An Equational Axiomatization of Dynamic Threads
via Algebraic Effects

Ohad KammarT, Jack Liell-Cock?, Sam Lindleyf, Cristina Matachef, and Sam Staton?
POPL, 16 January 2026

tUniversity of Edinburgh

fUniversity of Oxford

1/22

In this work:

Goal |
Denotational semantics for concurrency where new threads can be
created dynamically. E.g. POSIX-like fork.

Main ideas
IDs of pools of threads are abstract names.
fork is an algebraic effect.

Contribution |
True concurrency semantics with complete equational reasoning applied
to a core functional programming language.

Our semantics uses: strong monads [moggi91], algebraic theories [plotkingprowerl. .

The denotational semantics at a glance

Concurrent programs denote partial orders with labels (pomsets).

Example:

stop

lety = fork() in case (act,(); y) 0‘1
of { inj,(a) = wait(a); act, (); stop() /02

inj,() = act, (); stop()} 4

» Labels denote observable actions.
» Partial order denotes observable dependencies.

3/22

The denotational semantics at a glance

Concurrent programs denote partial orders with labels (pomsets).

st?p stop stop
o & stop
\ / N\ P1 P2 (g @
o) P1 P2
| N/ | \ |
p P 01 01 02

Pomsets are a long-established model of true concurrency
eg. [Nielsen et al'81], [Pratt'86].

Main Theorem
A complete equational axiomatization for our pomset semantics via

algebraic effects.
422

Related work

v

>
>

process algebra;
concurrent Kleene algebra [Hoare et al11];
algebraic effects for concurrency [starkos], [van Glabbeek&Plotkin'10],

[Abadi&Plotkin'10], [Dvir et al'22, '25];

separation logic for effect handlers [de vilhena et al'21, POPL'26];

Key contribution: true concurrency semantics for a core functional
programming language, obtained via an equational axiomatization.

5/22

Dynamic threads and their operational semantics

6/22

Effects we model

fork : unit — tid + unit wait : tid — unit stop : unit — empty
act, : unit — unit

tid base type of IDs of thread pools; only introduced by fork

fork() spawns new child thread, copying the parent’'s continuation;
can check whether parent or child by looking at result of fork

wait(a) the current thread waits for all threads in a to finish
stop() end current thread, unblocks all threads waiting for it
)

performs observable action ¢ immediately
7/22

Effects we model

fork : unit — tid + unit wait : tid — unit stop : unit — empty

act, : unit — unit

» An idealized version of POSIX-like fork and wait.

» Use a fine-grain call-by-value lambda calculus with these effectful
operations.

» Operational semantics based on pools of threads.

8/22

Example programs

The observable behaviour of programs is captured by partial orders
labelled by observable actions.

lety = fork() in case y of {inj, () = act., (); stop()

inj5() = act,, (); stop() } o1 02
let y = fork() in case y of {inj; (a) = wait(a); act,, (); stop() i
injy() = act,, (); stop()} A

9/22

Example programs

let y = fork() in case (act,(); y) gsl
of { inj;(a) = wait(a); act,, (); stop() /0—2
injy() = act,, (); stop()} Jop
lety = fork() in casey T
of { inj;(a) = wait(a); act,, (); stop() ::

inj,() = act,, (); stop(); act,() }

We will axiomatize fork, wait, stop, act, with 9 equations.

10/22

An algebraic theory of dynamic threads

1/22

Algebraic operations vs generic effects

tid = type of IDs of thread pools, has a semilattice structure. Examples:

» a®b:tid is the ID of the union of the thread pools a and b
» 0:tid is the empty thread pool.

Given a generic effectop : A — B,
the algebraic operation op takes a value of type A and B continuations.

Example:
fork : unit — tid + unit VS fork(a.z(a), y)

fork binds a new ID a, bound in z. a refers to the singleton pool y.

a IS a parameter in a parameterized algebraic theory [staton'13].
12/22

Algebraic operations vs generic effects

tid = type of IDs of thread pools, has a semilattice structure.
fork(a.xz(a), y) fork : unit — tid + unit
fork binds a new ID a, bound in x. a refers to the singleton pool y.

wait(u; x) wait : tid — unit
u is the ID of a thread pool; wait on all threads in «, continue as x

stop stop : unit — empty
has no continuation

act, () act, : unit — unit
performs action ¢ and continues as x

13/22

Rewriting the example programs using algebraic operations

let y = fork() in case y of {inj; (a) = wait(a); act,, (); stop() ;
inja() = act,, (); stop()} o
02
fork (a.wait(a; act,, (stop)), actg,(stop))
lety = fork() in case (act,(); y) S

a) = wait(a); act,, (); stop()

) = acts, (); stop()}

of { inj;

~—~

inj

fork (a.act,(wait(a; act,, (stop))), act,(act,, (stop)))

14/22

An algebraic theory of dynamic threads

Interaction of wait with the semilat- The term wait(a; stop) acts as a unit
tice structure of thread IDs. for fork.
wait(0;) = z (1) fork(a.wait(a;stop),z) = (4)
wait(a; wait(b; 7)) = wait(a @ b;z) (2) fork(b.z(b), wait(a;stop)) = x(a) (5)
wait(a; 2(b)) = wait(a; z(a ® b)) (3)

Operations wait and fork commute; fork is commutative and associative.

wait(b; fork(a.xz(a), y)) = fork(a.wait(b; x(a)), wait(b; y)) (6)
fork(a.fork(b.z(a,b), y), z) = fork(b.fork(a.x(a,b), 2), y) (7)
fork(a.z(a), fork(b.y(b), z)) = fork(b.fork(a.z(a), y(b)), 2) (8)
act,(x) = fork(a.wait(a,), act,(stop)) (9)

15/22

Pomset semantics and completeness theorem

16/22

Main result: a representation theorem for the theory of threads

Completeness Theorem |
Terms in the algebraic theory of dynamic threads correspond exactly to
“labelled partial orders (pomsets) with holes”.

The equations of the algebraic theory are sound and complete
w.rt. equality of pomsets with holes.

This theorem lets us reason graphically about the algebraic theory.

Later, we relate with the operational semantics based on pools of threads.

17/22

Labelled partial orders (pomsets)

So far we only represented closed terms:

fork (a.wait(a; act,, (stop)), actg,(stop))

fork (a.act,(wait(a; act,, (stop))), act,(act,, (stop)))

What about terms with free variables (i.e. continuations)
and free tid's?
E.g. a t- fork(b.wait(a; (b)), act,(stop))

18/22

Labelled partial orders (pomsets) with holes

The holes and dotted lines are extra structure on a pomset:

stop x(b) wait(a; x) act,(x) fork(a.xz(a), y)
T .

Define substitution of another pomset for all holes labelled = (monadic
bind). The dotted lines become important.

Example denotation: /@
a F fork(b.wait(a; z(b)), act,(stop))

19/22

Reasoning graphically about the equations in the algebraic theory

stop x wait(a; x) act,(x) fork(a.xz(a), y)
N

fork(a.x(a), fork(b.y(b), z)) = fork(b.fork(a.z(a), y(b)), z) (8)

s s s
fork dx), fork @, @5 =
; b

20/22

Further results: adequacy and full abstraction at first order

We already saw completeness: equality in the algebraic theory agrees with
equality of pomsets with holes.

Therefore, pomsets with holes form a monad which we use to give a
denotational semantics to a core language with fork, wait, stop, act,.

The denotational semantics matches the operational semantics:

Theorem
Denotational equality implies contextual equivalence.
The converse is true for programs of first-order type.

21/22

Summary and future work

Denotational semantics for concurrent programs that can fork new threads
and wait for them. Thread IDs are key.

Main theorems:

» complete equational axiomatization of the “pomsets with holes”
semantics for a core functional programming language;
» adequacy, full abstraction at first order w.rt. operational semantics.

Future work:

» Passing values from child to parent: stop : A — empty, wait : tid — A.
» Combine with shared state.

» Explore alternative semantics for fork and wait.
22/22

	Dynamic threads and their operational semantics
	An algebraic theory of dynamic threads
	Pomset semantics and completeness theorem

