
A unified treatment of concrete sheaf models for
higher-order recursion

Cristina Matache (joint work with Sean Moss and Sam Staton)

University of Oxford

1/26

Modelling higher-order programs with recursion

Model
▶ Cartesian closed category (CCC)
▶ Partiality monad, L
▶ Interpretation: Type←→ Object

Program←→ Partial morphism

Examples:
(1) Probabilistic programming: partial maps that are measurable

[Heunen et al.’17, Vákár et al.’19]

(2) Automatic differentiation: partial maps that are smooth
[Huot et al.’20, Vákár’20]

(3) Piecewise differentiable programs [Lew et al.’21]

(4) Full abstraction for a sequential language: definable partial maps
[O’Hearn & Riecke’95], [Matache, Moss, Staton, FSCD’21] 2/26

Goal of this talk

Main Theorem [Matache, Moss, Staton, in preparation]

The examples
(1) Probabilistic programming
(2) Automatic differentiation
(3) Piecewise differentiation
(4) Full abstraction


all model higher-order recursion
using the same recipe
▶ using concrete sheaves
▶ using ideas from synthetic
domain theory for recursion

In each case more domain specific work needs to be done.
Examples of concrete sheaves: subsequential spaces [Johnstone’79], C-spaces [Escardó & Xu’16]
Examples of concrete presheaves: [Rosolini & Streicher’99], finiteness spaces [Ehrhard’07]

3/26

Goal of this talk (continued)

Main Theorem [Matache, Moss, Staton, in preparation]

The examples
(1) Probabilistic programming
(2) Automatic differentiation
(3) Piecewise differentiation
(4) Full abstraction


all model higher-order recursion
using the same recipe
▶ using concrete sheaves
▶ using ideas from synthetic
domain theory for recursion

Corollary: conservativity result for (1), (2), (3)
E.g.(2): Programs real→ real are still interpreted as smooth maps even if
they use higher-order recursion.

4/26

PCFv: A call-by-value language

Call-by-value λ-calculus with:
▶ base types e.g. nat, real
▶ function types
▶ product and sum types
▶ recursive functions.

Model
▶ Cartesian closed category (CCC)
▶ Partiality monad, L
▶ Interpretation:
Type←→ Object
Program←→ Partial morphism

An interpretation looks like:JnatK = 1 + 1 + . . . Jτ1 + τ2K = Jτ1K + Jτ2K Jτ1 × τ2K = Jτ1K× Jτ2K
Jτ → τ ′K = JτK⇒ LJτ ′K JΓ ` t : τK : JΓK→ LJτK

5/26

Outline

1 Introduction

2 Higher-order computation: categories of concrete sheaves

3 Modelling partiality

4 Modelling recursion

5 Putting it all together

6/26

Why use categories of concrete sheaves?

Example: first-order probabilistic computation can be modelled in Sbs.
Sbs is NOT cartesian closed.

The category of presheaves on Sbs is cartesian closed.
Yoneda embedding

y : Sbs ↪→ PSh(Sbs)
Full, faithful, preserves limits.
Does not preserve colimits.

Restricting to sheaves on a site (Sbs, J) preserves some colimits from Sbs.

Concrete sheaves = sets with structure + structure-preserving functions.

ConcSh(Sbs, J) ↪→ Sh(Sbs, J) ↪→ PSh(Sbs)
7/26

Well-pointed categories and concrete sites

A category C is well-pointed if
• it has a terminal object ?
• C(?,−) : C→ Set is faithful
i.e. maps h : d→ c are distinguished functions |h| : |d| → |c|

where |c| = C(?, c). So C is a category of sets and certain functions.

Concrete site (C, J)
• A small well-pointed category C
• For every c ∈ C a set J(c) of covering families {fi : ci → c}i∈I of c s.t.
(C) pullback stability
(?) If {fi : ci → c}i∈I covers c, then

⋃
i∈I Im(|fi|) = |c|

8/26

Concrete sheaf on a concrete site (C, J) [Concrete quasitopoi, Dubuc’77]
[Convenient categories of smooth spaces, Baez & Hoffnung’11]

Well-pointed category C
• has a terminal ?
• a map h : d → c is a function
between sets |d| = C(?, d) etc.

Concrete site (C, J)
• small well-pointed C
• For every c ∈ C a set J(c) of covering families
{fi : ci → c}i∈I of c, with axioms (C) and ?.

A concrete sheaf X : Cop → Set is:
▶ a set X(?)

▶ X(c) ⊆ [|c| → X(?)]

X(h : d→ c) is precomposition
by |h|.

Sheaf condition: for each function
g : |c| → X(?) and each covering family
{fi : ci → c}i∈I ∈ J(c), if each g ◦ |fi| ∈ X(ci),
then g : |c| → X(?) ∈ X(c).

|ci| |c| X(?)fi
g

A morphism α : X → Y is a structure-preserving function α : X(?)→ Y (?).
9/26

Example: modelling probabilistic programming [Heunen et al.’17, Vákár et al.’19]

A functor X : Cop → Set is a concrete sheaf on a concrete site (C, J) if X(c) ⊆
[|c| → X(?)] and X satisfies the sheaf condition.

Quasi-Borel spaces is the category of concrete sheaves on:

• Sbs: objects U are Borel subsets of R
morphisms are measurable functions between these sets.

• J(U) = countable sets of measurable inclusions {Ui ↪→ U}i∈I where
U =

⋃
i∈I Ui and the Ui’s are disjoint.

X(R) ⊆ [R→ X(?)] is the set of “random elements” of X(?).

10/26

Example: modelling probabilistic programming in ConcSh(Sbs, J)

A functor X : Cop → Set is a concrete sheaf on a concrete site (C, J) if X(c) ⊆
[|c| → X(?)] and X satisfies the sheaf condition.

Sbs = Borel subsets U ⊆ R + measurable functions
J(U) = sets of inclusions {Ui ↪→ U}i∈I where U =

⋃
i∈I Ui and the Ui’s are disjoint.

In PSh(Sbs), take X concrete. In Sbs, take R =
⋃

i∈I Ui and Ui’s disjoint:
yR

X∑
i∈I yUi

by Yoneda
lemma

(
g : R→ X(?)

)
∈ X(R)

m{(
fi : Ui → X(?)

)
∈ X(Ui)

}
i∈I

Sheaf condition at R: for each function g : R → X(?)

and each covering family {fi : Ui → R}i∈I ∈ J(c), if each
g ◦ fi ∈ X(Ui), then g : R→ X(?) ∈ X(R).

Ui R X(?)fi
g

11/26

Example: modelling differentiable programs [Huot et al.’20, Vákár’20]

A functor X : Cop → Set is a concrete sheaf on a concrete site (C, J) if X(c) ⊆
[|c| → X(?)] and X satisfies the sheaf condition.

Diffeological spaces is the category of concrete sheaves on:

• Site: objects are open subsets U ⊆ Rn for any n
morphisms are smooth maps.

• J(U) = countable sets of open inclusions {Ui ↪→ U}i∈I where
U =

⋃
i∈I Ui.

X(U) ⊆ [U → X(?)] is the set of “plots” of X(?).

12/26

Outline

1 Introduction

2 Higher-order computation: categories of concrete sheaves

3 Modelling partiality

4 Modelling recursion

5 Putting it all together

13/26

Partial maps

In any category, a partial map X ⇀ Y is a pair (m, f):
X ′ Y

X

m∈N

f

where N is stable class of monos:

• contains all isomorphisms
• closed under composition
• stable under pullback (with arbitrary maps)

(1) Quasi-Borel spaces: partial maps that are measurable, with Borel domain

(2) Diffeological spaces: partial maps that are smooth, with open domain

14/26

From partial maps to a lifting monad

How do we get a monad L with the following property?

For every
X ′ Y

X

m∈N

f

, where N is a stable class of monos

there is exactly one corresponding total map X → LY such that
X ′ Y

X LY

m∈N

f

⌟
ηY

∃!

and conversely.

L might not exist in general.
15/26

From partial maps to a lifting monad (continued)

In a sheaf category Sh(C, J):

Theorem
N has an associated lifting monad L if
the class of monos N “comes from” a class
of pre-admissible monosM in C.

M is a class of pre-admissible monos in C if:
• stable class
• ∆M : Cop → Set is a J-sheaf, where:
∆M(c) = iso. classes of c′ ↣ c ∈M
∆M(f : d→ c) = pullback along f

N stable class of monos:
• contains all isomorphisms
• closed under composition
• stable under pullback

Lifting monad:
for every (m, f) : X ⇀ Y with
m ∈ N , there is exactly one total
map X → LY .

d′ d

c′ c

∈M

⌟
f

∈M

16/26

From partial maps to a lifting monad (continued)

In a sheaf category Sh(C, J):

Theorem
N has an associated lifting monad L if
the class of monos N “comes from” a
class of pre-admissible monosM in C.

N “comes from”M if
N = all pullbacks of > : 1→ ∆M,
where >c = [idc]

X ′ 1

X ∆M

!

∈N
⌟

⊤
χ

N stable class of monos:
• contains all isomorphisms
• closed under composition
• stable under pullback

Lifting monad:
for every (m, f) : X ⇀ Y with m ∈
N , there is exactly one total map
X → LY .
M stable class
∆M : Cop → Set a J-sheaf
∆M(c) = iso. classes of c′ ↣ c ∈M
∆M(f : d→ c) = pullback along f

see e.g [Rosolini’86] for dominance, [Mulry’94],
[Fiore&Plotkin’97] for constructing a lifting monad

17/26

Examples: classes of pre-admissible monos

Quasi-Borel spaces:
Site: objects U are Borel subsets of R,
morphisms are measurable functions.

M = for every U , the measurable
monos with codomain U

Diffeological spaces:
Site: objects are open subsets U ⊆ Rn for any n,
morphisms are smooth maps.

M = for every U , the open inclusion
maps into U

For a concrete sheaf X , the lifting monad:

LX(?) = X(?)] {⊥}
LX(U) =

{
g : U → X(?)] {⊥}

∣∣ ∃U ′ ↣ U ∈M s.t. dom(g) = U ′

and g|U ′ ∈ X(U ′)
}

In general, having the lifting monad is not enough to model recursion. 18/26

Outline

1 Introduction

2 Higher-order computation: categories of concrete sheaves

3 Modelling partiality

4 Modelling recursion

5 Putting it all together

19/26

The ωcpo model of PCFv

Types = partially ordered sets with least upper bounds of ω-chains

Terms = continuous functions

To model recursive functions:

• a lifting monad on ωcpo

• Tarski’s fixed point theorem

We want to recover this model as presheaves with a class of admissible
monos in the site.

20/26

vSet: A concrete presheaf model of PCFv

V = {0 < 1 < 2 < . . . <∞} = poset of vertical nat. numbers

V = two-object category

See the category H from
[Fiore & Rosolini’97, ’01].

∞
...

2

1

0
∨

∨

∨

V

continuous
endomorphisms ?

vSet = [Vop, Set]= presheaves on V

Concrete presheaf on V
▶ a set X(?)

▶ a set of functions X(V) ⊆ [V→ X(?)]

x ∈ X(V) is a completed chain of elements in X(?).
Map X → Y = function X(?)→ Y (?) that preserves
chains.

ωcpo is a full subcategory of vSet:
D 7→

(
|D|, ωcpo(V, D)

)
21/26

Lifting in vSet

V = vertical naturals as a
two-object category
vSet = presheaves on V

Theorem:
A class of pre-admissible monosM in C induces a
lifting monad L on the sheaf category Sh(C, J).

V has a class of pre-admissible monos:

MV = {(λx.x+ n) ∈ V(V,V) | n ∈ N} ∪ {id⋆ : ?→ ?}

which induces a lifting monad L on vSet, where for a concrete presheaf X :

(LX)(?) = X(?)] {⊥} (LX)(V) = {⊥}]
∐
n∈N

(X(V))n

(X(V))n ≈ chains from X(V) with n ⊥’s added at the beginning.

22/26

Modelling PCFv in vSet

Fixed point theorem in vSet

We can construct a fixed point of a map
(A⇒ LB)→ (A⇒ LB) if LB is “complete”.

ω ×X LB

yV ×X

h

see also [Fiore & Plotkin’97]

ω = greatest subobject of yV without∞

Theorem
vSet is an adequate model of PCFv where types are
concrete presheaves.

V = two-object category

∞
...

2

1

0
∨

∨

∨

V

continuous
endos ?

vSet = [Vop,Set]

The interpretation of PCFv commutes with the inclusion ωcpo ↪→ vSet. 23/26

Outline

1 Introduction

2 Higher-order computation: categories of concrete sheaves

3 Modelling partiality

4 Modelling recursion

5 Putting it all together

24/26

Modelling PCFv in a category of concrete sheaves

Main Theorem [Matache, Moss, Staton, in preparation]

Given a concrete site with a class of admissible monos (C, J,M),
“combine” it with the site for vSet, (V, JV,MV).
The category of concrete sheaves on the combined concrete site
(C+ V, J ∪ JV,M∪MV) is an adequate model of PCFv.

Example: we recover the ωQbs model

ωQbs ConcSh(Sbs+ V, J ∪ JV)

L

F

L
LM∪MV

J−K J−K

Concrete site for Qbs:
Sbs: objects U are Borel subsets of R,
morphisms are measurable functions.
J(U) = countable sets of inclusions
{Ui ↪→ U}i∈I where U =

⋃
i∈I Ui and

the Ui’s are disjoint.
M = all monos.

25/26

Summary

Main Theorem [Matache, Moss, Staton, in preparation]

Given a concrete site with a class of admissible monos (C, J,M),
“combine” it with the site for vSet, (V, JV,MV).
The category of concrete sheaves on the combined concrete site
(C+ V, J ∪ JV,M∪MV) is an adequate model of PCFv.

Model higher-order recursion for:
(1) Probabilistic programming
(2) Automatic differentiation
(3) Piecewise differentiation
(4) Full abstraction



Using:
• sheaves on a concrete site
• class of admissible monos in the site
• presheaves on the vertical naturals

26/26

	Introduction
	Higher-order computation: categories of concrete sheaves
	Modelling partiality
	Modelling recursion
	Putting it all together

