
Recursion and Sequentiality in
Categories of Sheaves

Cristina Matache (joint work with Sean Moss and Sam Staton)

University of Oxford

1/25



Fully abstract models of programming languages

Model
▶ Cartesian closed category
▶ Partiality monad, L
▶ Interpretation: Type⟷ Object

Program⟷ Partial morphism

A model is fully abstract if:

Contextual equivalence = Equality in the model

t1 ≅ t2 ⟺ Jt1K = Jt2K
The⟹ is hard to get.

2/25



PCFv: A call-by-value language

Types: τ F 0 ∣ 1 ∣ nat ∣ τ + τ ∣ τ × τ ∣ τ → τ

Values: v,wF . . . ∣ λx. t ∣ rec f x. t
Computations: tF . . . ∣ v w ∣ let x = t in t′

Typing judgements: Γ ⊢v v ∶ τ and Γ ⊢c t ∶ τ .

An interpretation looks like:

JnatK = ∑∞
0 1 = 1 + 1 + . . . Jτ → τ

′K = JτK ⇒ LJτ ′KJΓ ⊢
v v ∶ τK ∶ JΓK → JτK JΓ ⊢

c t ∶ τK ∶ JΓK → LJτK
3/25



Related Work

The ωcpo model of PCFv:

Types⟷ posets with sups of ω-chains.

Terms⟷ continuous functions.

! Not fully abstract. E.g. parallel-or not definable.

Need to capture sequentiality

O’Hearn and Riecke’s idea [OHR’95, Riecke&Sandholm’02]
Use logical relations to cut down to sequential functions.

[Plotkin’80], [Jung & Tiuryn’93]: logical relations for λ-definability.

[Sieber’92]: definability for PCF up to order 2.
4/25



Related Work

The ωcpo model of PCFv:

Types⟷ posets with sups of ω-chains.

Terms⟷ continuous functions.

! Not fully abstract. E.g. parallel-or not definable.

Need to capture sequentiality

O’Hearn and Riecke’s idea [OHR’95, Riecke&Sandholm’02]
Use logical relations to cut down to sequential functions.

What we did [MMS’21]
Describe the OHR model as a sheaf category.

4/25



Outline

1 Introduction: fully abstract models and PCFv

2 Building a fully abstract model: recursion

3 Building a fully abstract model:
sequentiality

4 Summary and future work

5/25



Concrete presheaves on the vertical natural numbers

V = {0 < 1 < 2 < . . . < ∞} = poset of vertical natural
numbers

V = two-object category:

∞
⋮

2

1

0
∨

∨

∨

V

continuous
endomorphisms ⋆

vSet = [Vop
, Set]=

presheaves on V

Concrete presheaf on V
▶ a set X(⋆)
▶ a set of functions

X(V) ⊆ [V → X(⋆)]
X(V) is a relation with arity
V on X(⋆).

6/25



Concrete presheaves on the vertical natural numbers

∞
⋮

2

1

0
∨

∨

∨

V

continuous
endomorphisms ⋆

vSet = [Vop
, Set]

Concrete presheaf on V
▶ a set X(⋆)
▶ a set of functions

X(V) ⊆ [V → X(⋆)]
X(V) is a relation with arity
V on X(⋆).

A map between concrete presheaves X and Y is:

▪ a function f ∶ X(⋆) → Y(⋆)
▪ acting by postcomposition: g ∈ X(V) ↦ f ◦ g ∈ Y(V)
i.e. f preserves the relation.

6/25



Exponentials in vSet

If X and Y are concrete presheaves, the exponential is
also a concrete presheaf:(X⇒ Y)(⋆) = {f ∶ X(⋆) → Y(⋆) ∣ f preserves the relation}(X⇒ Y)(V) ⊆ [V → (X⇒ Y)(⋆)] such that (among other
conditions)

if (f0, f1, . . .) ∈ (X⇒ Y)(V)
then (x0, x1, . . .) ∈ X(V) implies (f0(x0), f1(x1), . . .) ∈ Y(V).
So (X⇒ Y)(V) is a “logical” relation.

7/25



Partiality monad L on vSet

For a concrete presheaf X:(LX)(⋆) = X(⋆) + {⊥}(LX)(V) = {⊥} + ∑n∈N(X(V))n(X(V))n contains each chain from X(V) with n
⊥-elements added at the beginning.

8/25



Modelling PCFv in vSet

Claim
We can model PCFv using the concrete presheaves in
vSet, starting from:JnatK(⋆) = NJnatK(V) = {constant functions V → N}.
! The vSet model is actually the ωcpo model.

9/25



Modelling fixed points in vSet

type vertical = Succ of (unit -> vertical);;
let rec top : vertical = Succ (fun () -> top);;
let lub ((fs, ax) : (vertical * 'a -> 'b) * 'a) : 'b =
fs (top, ax);;

let rec approx : (vertical * (('a -> 'b) * 'a -> 'b) * 'a) -> 'b
let tarski : ((('a -> 'b) * 'a -> 'b) * 'a) -> 'b

Similarly we can define a fixed point of f ∶ (A⇒ LB) × A→ LB
in vSet if LB is orthogonal to ω × X→ yV× X for any X in vSet:

ω × X LB

yV × X

h
ω = greatest subobject of yV
without∞

10/25



Outline

1 Introduction: fully abstract models and PCFv

2 Building a fully abstract model: recursion

3 Building a fully abstract model:
sequentiality

4 Summary and future work

11/25



Building a fully abstract syntactic model of PCFv

Semidecidable subset of a type τ = represented by a
program s ∶ τ → 1.

Category Syn:

▪ Objects: (τ, s) type + semidecidable subset
▪ Morphisms: f ∶ (τ, s) → (τ ′, s′) is a(n equivalence
class of) program(s) x ∶ τ ⊢ f ∶ τ ′ with domain s and
image in s′.

12/25



Building a fully abstract syntactic model of PCFv

[Synop, Set] almost a model with full definability ⟹ full
abstraction.

Problems:

1. y(nat) is not ∑∞
0 1 in presheaves.

2. Recursion.
3. We’d like a non-syntactic model.

13/25



Solving 1 and 2: nat as ∑∞
0 1, and recursion

Use a sheaf condition on Syn to make y(nat) a coproduct.
! There are uncountably many maps ∑∞

0 1→ ∑∞
0 1.

We can’t get full definability.

For each n, consider Synn such that natural numbers > n
trigger divergence [Milner’77].

Combine the truncated sites Synn and impose a sheaf
condition on them.

Solving 2, recursion: add V as one of the sites.

Something like Sh(V +⋁n Synn)
has full definability for truncated types.

14/25



Solving 3: Non-syntactic model

Instead of Synn use a bigger class of sites.

Given a finite set w:
A system of partitions Sw [Streicher’06, Marz’00]
Contains partial partitions (=partial equivalence relations)
of w s.t.:
1. {w},∅ ∈ Sw

2. P, Q ∈ Sw and U ∈ P imply that:(P \ {U}) ∪ ({U ∩ U′ ∣ U′ ∈ Q} \ {∅}) ∈ Sw.
3. U,U′ ∈ P ∈ Sw implies that(P \ {U,U′}) ∪ {U ∪ U′} ∈ Sw.

15/25



Systems of partitions

w =finite set Sw ⊆ {partial partitions of w} +axioms
(w, Sw): w is a finite type

P ∈ Sw is (roughly) a computable function w⇀ N

The axioms of Sw imply that the system of functions:

▶ includes all constant functions
▶ is closed under postcomposition with any f ∶ N ⇀ N
▶ is closed under sequencing of functions from Sw.

! For P ∈ Sw, think of ⋃P as the semidecidable subset s
from (τn, s ∶ τn → 1) from Synn.

16/25



SSP: A category of systems of partitions

w =finite set Sw ⊆ {partial partitions of w} +axioms
P ∈ Sw, ⋃P =semidecidable subset of w

The systems of partitions form a category SSP:

▪ Objects: (w, Sw)
▪ Morphisms: f ∶ (v, Sv) → (w, Sw) is a function
f ∶ v→ w s.t. if P ∈ Sw then f−1(P) ∈ Sv.

Partiality monad LSSP(w, Sw) = (w ⊔ {⊥}, . . .).
! A map in Synn is a partial function (τn, s) → (τ ′n, s′)

with domain s and image in s′.

17/25



Defining sites via systems of partitions

w =finite set Sw ⊆ {partial partitions of w} +axioms
P ∈ Sw, ⋃P =semidecidable subset of w
SSP⊥ has Kleisli maps (v, Sv) → LSSP(w, Sw)
For a faithful functor F ∶ C → SSP⊥ define a category IC,F

similar to Synn:

▶ Objects: (c,U), c ∈ C and U = ⋃P for some P ∈ SF(c),
(and a terminal object).

▶ Morphisms: f ∶ (c,U) → (d,W) is a function f ∶ U→ W
▪ either constant
▪ or s.t. there is F(ϕ) ∶ F(c) → LSSP(F(d)) with
domain U and image in W.

Each IC,F is a guess at Synn. 18/25



First attempt at a model using guesses

Candidate model: [(V +⋁F∶C→SSP⊥ IC,F)op, Set]
If (c,U) is a type, SF(c) encodes the maps U→ nat,

nat needs to be interpreted as the concrete presheaf:

JnatK(⋆) = NJnatK(c,U) = {g ∶ U→ N ∣ {g−1(i) ∣ i ∈ N} ∈ SF(c)}
But this is not the coproduct ∑∞

0 1:(∑∞
0 1)(⋆) = N (∑∞

0 1)(c,U) = {f ∶ U→ N ∣ f constant}
19/25



From presheaves to sheaves

Final model: G = Sh(V +⋁F∶C→SSP⊥ IC,F)
In G the same JnatK becomes a coproduct.
Sheaf condition:

▶ (c,U) covered by {(c,Ui) → (c,U)}1≤i≤n where
P = {U1, . . . ,Un} ∈ SF(c) and ⋃Ui = U.

▶ A concrete presheaf X is a sheaf if given a tuple of
functions (fi ∶ Ui → X(⋆) ∈ X(c,Ui))Ui∈P then(f1 + f2 + . . . + fn) ∶ U→ X(⋆) ∈ X(c,U).

▶ Ensures sum types are interpreted as coproducts.

20/25



G is a model of PCFv

Partiality monad on G = Sh(V +⋁F∶C→SSP⊥ IC,F):(LGX)(⋆) = X(⋆) + {⊥}(LGX)(c,U) = ∑
W⊆U

X(c,W) s.t. exists P ∈ SF(c), ⋃P = W.

Theorem
G, with LG , gives a fully abstract model of PCFv such that:
1. nat is interpreted as ∑∞

0 1
2. we interpret recursion
3. the model is non-syntactic.

21/25



The connection between G and logical relations

All types τ are interpreted as concrete sheaves JτK.
The interpretation of PCFv can be thought of as a:

Kripke logical relation of varying arity

▶ JτK(c,U) is a relation with arity U (like in vSet).
▶ logical: at function types τ1 → τ2, a tuple of related

functions maps related arguments to related results.

▶ Kripke: the relation JτK(c,U) is compatible withJτK(d,W) according to the maps (d,W) → (c,U).
▶ varying arity: JτK(d,W) has arity W /= U.

22/25



Outline

1 Introduction: fully abstract models and PCFv

2 Building a fully abstract model: recursion

3 Building a fully abstract model:
sequentiality

4 Summary and future work

23/25



Summary

Fully abstract model of PCFv:

▶ Recursion: presheaves on V
▶ Definability/Sequentiality: guess the truncated types
▶ Take sheaves on these guesses to model nat and

sum types as coproducts.

▶ Each partiality monad comes from a dominance, like
in synthetic domain theory.

24/25



Future work

▶ Recursive types [Riecke & Sandholm’02]

▶ Other computational effects

▶ Non-well-pointed models [Levy’07, Amb breaks
well-pointedness…]

25/25


	Introduction: fully abstract models and PCFv
	Building a fully abstract model: recursion
	Building a fully abstract model: sequentiality
	Summary and future work

