

An Equational Axiomatization of Dynamic Threads via Algebraic Effects

Ohad Kammar[†], Jack Liell-Cock[‡], Sam Lindley[†], Cristina Matache[†], and Sam Staton[‡]
POPL, 16 January 2026

[†]University of Edinburgh

[‡]University of Oxford

In this work:

Goal

Denotational semantics for **concurrency** where new threads can be created dynamically. E.g. POSIX-like **fork**.

Main ideas

IDs of pools of threads are abstract names.
fork is an algebraic effect.

Contribution

True concurrency semantics with **complete equational reasoning** applied to a core functional programming language.

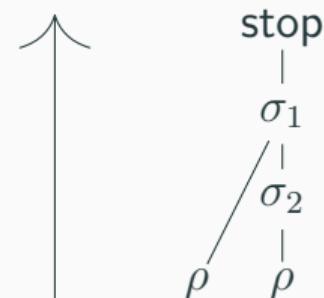
Our semantics uses: strong monads [Moggi'91], algebraic theories [Plotkin&Power].

The denotational semantics at a glance

Concurrent programs denote **partial orders with labels** (pomsets).

Example:

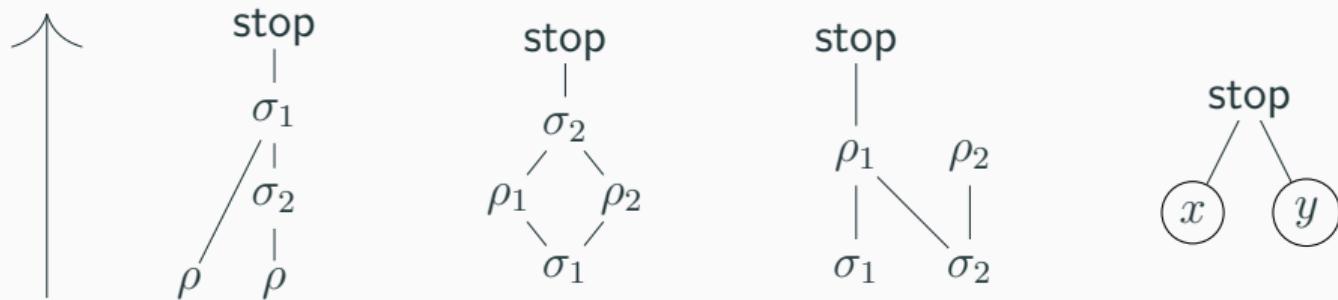
```
let  $y = \text{fork}()$  in case  $(\text{act}_\rho(); y)$ 
    of {  $\text{inj}_1(a) \Rightarrow \text{wait}(a); \text{act}_{\sigma_1}(); \text{stop}()$ 
         $\text{inj}_2() \Rightarrow \text{act}_{\sigma_2}(); \text{stop}()$  }
```



- ▶ **Labels** denote observable actions.
- ▶ **Partial order** denotes observable dependencies.

The denotational semantics at a glance

Concurrent programs denote **partial orders with labels** (pomsets).



Pomsets are a long-established model of true concurrency
e.g. [Nielsen et al'81], [Pratt'86].

Main Theorem

A complete equational axiomatization for our pomset semantics via algebraic effects.

Related work

- ▶ process algebra;
- ▶ concurrent Kleene algebra [Hoare et al'11];
- ▶ algebraic effects for concurrency [Stark'08], [van Glabbeek&Plotkin'10], [Abadi&Plotkin'10], [Dvir et al'22, '25];
- ▶ separation logic for effect handlers [de Vilhena et al'21, POPL'26];
- ▶ ...

Key contribution: true concurrency semantics for a core functional programming language, obtained via an **equational axiomatization**.

Outline

- 1 Dynamic threads and their operational semantics
- 2 An algebraic theory of dynamic threads
- 3 Pomset semantics and completeness theorem

Effects we model

fork : unit \rightarrow **tid** + unit

wait : **tid** \rightarrow unit

stop : unit \rightarrow empty

act $_{\sigma}$: unit \rightarrow unit

tid base type of IDs of thread pools; only introduced by fork

fork() spawns new child thread, copying the parent's continuation;
can check whether parent or child by looking at result of fork

wait(**a**) the current thread waits for all threads in **a** to finish

stop() end current thread, unblocks all threads waiting for it

act $_{\sigma}()$ performs observable action σ immediately

Effects we model

fork : unit \rightarrow **tid** + unit

wait : **tid** \rightarrow unit

stop : unit \rightarrow empty

act $_{\sigma}$: unit \rightarrow unit

- ▶ An idealized version of POSIX-like **fork** and **wait**.
- ▶ Use a fine-grain call-by-value lambda calculus with these effectful operations.
- ▶ Operational semantics based on pools of threads.

Example programs

The observable behaviour of programs is captured by partial orders labelled by observable actions.

```
let  $y = \text{fork}()$  in case  $y$  of { $\text{inj}_1(a) \Rightarrow \text{act}_{\sigma_1}(); \text{stop}()$   
 $\text{inj}_2() \Rightarrow \text{act}_{\sigma_2}(); \text{stop}()$ }
```

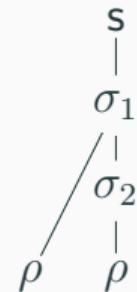


```
let  $y = \text{fork}()$  in case  $y$  of { $\text{inj}_1(a) \Rightarrow \text{wait}(a); \text{act}_{\sigma_1}(); \text{stop}()$   
 $\text{inj}_2() \Rightarrow \text{act}_{\sigma_2}(); \text{stop}()$ }
```


Example programs

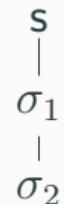
let $y = \text{fork}()$ in case $(\text{act}_\rho(); y)$

of { $\text{inj}_1(a) \Rightarrow (\text{wait}(a); \text{act}_{\sigma_1}(); \text{stop}())$
 $\text{inj}_2() \Rightarrow (\text{act}_{\sigma_2}(); \text{stop}())$ }



let $y = \text{fork}()$ in case y

of { $\text{inj}_1(a) \Rightarrow (\text{wait}(a); \text{act}_{\sigma_1}(); \text{stop}())$
 $\text{inj}_2() \Rightarrow (\text{act}_{\sigma_2}(); \text{stop}(); \text{act}_\rho())$ }



We will axiomatize fork , wait , stop , act_σ with 9 equations.

Outline

- 1 Dynamic threads and their operational semantics
- 2 An algebraic theory of dynamic threads
- 3 Pomset semantics and completeness theorem

Algebraic operations vs generic effects

tid = type of IDs of thread pools, has a semilattice structure. Examples:

- ▶ $a \oplus b : \text{tid}$ is the ID of the union of the thread pools a and b
- ▶ $0 : \text{tid}$ is the empty thread pool.

Given a **generic effect** $\underline{\text{op}} : A \rightarrow B$,

the **algebraic operation** op takes a value of type A and B continuations.

Example:

$$\underline{\text{fork}} : \text{unit} \rightarrow \text{tid} + \text{unit} \quad \text{vs} \quad \text{fork}(\underline{a}.x(\underline{a}), y)$$

fork binds a new ID \underline{a} , bound in x . \underline{a} refers to the singleton pool y .

\underline{a} is a **parameter** in a parameterized algebraic theory [Staton'13].

Algebraic operations vs generic effects

tid = type of IDs of thread pools, has a semilattice structure.

fork($a.x(a)$, y) fork : unit \rightarrow **tid** + unit

fork binds a new ID a , bound in x . a refers to the singleton pool y .

wait(u ; x) wait : **tid** \rightarrow unit

u is the ID of a thread pool; wait on all threads in u , continue as x

stop stop : unit \rightarrow empty

has no continuation

act $_{\sigma}(x)$ act $_{\sigma}$: unit \rightarrow unit

performs action σ and continues as x

Rewriting the example programs using algebraic operations

let $y = \text{fork}()$ in case y of { $\text{inj}_1(a) \Rightarrow \text{wait}(a); \text{act}_{\sigma_1}(); \text{stop}()$

$\text{inj}_2() \Rightarrow \text{act}_{\sigma_2}(); \text{stop}()$ }

s
|
 σ_1
|
 σ_2

$\text{fork}(a.\text{wait}(a; \text{act}_{\sigma_1}(\text{stop})), \text{act}_{\sigma_2}(\text{stop}))$

let $y = \text{fork}()$ in case $(\text{act}_{\rho}(); y)$

of { $\text{inj}_1(a) \Rightarrow \text{wait}(a); \text{act}_{\sigma_1}(); \text{stop}()$

$\text{inj}_2() \Rightarrow \text{act}_{\sigma_2}(); \text{stop}()$ }

s
|
 σ_1
/ |
 σ_2
/ |
 ρ ρ

$\text{fork}(a.\text{act}_{\rho}(\text{wait}(a; \text{act}_{\sigma_1}(\text{stop}))), \text{act}_{\rho}(\text{act}_{\sigma_2}(\text{stop})))$

An algebraic theory of dynamic threads

Interaction of **wait** with the semilattice structure of thread IDs.

$$\text{wait}(0; x) = x \quad (1)$$

$$\text{wait}(a; \text{wait}(b; x)) = \text{wait}(a \oplus b; x) \quad (2)$$

$$\text{wait}(a; x(b)) = \text{wait}(a; x(a \oplus b)) \quad (3)$$

The term **wait**(*a*; **stop**) acts as a unit for **fork**.

$$\text{fork}(a.\text{wait}(a; \text{stop}), x) = x \quad (4)$$

$$\text{fork}(b.x(b), \text{wait}(a; \text{stop})) = x(a) \quad (5)$$

Operations **wait** and **fork** commute; **fork** is commutative and associative.

$$\text{wait}(b; \text{fork}(a.x(a), y)) = \text{fork}(a.\text{wait}(b; x(a)), \text{wait}(b; y)) \quad (6)$$

$$\text{fork}(a.\text{fork}(b.x(a, b), y), z) = \text{fork}(b.\text{fork}(a.x(a, b), z), y) \quad (7)$$

$$\text{fork}(a.x(a), \text{fork}(b.y(b), z)) = \text{fork}(b.\text{fork}(a.x(a), y(b)), z) \quad (8)$$

$$\text{act}_\sigma(x) = \text{fork}(a.\text{wait}(a, x), \text{act}_\sigma(\text{stop})) \quad (9)$$

Outline

- 1 Dynamic threads and their operational semantics
- 2 An algebraic theory of dynamic threads
- 3 Pomset semantics and completeness theorem

Main result: a representation theorem for the theory of threads

Completeness Theorem

Terms in the algebraic theory of dynamic threads correspond exactly to “labelled partial orders (pomsets) with holes”.

The equations of the algebraic theory are **sound and complete** w.r.t. equality of pomsets with holes.

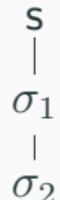
This theorem lets us reason **graphically** about the algebraic theory.

Later, we relate with the operational semantics based on pools of threads.

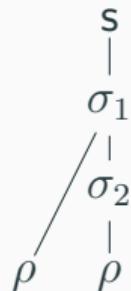
Labelled partial orders (pomsets)

So far we only represented closed terms:

$\text{fork}(\text{a.wait(a; act}_{\sigma_1}(\text{stop})), \text{ act}_{\sigma_2}(\text{stop}))$



$\text{fork}(\text{a.act}_{\rho}(\text{wait(a; act}_{\sigma_1}(\text{stop}))), \text{ act}_{\rho}(\text{act}_{\sigma_2}(\text{stop})))$

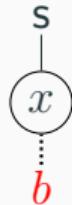
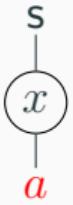
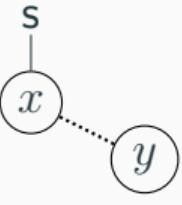


What about terms with free variables (i.e. continuations) and free **tid**'s?

E.g. $\text{a} \vdash \text{fork}(\text{b.wait(a; x(b)), act}_{\rho}(\text{stop}))$

Labelled partial orders (pomsets) with holes

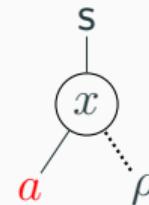
The holes and dotted lines are extra structure on a pomset:

stop	$x(b)$	$\text{wait}(a; x)$	$\text{act}_\sigma(x)$	$\text{fork}(a.x(a), y)$
s				

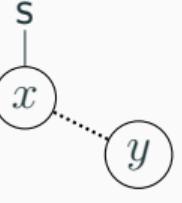
Define substitution of another pomset for all holes labelled x (monadic bind). The dotted lines become important.

Example denotation:

$a \vdash \text{fork}(b.\text{wait}(a; x(b)), \text{act}_\rho(\text{stop}))$



Reasoning graphically about the equations in the algebraic theory

stop	x	$\text{wait}(a; x)$	$\text{act}_\sigma(x)$	$\text{fork}(a.x(a), y)$
s				

$$\text{fork}(a.x(a), \text{fork}(b.y(b), z)) = \text{fork}(b.\text{fork}(a.x(a), y(b)), z) \quad (8)$$

$$\text{fork} \left(\begin{array}{c} s \\ \text{circle } x \\ \vdots \\ a \end{array} \right), \text{fork} \left(\begin{array}{c} s \\ \text{circle } y \\ \vdots \\ b \end{array} \right) = \begin{array}{c} s \\ \text{circle } x \\ \vdots \\ \text{circle } y \\ \vdots \\ z \end{array} = \text{fork} \left(\text{fork} \left(\begin{array}{c} s \\ \text{circle } x \\ \vdots \\ a \end{array} \right), \begin{array}{c} s \\ \text{circle } y \\ \vdots \\ b \end{array} \right), \begin{array}{c} s \\ \text{circle } z \end{array}$$

Further results: adequacy and full abstraction at first order

We already saw **completeness**: equality in the algebraic theory agrees with equality of pomsets with holes.

Therefore, pomsets with holes form a **monad** which we use to give a **denotational semantics** to a core language with fork, wait, stop, act $_{\sigma}$.

The denotational semantics matches the operational semantics:

Theorem

Denotational equality implies contextual equivalence.

The converse is true for programs of first-order type.

Summary and future work

Denotational semantics for concurrent programs that can fork new threads and wait for them. Thread IDs are key.

Main theorems:

- ▶ **complete equational axiomatization** of the “pomsets with holes” semantics for a core functional programming language;
- ▶ adequacy, full abstraction at first order w.r.t. operational semantics.

Future work:

- ▶ Passing values from child to parent: stop : $A \rightarrow \text{empty}$, wait : $\text{tid} \rightarrow A$.
- ▶ Combine with shared state.
- ▶ Explore alternative semantics for fork and wait.