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Features

X Bayesian learning

X Higher level regularization

X Predictive uncertainty

X Cross-validation

X Ensemble learning

X Search strategies (no more grid search)

X Feature selection

X More than 2 levels of inference
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Gaussian Process Basics

For a stochastic process f (x), mean function is

µ(x) = E [f (x)].

Assume µ(x) ≡ 0 ∀x
Covariance function

k(x, x′) = E [f (x)f (x′)].

Priors over function-space can be defined directly by choosing
a covariance function, e.g.

E [f (x)f (x′)] = exp(−w |x− x′|)

Gaussian processes are stochastic processes defined by their
mean and covariance functions.
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Gaussian Process Prediction

A Gaussian process places a prior over functions

Observe data D = (xi , yi )
n
i=1, obtain a posterior distribution

p(f |D) ∝ p(f )p(D|f )

posterior ∝ prior× likelihood

For a Gaussian likelihood (regression), predictions can be
made exactly via matrix computations

For classification, we need approximations (or MCMC)
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GP Regression

Prediction at x∗ ∼ N (f (x∗), var(x∗)), with

f (x∗) =
n∑

i=1

αik(x∗, xi )

where
α = (K + σ2I )−1y

and

var(x∗) = k(x∗, x∗)− kT (x∗)(K + σ2I )−1k(x∗)

with k(x∗) = (k(x∗, x1), . . . , k(x, xn))
T
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GP classification

Response function π(x) = r(f (x)), e.g. logistic or probit

For these choices log likelihood is concave ⇒ unique maximum

Use MAP or EP for inference (unconstrained optimization, c.f.
SVMs)

For GPR and GPC, some consistency results are available for
non-degenerate kernels
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Model Selection

Covariance function often has some free parameters θ

We can choose different families of covariance functions

kSE (xp, xq) = σ2
f exp

(
− 1

2
(xp − xq)

>M(xp − xq)
)

+ σ2
nδpq,

kNN(xp, xq) = σ2
f sin−1

( 2x̃>p M x̃q√
(1 + 2x̃>p M x̃p)(1 + 2x̃′>q M x̃q)

)
+ σ2

nδpq,

where x̃ = (1, x1, . . . , xD)>
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Automatic Relevance Determination

kSE (xp, xq) = σ2
f exp

(
− 1

2
(xp − xq)

>M(xp − xq)
)

+ σ2
nδpq

Isotropic M = `−2I
ARD: M = diag(`−2

1 , `−2
2 , . . . , `−2
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Further modelling flexibility

We can combine covariance functions to make things more
general

Example, functional ANOVA, e.g.

k(x, x′) =
D∑

i=1

ki (xi , x
′
i ) +

D∑
i=2

i−1∑
j=1

kij(xi , xj ; x
′
i , x

′
j )

Non-linear warping of the input space (Sampson and Guttorp,
1992)

Chris Williams University of Edinburgh

Model Selection for Gaussian Processes



The Baby and the Bathwater

MacKay (2003 ch 45): In moving from neural networks to
kernel machines did we throw out the baby with the
bathwater? i.e. the ability to learn hidden
features/representations

But consider M = ΛΛ> + diag(`)−2 for Λ being D × k, for
k < D

The k columns of Λ can identify directions in the input space
with specially high relevance (Vivarelli and Williams, 1999)
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Understanding the prior

We can analyze and draw samples from the prior

0 1

−2

−1

0

1

0 1
−2

−1

0

1

k(x − x ′) = exp−|x − x ′|/` k(x − x ′) = exp−|x − x ′|2/2`2

with ` = 0.1
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Samples from the neural network covariance function
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Criteria for Model Selection

Bayesian marginal likelihood (“evidence”) p(D|model)
Estimate the generalization error (e.g. cross-validation)

Bound the generalization error (e.g. PAC-Bayes)
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Bayesian Model Selection

For GPR, we can compute the marginal likelihood
p(y|X ,θ,M) exactly (integrating out f). For GPC it
can be approximated using Laplace approx or EP

Can also use MCMC to sample

p(Mi |y,X ) ∝ p(y|X ,Mi )p(Mi ) where

p(y|X ,Mi ) =

∫
p(y|X ,θi ,Mi )p(θi |Mi ) dθi

y

f

M

0
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Type-II Maximum Likelihood

Type-II maximum likelihood maximizes the marginal likelihood
p(y|X ,θi ,Mi ) rather than integrates

p(y|X ,θi ,Mi ) is differentiable wrt θ: no more grid search!

∂

∂θj
log p(y|X ,θ) =

1

2
y>K−1 ∂K

∂θj
K−1y − 1

2
trace

(
K−1 ∂K

∂θj

)
This was in Williams and Rasmussen (NIPS*95)

Can also use MAP estimation or MCMC in θ-space, see e.g.
Williams and Barber (1998)
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Marginal likelihood automatically incorporates a trade-off
between model fit and model complexity

log p(y|X ,θi ,Mi ) = −1

2
yTK−1

y y − 1

2
log |Ky | −

n

2
log 2π
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Marginal Likelihood and Local Optima
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There can be multiple optima of the marginal likelihood

These correspond to different interpretations of the data
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Cross-validation for GPR

log p(yi |X , y−i ,θ) = −1

2
log(2πσ2

i )−
(yi − µi )

2

2σ2
i

LLOO(X , y,θ) =
n∑

i=1

log p(yi |X , y−i ,θ)

Leave-one-out predictions can be made efficiently (e.g.
Wahba, 1990; Sundararajan and Keerthi, 2001)

We can also compute derivatives ∂LLOO/∂θj

LOO for squared error ignores predictive variances, and does
not determine overall scale of the covariance function

For GPC LOO computations are trickier, but the cavity
method (Opper and Winther, 2000) seems to be effective
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Comparing marginal likelihood and LOO-CV

L =
n∑

i=1

log p(yi |{yj , j < i},θ)

LLOO =
n∑

i=1

log p(yi |{yj , j 6= i},θ)

Marginal likelihood tells us the probability of the data given
the assumptions of the model

LOO-CV gives an estimate of the predictive log probability,
whether or not the model assumptions are fulfilled

CV procedures should be more robust against model
mis-specification (e.g. Wahba, 1990)

Chris Williams University of Edinburgh

Model Selection for Gaussian Processes



Example 1: Mauna Loa CO2
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320

340

360

380

400

420

year

C
O

2 c
on

ce
nt

ra
tio

n,
 p

pm

Fit this data with sum of four covariance functions, modelling
(i) smooth trend (ii) periodic component (with some decay)
(iii) medium term irregularities (iv) noise

Optimize and compare models using marginal likelihood
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Example 2: Robot Arm Inverse Dynamics

44,484 training, 4,449 test examples, in 21-dimensions

Map from 7 joint positions, velocities and accelerations of 7
joints to torque

Use SE (Gaussian) covariance function with ARD ⇒ 23
hyperparameters, optimizing marginal likelihood or LLOO

Similar accuracy for both SMSE and mean standardized log
loss, but marginal likelihood optimzation is quicker
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Multi-task Learning
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Minka and Picard (1999)
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Summary

X Bayesian learning

X Higher level regularization

X Predictive uncertainty

X Cross-validation

X Ensemble learning

X Search strategies (no more grid search)

X Feature selection

X More than 2 levels of inference

Model selection is much more than just setting parameters in
a covariance function
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Relationship to alignment

A(K , y) =
y>Ky

n‖K‖F

where y has +1/-1 elements

log A(K , y) = log
(
y>Ky

)
− log tr(K )

log q(y|K ) = −1

2
f̂>K−1f̂ + log p(y|̂f)− 1

2
log |B|,

where B = I + W
1
2 KW

1
2 , f̂ is the maximum of the posterior found

by Newton’s method, and W is the diagonal matrix
W = −∇∇ log p(y|̂f).
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