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• Learning multiple objects and parts from images
(joint work with Michalis Titsias)

• Modelling whole/part relationships with Dynamic Trees
(joint work with Nick Adams, Steve Felderhof, Amos Storkey)

• Other acknowledgements: Geoff Hinton, Rich Zemel



Learn the Objects



Motivation

• Our data is images containing multiple objects

• Task is to learn about each of the objects in the images

• With a true generative model each image must be explained by
instantiating a model for each of the objects present with the correct
instantiation parameters

• This leads to combinatorial explosion: L models with J possible values of
the instantiation parameters → O(JL) combinations



• We avoid the combinatorial search by extracting models sequentially

• Achieved by using a robust statistical model so that certain parts of the
image (e.g. where the other objects are) are modelled by an outlier
process; learning by ignoring!

• This method works for images, where the multiple objects combine by
occlusion

• A simplification of this idea works for fitting mixture models sequentially



Overview

• Learning One Object

• Coping with Multiple Objects

• Results

• Related work



Learning One Object

Have to deal with

• foreground/background issue

• transformations of the object

Images are viewed as vectors of length P . We learn foreground f ,
background b and mask π; the latter specifies the probability that a pixel is
from the foreground or background.



• Foreground/background only

p(x) =
P
∏

p=1

[πppf(xp; fp) + (1 − πp)pb(xp; bp)]

foreground mask



• Coping with transformations

p(x|Tj) =
P
∏

p=1

[(Tjπ)ppf(xp; (Tjf)p) + (1 − (Tjπ)p)pb(xp; bp)]

p(x) =
J

∑

j=1

pjp(x|Tj)



foreground (original) mask (original)

foreground (transformed) mask (transformed)



Fitting the model to data

• f , b, π, σ2
f , σ2

b can be learned by EM

• Model is similar to Jojic and Frey (2001) except that π has probabilistic
semantics, which means that an exact M-step can be used

• Can also introduce latent variable for moving background



Coping with multiple objects: previous work
Layered approach:

p(x|T1, . . . TL, Tb) = (T1π1). ∗ N(T1f1, σ
2
1)+

(1 − T1π1). ∗ (T2π2). ∗ N(T2f2, σ
2
2) + . . .

(1 − T1π1) . . . . ∗ (1 − TLπL). ∗ N(Tbb, σ2
b )

where layer 1 is in front of layer 2, ... , layer L.

• Each pixel is modelled as a L + 1 component mixture given T1, . . . , TL

• Can’t afford to deal with multiple objects exactly due to the combinatorial explosion
O(JL+1)

• Ghahramani (1995) and Jojic & Frey (2001) use variational inference



. . . .

x

T T T1 2 L



Coping with multiple objects: our approach

• We take a sequential approach, modelling one object at a time

• Need to robustify foreground and background models due to occlusion.

pf(xp; fp) = αfN(xp; fp, σ
2
f ) + (1 − αf)U(xp)

pb(xp; bp) = αbN(xp; bp, σ
2
b ) + (1 − αb)U(xp)

– Both foreground and background can be occluded by other objects

– Ordering now less important

– Cf work by Black and colleagues (e.g. Black and Jepson, 1996)

• A simple algorithm tries random starting positions in order to try to find multiple objects.
However, we have found that this works poorly and a greedy method works much better.



The Greedy Method

• Once an object has been identified in an image it is removed (cut out)
and then we learn the next object by applying the same algorithm

• Assume we have learned one model already to give f1, π1

• For each image x use the responsibilities p(Ti1|x) to find the most likely
transformation i∗1.



• Let r
i∗1
f1,p

be the foreground responsibility for pixel p in image x using transformation i∗1

r
i∗1
f,p =

αfN(xp; (Ti∗1f1)p, σ2
f )

αfN(xp; (Ti∗1f1)p, σ2
f ) + (1 − αf)U(xp)

• Define ρ1 = (Ti∗1π1) . ∗ r
i∗1
f1

• A pixel p that is cut out has (ρ1)p ' 1

• This means that an image in which some pixels of the learned object are occluded only
has the foreground pixels cut out

• The second stage of the greedy algorithm optimizes a lower bound on the log likelihood,
where each pixel p is weighted by (1 − ρ1)p



Whole Algorithm
1. Learn the background and infer the most probable transformation jn

b for each image xn.

2. Initialize the vectors zn
0 = 1 for n = 1, . . . , N

3. For ` = 1 to L

• Learn the `th object parameters {f`, π`, σ
2
` } by maximizing F` using EM algorithm,

where

F` =

N
∑

n=1

Jf
∑

j`=1

Qn(j`)
{

P
∑

p=1

(zn
`−1)p log[(Tj`

π`)pp(xp; (Tj`
f`)p)+

(1 − Tj`
π`)ppb(xp; (Tjn

b
b)p)] − logQn(j`)

}

.

• Infer the most probable transformation {jn
` } and update the weights zn

` = zn
`−1. ∗ ρ

n
`



Results
Data

,
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Mask

Mask * Foreground

Mask

Mask * Foreground Background

• Consider two people comoving—what happens?
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Frey and Jojic Video Sequences



mask1 * foreground resp1 mask1 * foreground resp1



2 Objects and Moving Background



Further Examples



Related work

• Reminiscent of sequential PCA algorithms (deflation) where a PC is identified, and then
that component is subtracted out from the input; but here we mask out pixels that have
already been explained

• Shams and von der Malsburg (1999) obtained candidate parts by matching images in a
pairwise fashion, trying to identify corresponding patches in the two images. These
candidate patches were then clustered.

– S/vdM have O(N2) complexity (pairwise comparison of images)

– They need to remove background from consideration

– Their data is synthetic CAD-type models, and is designed to eliminate complicating
factors such as background, surface markings etc

• Computer vision approaches e.g. Wang and Adelson (1994), Tao et al (2000) find layers
by clustering optical flow vectors. Our method can be applied to unordered collections
of images, and is not limited when flow information is sparse



Summary, Future Work

• The sequential approach works, making use of the
combination-by-occlusion regularity

• Can deal with many objects/parts

• Finding parts of articulated objects

• Representing the relationships between parts



Dynamic Trees

• Need to represent parts and wholes and their relationships

• Parse-tree like structures for images are appealing

• Dynamic belief network structure where children choose their parents



Tree Structured Belief Networks

X

X X

X

1

2 3

4

P(X1, . . . Xm) = P(X1)P(X2|X1)P(X3|X1)P(X4|X2) . . .

• Conditional probability tables (CPTs)

• Generating label images from a TSBN

• Important: only leaf nodes are ob-
served (cf multiscale/wavelets)

• Bouman and Shapiro (1994), Laferté
et al (1995), Willsky et al (1990s)



Dynamic Tree Image Models
Use the basic TSBN strategy, but specify a prior over the tree structure Z

• Unbalanced trees prevent “blockiness”

• Disconnections enable creation of objects at an appropriate scale, parse-tree like

• Visible (leaf) nodes Xv, hidden nodes Xh

P(Z, Xv, Xh) = P(Z)P(Xv, Xh|Z)

• Related work: Credibility Nets (Hinton, Ghahramani, Teh)



Specifying the Prior

ann nata nulla

Null Parent

Parent Layer

Child Layer

j

i

zij is a binary variable denoting the connection between parent j and child i

with P (zij = 1) = eaij/
∑

k eaik



Inference and Learning in DTs

The goal is to obtain the posterior P (Z, Xh|Xv), or the posterior marginal
P (Z|Xv), or P (Xv)

Two main approaches:

• Markov Chain Monte Carlo (MCMC)

• Variational inference

Parameters defining the affinities and CPTs can be learned from training data
via mean field EM



Pixel labelling task
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Where Next?

• DT example uses relatively
simple parent-child propagation
of labels, position, but could
be extended to parents with
slots/fillers matching appropri-
ate children

• Combine this with learning of
parts from first part of talk to
give learning of hierarchical ob-
ject models


