Recursion and Sequentiality in
Categories of Sheaves

Cristina Matache (joint work with Sean Moss and Sam Staton)

University of Oxford

1/25

Fully abstract models of programming languages

Model
» Cartesian closed category

» Partiality monad, L

» Interpretation: Type «— Object
Program «— Partial morphism

A model is fully abstract if:
Contextual equivalence = Equality in the model

=t = [t] = [t]
The = is hard to get.

2/25

PCF,: A call-by-value language

Types: 7x=0|1|nat|7+7|7X7|7>7
Values: v,w:xi=...| M. t|recfx.t
Computations: tuz=...|vw|letx=tint

Typing judgements: T —'v:rand T+ t: 7.

An interpretation looks like:

[nat] =Y 1=1+1+... [r>7] =[] = L[]
[Fr='ver]: [- [7] [T ter]:] - L[]

3/25

Related Work

The wcpo model of PCF,:
Types «— posets with sups of w-chains.

Terms «— continuous functions.

I Not fully abstract. E.g. parallel-or not definable.

Need to capture sequentiality

O’Hearn and Riecke’s idea [0HR'95, Riecke&Sandholm'02]
Use logical relations to cut down to sequential functions.

[Plotkin'80], [Jung & Tiuryn'93]: logical relations for A-definability.

[Sieber'92]: definability for PCF up to order 2.
425

Related Work

The wcpo model of PCF,:
Types «— posets with sups of w-chains.

Terms «— continuous functions.

I Not fully abstract. E.g. parallel-or not definable.

Need to capture sequentiality

O’Hearn and Riecke’s idea [0HR'95, Riecke&Sandholm'02]
Use logical relations to cut down to sequential functions.

What we did [MMS'21]
Describe the OHR model as a sheaf category.

425

Building a fully abstract model: recursion

525

Concrete presheaves on the vertical natural numbers

V={0<1<2<...<o00}=posetof vertical natural
numbers

V = two-object category:

vSet = [V?, Set]=
presheaves on V

Concrete presheaf on V
> aset X(x)

» a set of functions
X(V) € [V - X(*)]

continuous

endomorphi%

[

X(V) is a relation with arity
V on X(x).

O<4<[\)<oo

6/25

Concrete presheaves on the vertical natural numbers

vSet = [V, Set]

V
0 Concrete presheaf on V
° \ » aset X(x)

continuous \%)
endomorphi% 2 ke % » a set of functions

vi| 7 X(V) € [V = X(x)]
1
v X(V) is a relation with arity
0 V oon X(*).

A map between concrete presheaves X and Y is:

= 3 function f: X(x) — Y(%)
= acting by postcomposition: g € X(V) » fog € Y(V)

i.e. f preserves the relation. oo

Exponentials in vSet

If X and Y are concrete presheaves, the exponential is
also a concrete presheatf:

(X=Y)(x) ={f: X(x) = Y(x) | f preserves the relation}

(X=Y)(V) e[V - (X= Y)(%)] such that (among other
conditions)

if (fo,f1,...) € X=Y)(V)
then (xo, Xp,...) € X(V) implies (fo(Xo), f1(X1),...) € Y(V).

So (X = Y)(V) is a “logical” relation.

7125

Partiality monad L on vSet

For a concrete presheaf X:
(LX)(x) = X(%) + {L}
(LAOV) = {L} + 2 en(X(V))n

(X(V)), contains each chain from X(V) with n
1 -elements added at the beginning.

8/25

Modelling PCF, in vSet

Claim

We can model PCF, using the concrete presheaves in
vSet, starting from:

[nat](x) =N

[nat](V) = {constant functions V — N}.

l The vSet model is actually the wcpo model.

9/25

Modelling fixed points in vSet

type vertical = Succ of (unit -> vertical);;
let rec top : vertical = Succ (fun () -> top);;

let lub ((fs, ax) : (vertical * 'a -> 'b) * 'a) : 'b =
fs (top, ax);;

let rec approx : (vertical » (('a -> 'b) = 'a-> 'b) = 'a) -> 'b
let tarski : (((‘a -> 'b) » '‘a-> 'b) » 'a) > 'b

Similarly we can define a fixed pointof f: (A= LB) XA — LB
in vSet if LB is orthogonal to w x X — yV x X for any X in vSet:

h

XK /3 EB w = greatest subobject of yV
I el without oo

yV x X

10/25

Building a fully abstract model:
sequentiality

1/25

Building a fully abstract syntactic model of PCF,

Semidecidable subset of a type 7 = represented by a
programs: 7 — 1.

Category Syn:
= Objects: (7,5) type + semidecidable subset
= Morphisms: f: (7,5) — (7,s') is a(n equivalence

class of) program(s) x : 7 - f: 7' with domain s and
image in s

12/25

Building a fully abstract syntactic model of PCF,

[Syn®?. Set] almost a model with full definability = full
abstraction.

Problems:

1. y(nat) is not) o 1in presheaves.
2. Recursion.
3. We'd like a non-syntactic model.

13/25

Solving 1and 2: natas) 1, and recursion

Use a sheaf condition on Syn to make y(nat) a coproduct.

There are uncountably many maps Y o1 - Y 2’ 1.
We can’t get full definability.

For each n, consider Syn, such that natural numbers > n
trigger divergence [Milner'77].

Combine the truncated sites Syn, and impose a sheaf
condition on them.

Solving 2, recursion: add V as one of the sites.
Something like Sh(V +\/, Syn,)

has full definability for truncated types.
14/25

Solving 3: Non-syntactic model

Instead of Syn, use a bigger class of sites.

Given a finite set w:

A system of partitions S" [Streicher'06, Marz'00]
Contains partial partitions (=partial equivalence relations)
of ws.t:
1. {w},@ €S"
2. P, Qe S"and U € Pimply that:
(P\{UHuU{UNU | U €q}\{a}) es"
3. U,U € PeS”implies that
(P\{U,U})u{UuU}es”

15/25

Systems of partitions

[W =finite set S" ¢ {partial partitions of w} +axioms]

(w,S"™): wis a finite type
P e S"is (roughly) a computable function w = N

The axioms of S* imply that the system of functions:

» includes all constant functions
» is closed under postcomposition with any f: N = N
» is closed under sequencing of functions from S".

For P € S”, think of | J P as the semidecidable subset s
o from (m,s:7, = 1) from Syn,.

16/25

SSP: A category of systems of partitions

w =finite set S" ¢ {partial partitions of w} +axioms
pes” U P =semidecidable subset of w

The systems of partitions form a category SSP:

= Objects: (w,S")
= Morphisms: f: (v,S") = (w,S") is a function
f:vowstifPes”thenf'(P)es".

Partiality monad Lesp(w,S") = (wu {L},...).

A map in Syn, is a partial function (7,,s) = (75,5')
« with domain s and image in s'.

17/25

Defining sites via systems of partitions

w =finite set S" ¢ {partial partitions of w} +axioms
pes” U P =semidecidable subset of w
SSP, has Kleisli maps (v,S") = Lssp(w,S")

For a faithful functor F: C — SSP, define a category Z. ¢
similar to Syn,:

» Objects: (c,U),ceCand U =|JPforsomeP e s
(and a terminal object).
» Morphisms: f: (c,U) — (d,W) isafunctionf: U - W
= either constant
m or st thereis F(¢) : F(c) — Lssp(F(d)) with
domain U and image in W.

Each Z.f is a guess at Syn,,. 18/25

First attempt at a model using guesses

Candidate model: [(V + \/r.oLsep, Zer)”, Set]

If (c,U) is a type, S encodes the maps U — nat,

nat needs to be interpreted as the concrete presheaf:

[nat](x) =N
[nat](c,U) ={g: U—>N|{g'(i) | i € N} € SV}

But this is not the coproduct Y ;° 1:

SN =N (37 D(c,U)={f:U - N|fconstant}

19/25

From presheaves to sheaves

Final model: G = Sh(V + \/ .o ssp, Zoyr)

In G the same [nat] becomes a coproduct.

Sheaf condition:

» (c,U) covered by {(c,U;) = (c,U)}1<ji<n Where
P={U,....,U,} €S @and |JU; =U.

» A concrete presheaf X is a sheaf if given a tuple of
functions (fi : Ui = X() € X(c, U;)), p then

(i+fh+...+f,):U—-> X(x) € X(c,U).
» Ensures sum types are interpreted as coproducts.

20/25

G is a model of PCF,

Partiality monad on G = Sh(V + \/.._ssp, Zeyr):

(LgX)(*) = X(x) + {L}

(LgX)(c,U) = Z X(c, W) st. exists P € S, U P=W.
weu

Theorem
G, with Lg, gives a fully abstract model of PCF, such that:

1. natis interpreted as) o~ 1
2. we interpret recursion
3. the model is non-syntactic.

21/25

The connection between G and logical relations

All types T are interpreted as concrete sheaves [7].

The interpretation of PCF, can be thought of as a:
Kripke logical relation of varying arity

» [7](c,U) is a relation with arity U (like in vSet).

» logical: at function types 7, = 7, a tuple of related
functions maps related arguments to related results.

» Kripke: the relation [r](c, U) is compatible with
[7](d, W) according to the maps (d, W) — (c, U).

» varying arity: [7](d, W) has arity W # U.
22/25

Summary and future work

23/25

Fully abstract model of PCF,:

» Recursion: presheaves on V
» Definability/Sequentiality: guess the truncated types

» Take sheaves on these guesses to model nat and
sum types as coproducts.

» Each partiality monad comes from a dominance, like
in synthetic domain theory.

24/25

» Recursive types [Riecke & Sandholm’'02]
» Other computational effects

» Non-well-pointed models [Levy'07, Amb breaks
well-pointedness...]

25/25

	Introduction: fully abstract models and PCFv
	Building a fully abstract model: recursion
	Building a fully abstract model: sequentiality
	Summary and future work

