panel (a) shows three frames of the Frey-jojic sequence. Panel (b) shows the evolution of
the mask π1 (top row) and the appearance f1 (bottom row) at times 1, 10 and 20 as we track the
first object (Frey). Notice how the mask becomes focused on one of the objects (Frey) and how
the appearance remains clear and sharp only for Frey. Panel (c) shows the mask and the element-
wise product of the mask and appearance model (π ∗ f ) learned for Frey (first column from the
left) and Jojic (second column) using the algorithm described in the text. The plot in the third
column shows the learned background.

point models for each foreground object. These models are learned using a mixture
modelling approach applied to the stabilized frames. To stabilize the frames we approx-
imate the transformations of each object in the video using a tracking algorithm.

The mechanism for dealing with multiple viewpoints using mixture models has been
considered before in [1]. However, in this method they consider a single object present
in the images against a clutter background and only appearance images of different
poses of the object are learned (not masks). In contrast, our method can be applied to
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(a)

(b)

Fig. 2. Panel (a) shows three frames of the man-walking sequence. Panel (b) shows the the pairs
of mask and the element-wise product of the mask and appearance model (showing against a grey
background) for all different viewpoint models.

images with multiple objects and learn the background as well as the appearances and
masks of the foreground objects.

Regarding tracking methods for learning moving layers, the method of [2] is much
relevant to ours. They do motion estimation using optical flow by matching the current
frame against an accumulative appearance image of the tracked object. Although they
do not take into account issues of occlusion, so that if a tracked object becomes oc-
cluded for some frames, it may be lost. The work of [6] is also relevant in that it deals
with a background model and object models defined in terms of masks and appear-
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ances. However, note that the mask is assumed to be of elliptical shape (parameterised
as a Gaussian) rather than a general mask. The mask and appearance models are dy-
namically updated during tracking, however the initialization of each model is handled
by a “separate module”, and is not obtained automatically.

Some issues for further work include dealing with objects that have internal vari-
ability, and modelling non-articulated moving objects. Another issue is to automatically
identify how many views are needed to efficiently model the appearance of each object
and also to determine the number of objects in the images.
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