A unified treatment of concrete sheaf models for higher-order recursion

Cristina Matache (joint work with Sean Moss and Sam Staton)

University of Oxford

Modelling higher-order programs with recursion

Model

- ► Cartesian closed category (CCC)
- \blacktriangleright Partiality monad, L
- ► Interpretation: Type ↔ Object Program ↔ Partial morphism

Examples:

(1) Probabilistic programming: partial maps that are measurable

[Heunen et al.'17, Vákár et al.'19]

(2) Automatic differentiation: partial maps that are smooth

[Huot et al.'20, Vákár'20]

- (3) Piecewise differentiable programs [Lew et al.'21]
- (4) **Full abstraction** for a sequential language: definable partial maps [O'Hearn & Riecke'95], [Matache, Moss, Staton, FSCD'21] 2/26

Goal of this talk

Main Theorem [Matache, Moss, Staton, in preparation] The examples

- (1) Probabilistic programming
- (2) Automatic differentiation
- (3) Piecewise differentiation
- (4) Full abstraction

all model higher-order recursion using the same recipe

- ► using concrete sheaves
- using ideas from synthetic domain theory for recursion

In each case more domain specific work needs to be done.

Examples of concrete sheaves: subsequential spaces [Johnstone'79], *C*-spaces [Escardó & Xu'16] Examples of concrete presheaves: [Rosolini & Streicher'99], finiteness spaces [Ehrhard'07]

Goal of this talk (continued)

Main Theorem [Matache, Moss, Staton, in preparation] The examples

- (1) Probabilistic programming
- (2) Automatic differentiation
- (3) Piecewise differentiation
- (4) Full abstraction

all model higher-order recursion using the same recipe

- ► using concrete sheaves
- using ideas from synthetic domain theory for recursion

Corollary: conservativity result for (1), (2), (3)

E.g.(2): Programs real \rightarrow real are still interpreted as smooth maps even if they use higher-order recursion.

PCF_v: A call-by-value language

Call-by-value λ -calculus with:

- ► base types e.g. nat, real
- ► function types
- ▶ product and sum types
- ► recursive functions.

Model

- ► Cartesian closed category (CCC)
- ▶ Partiality monad, *L*
- ► Interpretation:
 Type ↔ Object
 Program ↔ Partial morphism

An interpretation looks like:

$$\llbracket \mathsf{nat} \rrbracket = 1 + 1 + \dots \qquad \llbracket \tau_1 + \tau_2 \rrbracket = \llbracket \tau_1 \rrbracket + \llbracket \tau_2 \rrbracket \qquad \llbracket \tau_1 \times \tau_2 \rrbracket = \llbracket \tau_1 \rrbracket \times \llbracket \tau_2 \rrbracket$$
$$\llbracket \tau \to \tau' \rrbracket = \llbracket \tau \rrbracket \Rightarrow L\llbracket \tau' \rrbracket \qquad \llbracket \Gamma \vdash t : \tau \rrbracket : \llbracket \Gamma \rrbracket \to L\llbracket \tau \rrbracket$$

1 Introduction

2 Higher-order computation: categories of concrete sheaves

3 Modelling partiality

- 4 Modelling recursion
- 5 Putting it all together

Example: first-order probabilistic computation can be modelled in Sbs. Sbs is NOT cartesian closed.

The category of presheaves on Sbs is cartesian closed.

Yoneda embedding

 $y: \mathsf{Sbs} \hookrightarrow \mathsf{PSh}(\mathsf{Sbs})$

Full, faithful, preserves limits. Does not preserve colimits.

Restricting to sheaves on a site (Sbs, J) preserves some colimits from Sbs.

Concrete sheaves = sets with structure + structure-preserving functions.

 $\mathsf{ConcSh}(\mathsf{Sbs}, J) \hookrightarrow \mathsf{Sh}(\mathsf{Sbs}, J) \hookrightarrow \mathsf{PSh}(\mathsf{Sbs})$

Well-pointed categories and concrete sites

A category $\mathbb C$ is well-pointed if

- it has a terminal object \star
- $\mathbb{C}(\star, -) : \mathbb{C} \to \mathsf{Set} \text{ is faithful}$

i.e. maps $h:d\rightarrow c$ are distinguished functions $|h|:|d|\rightarrow |c|$

where $|c| = \mathbb{C}(\star, c)$. So \mathbb{C} is a category of sets and certain functions.

Concrete site (\mathbb{C}, J)

- $\bullet\,$ A small well-pointed category $\mathbb C$
- For every c ∈ C a set J(c) of covering families {f_i : c_i → c}_{i∈I} of c s.t.
 (C) pullback stability

(*) If $\{f_i : c_i \to c\}_{i \in I}$ covers c, then $\bigcup_{i \in I} \operatorname{Im}(|f_i|) = |c|$

Concrete sheaf on a concrete site (\mathbb{C}, J)

[Concrete quasitopoi, Dubuc'77]

[Convenient categories of smooth spaces, Baez & Hoffnung'11]

Well-pointed category $\mathbb C$	Concrete site (\mathbb{C}, J)
 has a terminal * 	$ullet$ small well-pointed ${\mathbb C}$
• a map $h: d \to c$ is a function	• For every $c \in \mathbb{C}$ a set $J(c)$ of covering families
between sets $ d = \mathbb{C}(\star, d)$ etc.	$\{f_i:c_i ightarrow c\}_{i\in I}$ of c , with axioms (C) and \star .

A concrete sheaf $X : \mathbb{C}^{\mathrm{op}} \to \mathsf{Set}$ is:

- ▶ a set $X(\star)$
- $\blacktriangleright X(c) \subseteq [|c| \to X(\star)]$

 $X(h: d \rightarrow c)$ is precomposition by |h|.

Sheaf condition: for each function

 $g: |c| \to X(\star)$ and each covering family $\{f_i: c_i \to c\}_{i \in I} \in J(c)$, if each $g \circ |f_i| \in X(c_i)$, then $g: |c| \to X(\star) \in X(c)$.

A morphism $\alpha: X \to Y$ is a structure-preserving function $\alpha: X(\star) \to Y(\star)$.

A functor $X : \mathbb{C}^{\text{op}} \to \text{Set}$ is a concrete sheaf on a concrete site (\mathbb{C}, J) if $X(c) \subseteq [|c| \to X(\star)]$ and X satisfies the sheaf condition.

Quasi-Borel spaces is the category of concrete sheaves on:

- Sbs: objects U are Borel subsets of \mathbb{R} morphisms are measurable functions between these sets.
- $J(U) = \text{countable sets of measurable inclusions } \{U_i \hookrightarrow U\}_{i \in I}$ where $U = \bigcup_{i \in I} U_i$ and the U_i 's are disjoint.

 $X(\mathbb{R}) \subseteq [\mathbb{R} \to X(\star)]$ is the set of "random elements" of $X(\star)$.

Example: modelling probabilistic programming in ConcSh(Sbs, J)

A functor $X : \mathbb{C}^{\text{op}} \to \text{Set}$ is a concrete sheaf on a concrete site (\mathbb{C}, J) if $X(c) \subseteq [|c| \to X(\star)]$ and X satisfies the sheaf condition.

 $\mathsf{Sbs} = \mathsf{Borel} \mathsf{ subsets} \ U \subseteq \mathbb{R} + \mathsf{measurable} \mathsf{ functions}$

J(U) = sets of inclusions $\{U_i \hookrightarrow U\}_{i \in I}$ where $U = \bigcup_{i \in I} U_i$ and the U_i 's are disjoint.

In PSh(Sbs), take X concrete. In Sbs, take $\mathbb{R} = \bigcup_{i \in I} U_i$ and U_i 's disjoint:

Sheaf condition at \mathbb{R} : for each function $g : \mathbb{R} \to X(\star)$ and each covering family $\{f_i : U_i \to \mathbb{R}\}_{i \in I} \in J(c)$, if each $U_i \longrightarrow \mathbb{R} \xrightarrow{g} X(\star)$ $g \circ f_i \in X(U_i)$, then $g : \mathbb{R} \to X(\star) \in X(\mathbb{R})$. A functor $X : \mathbb{C}^{\text{op}} \to \text{Set}$ is a concrete sheaf on a concrete site (\mathbb{C}, J) if $X(c) \subseteq [|c| \to X(\star)]$ and X satisfies the sheaf condition.

Diffeological spaces is the category of concrete sheaves on:

- Site: objects are open subsets $U \subseteq \mathbb{R}^n$ for any n morphisms are smooth maps.
- $J(U) = \text{countable sets of open inclusions } \{U_i \hookrightarrow U\}_{i \in I}$ where $U = \bigcup_{i \in I} U_i$.

 $X(U) \subseteq [U \to X(\star)]$ is the set of "plots" of $X(\star)$.

1 Introduction

2 Higher-order computation: categories of concrete sheaves

3 Modelling partiality

- 4 Modelling recursion
- 5 Putting it all together

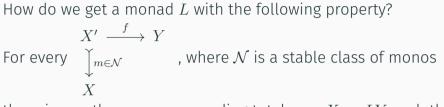
In any category, a **partial map** $X \rightarrow Y$ is a pair (m, f):

$\begin{array}{ccc} X' & \stackrel{f}{\longrightarrow} & Y \\ & & & \downarrow \\ & & & \\ X \end{array}$

where $\ensuremath{\mathcal{N}}$ is stable class of monos:

- contains all isomorphisms
- closed under composition
- stable under pullback (with arbitrary maps)
 - (1) Quasi-Borel spaces: partial maps that are measurable, with Borel domain
 - (2) Diffeological spaces: partial maps that are smooth, with open domain

From partial maps to a lifting monad



there is exactly one corresponding total map $X \to LY$ such that $\begin{array}{ccc} X' & \stackrel{f}{\longrightarrow} & Y \\ & & \downarrow^{m \in \mathcal{N}} & \downarrow^{n_{Y}} \\ & & \chi & \stackrel{}{\longrightarrow} & LY \end{array}$

and conversely.

L might not exist in general.

From partial maps to a lifting monad (continued)

```
In a sheaf category \mathsf{Sh}(\mathbb{C}, J):
```

Theorem

 \mathcal{N} has an associated lifting monad L if the class of monos \mathcal{N} "comes from" a **class of pre-admissible monos** \mathcal{M} **in** \mathbb{C} .

 ${\mathcal M}$ is a class of pre-admissible monos in ${\mathbb C}$ if:

- stable class
- $\Delta_{\mathcal{M}} : \mathbb{C}^{\mathrm{op}} \to \mathsf{Set} \text{ is a } J\text{-sheaf, where:}$ $\Delta_{\mathcal{M}}(c) = \mathsf{iso. classes of } c' \to c \in \mathcal{M}$ $\Delta_{\mathcal{M}}(f : d \to c) = \mathsf{pullback along } f$

 ${\cal N}$ stable class of monos:

- contains all isomorphisms
- closed under composition
- stable under pullback

Lifting monad:

for every $(m, f) : X \rightarrow Y$ with $m \in \mathcal{N}$, there is exactly one total map $X \rightarrow LY$.

$$\begin{array}{ccc} d' & \stackrel{\in \mathcal{M}}{\rightarrowtail} & d \\ \downarrow & \dashv & \downarrow_f \\ c' & \stackrel{\in \mathcal{M}}{\rightarrowtail} & c \end{array}$$

From partial maps to a lifting monad (continued)

In a sheaf category $\mathsf{Sh}(\mathbb{C}, J)$:

Theorem

 \mathcal{N} has an associated lifting monad L if the class of monos \mathcal{N} "comes from" a class of pre-admissible monos \mathcal{M} in \mathbb{C} .

$$\begin{split} \mathcal{N} \text{ "comes from" } \mathcal{M} \text{ if } \\ \mathcal{N} = \text{all pullbacks of } \top : 1 \to \Delta_{\mathcal{M}}, \\ \text{where } \top_c = [\text{id}_c] \\ & X' \xrightarrow{!} 1 \\ & \underset{\in \mathcal{N}}{\stackrel{}{\upharpoonright}} \stackrel{}{\sqcup} \stackrel{}{\stackrel{}{\longrightarrow}} 1 \\ & \overset{}{\underset{\top}{\top}} \end{split}$$

 N stable class of monos: contains all isomorphisms closed under composition stable under pullback 				
Lifting monad: for every $(m, f) : X \rightarrow Y$ with $m \in \mathcal{N}$, there is exactly one total map $X \rightarrow LY$.				
$ \begin{array}{l} \mathcal{M} \text{ stable class} \\ \Delta_{\mathcal{M}} : \mathbb{C}^{\mathrm{op}} \to Set a J\text{-sheaf} \\ \Delta_{\mathcal{M}}(c) = iso. classes of c' \rightarrowtail c \in \mathcal{M} \\ \Delta_{\mathcal{M}}(f : d \to c) = pullback along f \end{array} $				
ee e g [Rosolini'86] for dominance [Mulry'94]				

see e.g [Rosolini'86] for dominance, [Mulry'94], [Fiore&Plotkin'97] for constructing a lifting monad 17/26

Examples: classes of pre-admissible monos

Quasi-Borel spaces:

Site: objects U are Borel subsets of \mathbb{R} , morphisms are measurable functions.

 $\mathcal{M} =$ for every U, the measurable monos with codomain U

Diffeological spaces:

Site: objects are open subsets $U \subseteq \mathbb{R}^n$ for any n, morphisms are smooth maps.

 $\mathcal{M} = \mathrm{for} \; \mathrm{every} \; U$, the open inclusion maps into U

For a concrete sheaf X, the lifting monad:

$$LX(\star) = X(\star) \uplus \{\bot\}$$
$$LX(U) = \{g : U \to X(\star) \uplus \{\bot\} \mid \exists U' \mapsto U \in \mathcal{M} \text{ s.t. } \mathsf{dom}(g) = U'$$
$$\mathsf{and} \ g|_{U'} \in X(U')\}$$

In general, having the lifting monad is not enough to model recursion.

1 Introduction

2 Higher-order computation: categories of concrete sheaves

3 Modelling partiality

- 4 Modelling recursion
- 5 Putting it all together

Types = partially ordered sets with least upper bounds of ω -chains

Terms = continuous functions

To model recursive functions:

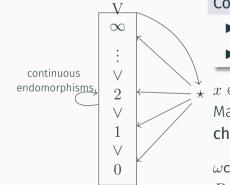
- a lifting monad on ωcpo
- Tarski's fixed point theorem

We want to recover this model as presheaves with a class of admissible monos in the site.

vSet: A concrete presheaf model of PCF_v

 $V = \{0 < 1 < 2 < \ldots < \infty\} = \text{poset of vertical nat. numbers}$ See the category \mathcal{H} from [Fiore & Rosolini'97, '01].

 $\mathbb{V} = \mathsf{two-object\ category}$ $\mathbf{vSet} = [\mathbb{V}^{\mathrm{op}}, \mathbf{Set}] = \mathsf{presheaves\ on\ } \mathbb{V}$



Concrete presheaf on $\ensuremath{\mathbb{V}}$

• a set
$$X(\star)$$

• a set of functions
$$X(V) \subseteq [V \to X(\star)]$$

 $x \in X(V)$ is a **completed chain** of elements in $X(\star)$. Map $X \to Y =$ function $X(\star) \to Y(\star)$ that **preserves** chains.

 ω cpo is a full subcategory of vSet: $D \mapsto (|D|, \omega$ cpo(V, D))

Lifting in vSet

\mathbb{V}	=	vertical	naturals	as	a	
two-object category						
$vSet = presheaves \text{ on } \mathbb{V}$						

Theorem:

A class of pre-admissible monos \mathcal{M} in \mathbb{C} induces a lifting monad L on the sheaf category $\mathsf{Sh}(\mathbb{C}, J)$.

𝔍 has a class of pre-admissible monos:

$$\mathcal{M}_{\mathbb{V}} = \{ (\lambda x. x + n) \in \mathbb{V}(\mathbb{V}, \mathbb{V}) \mid n \in \mathbb{N} \} \cup \{ \mathrm{id}_{\star} : \star \to \star \}$$

which induces a **lifting monad** *L* on vSet, where for a concrete presheaf *X*:

$$(LX)(\star) = X(\star) \uplus \{\bot\} \qquad (LX)(\mathbf{V}) = \{\bot\} \uplus \prod_{n \in \mathbb{N}} (X(\mathbf{V}))_n$$

 $(X(V))_n \approx$ chains from X(V) with $n \perp$'s added at the beginning.

Modelling PCF_v in vSet

Fixed point theorem in vSet

We can construct a fixed point of a map $(A \Rightarrow LB) \rightarrow (A \Rightarrow LB)$ if LB is "complete".

$$\begin{array}{c} \omega \times X \xrightarrow{h} LB \\ \downarrow \\ vV \times X \end{array}$$

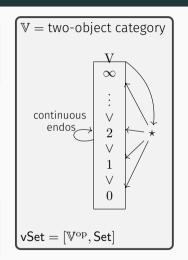
 $\omega =$ greatest subobject of yV without ∞

Theorem

vSet is an adequate model of PCF_v where types are concrete presheaves.

The interpretation of PCF_v commutes with the inclusion ω cpo \hookrightarrow vSet. 23/26

see also [Fiore & Plotkin'97]

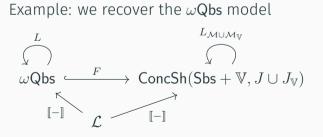


1 Introduction

- 2 Higher-order computation: categories of concrete sheaves
- 3 Modelling partiality
- 4 Modelling recursion
- 5 Putting it all together

Modelling PCF_v in a category of concrete sheaves

Main Theorem [Matache, Moss, Staton, in preparation] Given a concrete site with a class of admissible monos $(\mathbb{C}, J, \mathcal{M})$, "combine" it with the site for vSet, $(\mathbb{V}, J_{\mathbb{V}}, \mathcal{M}_{\mathbb{V}})$. The category of concrete sheaves on the combined concrete site $(\mathbb{C} + \mathbb{V}, J \cup J_{\mathbb{V}}, \mathcal{M} \cup \mathcal{M}_{\mathbb{V}})$ is an adequate model of PCF_v.



Concrete site for Qbs:

Sbs: objects U are Borel subsets of \mathbb{R} , morphisms are measurable functions. J(U) = countable sets of inclusions $\{U_i \hookrightarrow U\}_{i \in I}$ where $U = \bigcup_{i \in I} U_i$ and the U_i 's are disjoint. $\mathcal{M} = \text{all monos.}$

Summary

Main Theorem [Matache, Moss, Staton, in preparation] Given a concrete site with a class of admissible monos $(\mathbb{C}, J, \mathcal{M})$, "combine" it with the site for vSet, $(\mathbb{V}, J_{\mathbb{V}}, \mathcal{M}_{\mathbb{V}})$. The category of concrete sheaves on the combined concrete site $(\mathbb{C} + \mathbb{V}, J \cup J_{\mathbb{V}}, \mathcal{M} \cup \mathcal{M}_{\mathbb{V}})$ is an adequate model of PCF_v.

Model higher-order recursion for:

- (1) Probabilistic programming
- (2) Automatic differentiation
- (3) Piecewise differentiation
- (4) Full abstraction

Using:

- sheaves on a concrete site
- class of admissible monos in the site
- presheaves on the vertical naturals