Recursion and Sequentiality in Categories of Sheaves

Cristina Matache (joint work with Sean Moss and Sam Staton)

University of Oxford

Fully abstract models of programming languages

Model

- ► Cartesian closed category
- ▶ Partiality monad, L
- ▶ Interpretation: Type ↔ Object

 $Program \longleftrightarrow Partial morphism$

A model is **fully abstract** if:

Contextual equivalence = Equality in the model

$$t_1\cong t_2 \Longleftrightarrow \llbracket t_1\rrbracket = \llbracket t_2\rrbracket$$

The \implies is hard to get.

Types:
$$\tau ::= 0 | 1 | \text{nat} | \tau + \tau | \tau \times \tau | \tau \to \tau$$

Values: $v, w ::= \dots | \lambda x. t | \text{rec} f x. t$
Computations: $t ::= \dots | v w | \text{let} x = t \text{ in } t'$

Typing judgements: $\Gamma \vdash^{v} v : \tau$ and $\Gamma \vdash^{c} t : \tau$. An interpretation looks like:

$$\begin{bmatrix} \mathsf{nat} \end{bmatrix} = \sum_{0}^{\infty} 1 = 1 + 1 + \dots \qquad \begin{bmatrix} \tau \to \tau' \end{bmatrix} = \begin{bmatrix} \tau \end{bmatrix} \Longrightarrow L\llbracket \tau' \end{bmatrix}$$
$$\begin{bmatrix} \Gamma \vdash^{\mathsf{v}} \mathsf{v} : \tau \end{bmatrix} : \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket \qquad \llbracket \Gamma \vdash^{\mathsf{c}} t : \tau \rrbracket : \llbracket \Gamma \rrbracket \to L\llbracket \tau \rrbracket$$

Related Work

The ω cpo model of PCF_v:

Types \longleftrightarrow posets with sups of ω -chains.

Terms \longleftrightarrow continuous functions.

Not fully abstract. E.g. parallel-or not definable.

Need to capture sequentiality

O'Hearn and Riecke's idea [OHR'95, Riecke&Sandholm'02] Use logical relations to cut down to sequential functions.

[Plotkin'80], [Jung & Tiuryn'93]: logical relations for λ -definability.

[Sieber'92]: definability for PCF up to order 2.

Related Work

The ω cpo model of PCF_v:

Types \longleftrightarrow posets with sups of ω -chains.

Terms \longleftrightarrow continuous functions.

Not fully abstract. E.g. parallel-or not definable.

Need to capture sequentiality

O'Hearn and Riecke's idea [OHR'95, Riecke&Sandholm'02] Use logical relations to cut down to sequential functions.

What we did [MMS'21]

Describe the OHR model as a sheaf category.

1 Introduction: fully abstract models and PCF_v

2 Building a fully abstract model: recursion

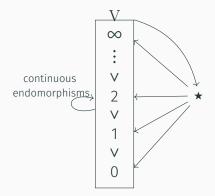
3 Building a fully abstract model: sequentiality

4 Summary and future work

Concrete presheaves on the vertical natural numbers

V = $\{0 < 1 < 2 < \ldots < \infty\}$ = poset of vertical natural numbers

𝔍 = two-object category:



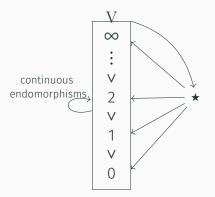
 $vSet = [V^{op}, Set] =$ presheaves on V

Concrete presheaf on $\ensuremath{\mathbb{V}}$

- ▶ a set X(★)
- a set of functions $X(V) \subseteq [V \rightarrow X(\star)]$

X(V) is a **relation** with arity V on $X(\star)$.

Concrete presheaves on the vertical natural numbers



Concrete presheaf on $\ensuremath{\mathbb{V}}$

▶ a set X(★)

• a set of functions
$$X(V) \subseteq [V \rightarrow X(\star)]$$

X(V) is a **relation** with arity V on $X(\star)$.

A map between concrete presheaves X and Y is:

- a function $f: X(\star) \rightarrow Y(\star)$
- acting by postcomposition: $g \in X(V) \mapsto f \circ g \in Y(V)$ i.e. *f* preserves the relation.

If *X* and *Y* are **concrete presheaves**, the exponential is also a concrete presheaf:

 $(X \Rightarrow Y)(\star) = \{f : X(\star) \to Y(\star) \mid f \text{ preserves the relation}\}\$ $(X \Rightarrow Y)(V) \subseteq [V \to (X \Rightarrow Y)(\star)]$ such that (among other conditions)

if $(f_0, f_1, \ldots) \in (X \Rightarrow Y)(V)$ then $(x_0, x_1, \ldots) \in X(V)$ implies $(f_0(x_0), f_1(x_1), \ldots) \in Y(V)$.

So $(X \Rightarrow Y)(V)$ is a "logical" relation.

For a **concrete presheaf** X:

 $(LX)(\star) = X(\star) + \{\bot\}$

 $(LX)(\mathbf{V}) = \{\bot\} + \sum_{n \in \mathbb{N}} (X(\mathbf{V}))_n$

 $(X(V))_n$ contains each chain from X(V) with $n \perp$ -elements added at the beginning.

Claim

We can model PCF_v using the concrete presheaves in vSet, starting from: [[nat]](★) = ℕ [[nat]](V) = {constant functions V → ℕ}.

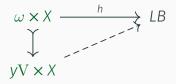
The vSet model is actually the ω cpo model.

Modelling fixed points in vSet

type vertical = Succ of (unit -> vertical);;
let rec top : vertical = Succ (fun () -> top);;
let lub ((fs, ax) : (vertical * 'a -> 'b) * 'a) : 'b =
fs (top, ax);;

let rec approx : (vertical * (('a -> 'b) * 'a -> 'b) * 'a) -> 'b
let tarski : ((('a -> 'b) * 'a -> 'b) * 'a) -> 'b

Similarly we can define a fixed point of $f: (A \Rightarrow LB) \times A \rightarrow LB$ in vSet if *LB* is **orthogonal** to $\omega \times X \rightarrow yV \times X$ for any *X* in vSet:



 ω = greatest subobject of yV without ∞

1 Introduction: fully abstract models and PCF_v

2 Building a fully abstract model: recursion

3 Building a fully abstract model: sequentiality

4 Summary and future work

Semidecidable subset of a type τ = represented by a program $s : \tau \rightarrow 1$.

Category Syn:

- Objects: (\(\tau, s\)) type + semidecidable subset
- Morphisms: $f: (\tau, s) \rightarrow (\tau', s')$ is a(n equivalence class of) program(s) $x: \tau \vdash f: \tau'$ with domain s and image in s'.

$[Syn^{op}, Set]$ almost a model with full definability \implies full abstraction.

Problems:

- 1. y(nat) is not $\sum_{0}^{\infty} 1$ in presheaves.
- 2. Recursion.
- 3. We'd like a non-syntactic model.

Solving 1 and 2: nat as \sum_{0}^{∞} 1, and recursion

Use a **sheaf condition** on *Syn* to make *y*(nat) a coproduct.

- There are uncountably many maps $\sum_{0}^{\infty} 1 \rightarrow \sum_{0}^{\infty} 1$.
- We can't get full definability.

For each n, consider Syn_n such that natural numbers > n trigger divergence [Milner'77].

Combine the **truncated** sites Syn_n and impose a sheaf condition on them.

Solving 2, recursion: add $\mathbb V$ as one of the sites.

Something like $Sh(\mathbb{V} + \bigvee_n Syn_n)$ has full definability for truncated types.

Solving 3: Non-syntactic model

Instead of Syn_n use a bigger class of sites.

Given a finite set w:

A system of partitions S^w [Streicher'06, Marz'00] Contains partial partitions (=partial equivalence relations) of w s.t.:

1.
$$\{w\}, \emptyset \in S^w$$

2.
$$P, Q \in S^{W}$$
 and $U \in P$ imply that:
 $(P \setminus \{U\}) \cup (\{U \cap U' \mid U' \in Q\} \setminus \{\emptyset\}) \in S^{W}.$

3. $U, U' \in P \in S^{w}$ implies that $(P \setminus \{U, U'\}) \cup \{U \cup U'\} \in S^{w}.$

Systems of partitions

w = finite set $S^{W} \subseteq \{\text{partial partitions of } w\} + \text{axioms}$

(w, S^w): w is a finite type
 P ∈ S^w is (roughly) a computable function w → N
 The axioms of S^w imply that the system of functions:

- ▶ includes all constant functions
- ▶ is closed under postcomposition with any $f: \mathbb{N} \rightarrow \mathbb{N}$
- \blacktriangleright is closed under sequencing of functions from S^{W} .
 - For $P \in S^{W}$, think of $\bigcup P$ as the **semidecidable subset** s
- from $(\tau_n, s : \tau_n \rightarrow 1)$ from Syn_n .

SSP: A category of systems of partitions

 $w = \text{finite set} \qquad S^{w} \subseteq \{\text{partial partitions of } w\} + \text{axioms} \\ P \in S^{w}, \bigcup P = \text{semidecidable subset of } w$

The systems of partitions form a category SSP:

- Objects: (w, S^w)
- Morphisms: $f: (v, S^v) \to (w, S^w)$ is a function $f: v \to w$ s.t. if $P \in S^w$ then $f^{-1}(P) \in S^v$.

Partiality monad $L_{SSP}(w, S^w) = (w \sqcup \{\bot\}, \ldots).$

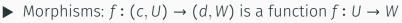
- A map in Syn_n is a partial function $(\tau_n, s) \rightarrow (\tau'_n, s')$
- with domain s and image in s'.

Defining sites via systems of partitions

w = finite set $S^w \subseteq \{\text{partial partitions of } w\} + \text{axioms}$ $P \in S^w, \bigcup P = \text{semidecidable subset of } w$ SSP_{\perp} has Kleisli maps $(v, S^v) \rightarrow L_{\text{SSP}}(w, S^w)$

For a faithful functor $F : \mathcal{C} \to SSP_{\perp}$ define a category $\mathcal{I}_{\mathcal{C},F}$ similar to Syn_n :

▶ Objects: $(c, U), c \in C$ and $U = \bigcup P$ for some $P \in S^{F(c)}$, (and a terminal object).



- either constant
- or s.t. there is $F(\phi) : F(c) \to L_{SSP}(F(d))$ with domain U and image in W.

Each $\mathcal{I}_{\mathcal{C},F}$ is a **guess** at Syn_n .

First attempt at a model using guesses

Candidate model:
$$[(\mathbb{V} + \bigvee_{F:C \to SSP_1} \mathcal{I}_{C,F})^{op}, Set]$$

If (c, U) is a type, $S^{F(c)}$ encodes the maps $U \rightarrow$ nat, nat needs to be interpreted as the **concrete presheaf**:

$$\llbracket \operatorname{nat} \rrbracket(\star) = \mathbb{N}$$

$$[\operatorname{nat} \rrbracket(c, U) = \{g : U \to \mathbb{N} \mid \{g^{-1}(i) \mid i \in \mathbb{N}\} \in S^{F(c)}\}$$

But this is not the coproduct \sum_{0}^{∞} 1:

 $\left(\sum_{0}^{\infty} 1\right)(\star) = \mathbb{N} \qquad \left(\sum_{0}^{\infty} 1\right)(c, U) = \{f : U \to \mathbb{N} \mid f \text{ constant}\}\$

Final model:
$$\mathcal{G} = Sh(\mathbb{V} + \bigvee_{F:\mathcal{C} \to SSP_{\perp}} \mathcal{I}_{\mathcal{C},F})$$

In $\mathcal G$ the same [[nat]] becomes a coproduct. Sheaf condition:

- (c, U) covered by $\{(c, U_i) \rightarrow (c, U)\}_{1 \le i \le n}$ where $P = \{U_1, \dots, U_n\} \in S^{F(c)}$ and $\bigcup U_i = U$.
- ► A concrete presheaf X is a sheaf if given a tuple of functions $(f_i : U_i \to X(\star) \in X(c, U_i))_{U_i \in P}$ then $(f_1 + f_2 + \ldots + f_n) : U \to X(\star) \in X(c, U).$
- Ensures sum types are interpreted as coproducts.

${\mathcal G}$ is a model of PCF_v

Partiality monad on $\mathcal{G} = Sh(\mathbb{V} + \bigvee_{F:\mathcal{C} \to SSP_{\perp}} \mathcal{I}_{\mathcal{C},F})$:

$$(L_{\mathcal{G}}X)(\star) = X(\star) + \{\bot\}$$
$$(L_{\mathcal{G}}X)(c,U) = \sum_{W \subseteq U} X(c,W) \text{ s.t. exists } P \in S^{F(c)}, \quad \bigcup P = W.$$

Theorem

 $\mathcal G,$ with $L_{\mathcal G},$ gives a fully abstract model of PCF_v such that:

- 1. nat is interpreted as $\sum_{0}^{\infty} 1$
- 2. we interpret recursion
- 3. the model is non-syntactic.

The connection between \mathcal{G} and logical relations

All types τ are interpreted as **concrete sheaves** $[\![\tau]\!]$. The interpretation of PCF_v can be thought of as a: Kripke logical relation of varying arity

- \blacktriangleright $[\tau](c, U)$ is a **relation** with arity U (like in vSet).
- ▶ logical: at function types $\tau_1 \rightarrow \tau_2$, a tuple of related functions maps related arguments to related results.
- **Kripke**: the relation $[\tau](c, U)$ is compatible with $\llbracket \tau \rrbracket(d, W)$ according to the maps $(d, W) \rightarrow (c, U)$.

▶ varying arity: $[\tau](d, W)$ has arity $W \neq U$.

1 Introduction: fully abstract models and PCF_v

- 2 Building a fully abstract model: recursion
- 3 Building a fully abstract model: sequentiality
- 4 Summary and future work

Fully abstract model of PCF_v:

- \blacktriangleright Recursion: presheaves on $\mathbb V$
- Definability/Sequentiality: guess the truncated types
- Take sheaves on these guesses to model nat and sum types as coproducts.
- Each partiality monad comes from a dominance, like in synthetic domain theory.

- ▶ Recursive types [Riecke & Sandholm'02]
- ▶ Other computational effects
- Non-well-pointed models [Levy'07, Amb breaks well-pointedness...]