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Abstract— Recent innovations in RFID technology are enabling
large-scale cost-effective deployments in retail, healthcare, phar-
maceuticals and supply chain management. The advent of mobile
or handheld readers adds significant new challenges to RFID
stream processing due to the inherent reader mobility, increased
noise, and incomplete data. In this paper, we address the
problem of translating noisy, incomplete raw streams from mobile
RFID readers into clean, precise event streams with location
information. Specifically we propose a probabilistic model based
on Dynamic Bayesian Networks to capture the mobility of the
reader, object dynamics, and noisy readings. Our model can
self-calibrate by automatically estimating key parameters from
observed data. Based on this model, we employ a sampling-
based technique called particle filtering to infer clean, precise
information about object locations from raw streams from mobile
RFID readers. Since inference based on standard particle filtering
is neither scalable nor efficient in our settings, we propose
three enhancements—particle factorization, spatial indexing, and
belief compression—for scalable inference over large numbers of
objects and high-volume streams. Our experiments show that our
approach outperforms a state-of-the-art cleaning approach such
as SMURF by XXX% while also being scalable and efficient.

I. I NTRODUCTION

RFID deployments have become popular in domains such as
retail management [16], healthcare [16], pharmaceuticals [16],
and library management [12], [30]. RFID applications enable
unique identification of every tagged object and provide real-
time monitoring and tracking capabilities. While early RFID
deployments used fixed, wall-mounted readers, technology
advancements have added mobile, handheld readers to the mix,
significantly complicating the tasks of stream processing and
querying of RFID data. Recent research has adopted general
stream query processing to encode application information
needs as declarative queries and evaluate these queries over
real-time RFID streams [15], [30], [36], [34]. However, raw
RFID data, particularly from mobile readers, is unsuitable for
direct querying for two reasons:
• Data is incomplete and noisy. Despite technological
advances, RFID readings continue to be noisy. Observed
read rates in actual deployments are significantly below
100% [20], largely due to the intrinsic sensitivity of radio
frequencies (RFs) to environmental factors such as interfer-
ence from nearby metal objects [13] and contention among
tags [14]. Also, it is hard to estimate the data quality
in advance, because the read rate depends greatly on the
particular characteristics of the deployment. Mobile readers
can produce even more noisy data than static readers since
they produce readings from arbitrary handheld orientations.

• Observed data reveals data of interest only indirectly.
Raw RFID readings only contain tag identities and do not
contain additional high-level information such as object
locations or containments that are needed by tracking and
monitoring applications. require locations to be associated
with To infer locations, a reading only reveals that the object
was in the vicinity of a reader when it was sensed. If the
reader location is fixed and known, these readings provide
indirect coarse-grained location information for objects.
When mobile readers are used instead, their locations vary
over time and can be uncertain. Therefore, feeding readings
from such readers into a stream processor does not allow a
tracking and monitoring application to answer even simple
queries concerning object locations.
For these reasons, RFID data streams, particularly those

from mobile readers, are not “readily queriable”. We further
note that hardware technology advances are not expected
to address this problem for the foreseeable future. This is
because RFID technology is inherently designed for identifica-
tion rather than high-level information such as locationing or
containment. Even with multiple closely-spaced wall-mounted
readers, the precision of the acquired information is insuffi-
cient for tracking and monitoring tasks such as identifying
misplaced inventory in retail stores and computing density
of flammable objects in each square foot area [16], [36].
Instead, software solutions are needed to enable rich stream
query processing for tracking and monitoring and to ultimately
realize the promise of mobile RFID technology.

Therefore, in this paper, we address a fundamentaldata
cleaning and transformation problem for mobile RFID
data streams, which translates noisy, raw data streams from
mobile RFID readers into clean, precise queriable event
streams with location information. Informed by the demand of
subsequent stream query processing, our work aims to meet
three objectives: (i) high precision results of data cleaning
and transformation, which are able to simplify probabilistic
query processing as shown in [?], (ii) producing such results
at stream speed, (iii) scaling this process for large tracking
and monitoring environments.

Recent research on RFID data cleaning [15], [20] has
proposed building an abstraction of device data appropriate for
further query processing. This approach focuses on the simpler
problem of whether an object is in the (large) read range of
a static reader. These smoothing techniques, when applied to
mobile readers, provide information such as location only with
limited precision, as we shall show in the performance analysis
of this paper. The RFID data transformation component of [?]



generates low resolution location data, such as a person in a
particular office, which is inadequate for many tracking and
monitoring tasks as mentioned above. Moreover, both of these
studies consider at most one hundred RFID-tagged objects and
lack scalable solutions for large-scale environments such as
typical warehouses.

In this paper, we present a novel approach for efficient,
scalable cleaning and transformation of mobile RFID data
streams while offering high precision results. Our approach
is based on the view that applications want to query against
facts about the true state of the physical world, but these facts
are revealed only indirectly through a sensing process that,
even for the data that can be generated, is lossy and noisy.
The task of data cleaning and transformation is essentially
to recover the facts necessary for query processing while
mitigating the effects of data loss and sensing noise. Toward
this goal, we employ a principled probabilistic approach to (1)
model precisely how mobile RFID data is generated from those
facts about the physical worldand (2)infer likely estimates of
the facts as noisy, raw data streams arrive.

While probabilistic inference is a well-established research
area, applying it to clean and transform RFID data streams
while meeting the three aforementioned objectives, namely,
high precision, stream speed, and scalability, pose considerable
challenges. By way of addressing these challenges, we make
the following contributions:

Modeling the data generation process(§III). First, we
design a probabilistic model that captures the underlying data
generation process, including the key components such as
reader motion, object movement, and noisy sensing of these
objects by the reader. In particular, our model employs a flex-
ible parametric RFID sensor model that can be automatically
and accurately configured for a variety of environments using
a standard learning technique. In contrast, existing projects
resort to manual calibration of the sensor model for each RFID
deployment environment [19], [12], [20], precisely because
they lacked such a flexible parametric sensor model.

Efficient, scalable inference(IV). To infer object locations
from noisy, raw data streams, we apply a sampling-based
inference technique, called particle filtering, to the probability
distribution developed above. Unfortunately, this inference
technique requires a prohibitively large number of samples
to cope with the number of objects typical in our target
environment, hence inadequate for stream processing. Our
second contribution is to enhance particle filtering toscale
to large numbers of objectsand keep up with high-volume
streamswhile offering high precision inference results. To
do so, we develop a suite of advanced techniques, including
particle factorization, spatial indexing, and belief compression.
These techniques lead to a solution that uses only a small
number of samples at any instant by focusing on a subset of
the objects, while maintaining high inference accuracy.

Prototyping and evaluation (§V). Our third contribution is
a prototype implementation and detailed performance evalua-
tion of our system for translating mobile RFID data streams
into clean, precise event streams with location information.
Our results of running a location update query over both

real-world traces and large-scale synthetic data show that (1)
with an automatically and accurately configured model, our
approach estimates object locations with high accuracy, e.g.,
within a range of a few inches, (2) our approach outperforms
the state-of-the-art RFID data cleaning technique [20] by
XXX%, (3) our system is robust to noise in both observed tags
and observed reader locations, and (4) our system is the first to
scale to tens of thousands of objects with small memory usage
and at a constant rate of XXX readings per second, which has
reached the maximum rate at which a mobile RFID reader
can produce readings. In contrast, naive particle filtering can
process only 0.1 reading per second when given 20 objects
while striving to achieve comparable accuracy.

II. PROBLEM STATEMENT AND OVERVIEW

In this section, we present a problem formulation, illustrate
how this enables rich stream query processing, and briefly
discuss our approach.

A. Problem Statement

Given a stream of raw readings of RFID tags and a sequence
of reader locations, both of which can be noisy, we wish
to derive a clean, precise and queriable event stream where
RFID tag observations are augmented with the locations of
the corresponding objects. This high-level problem can be
further described using the underlying physical world, the data
streams from a mobile reader, and the desired output stream.

The Physical World. The physical world being monitored
is a large storage area comprising shelvesS and a set of objects
O. Both shelves and objects are affixed with RFID tags. Since
the shelves are at fixed locations, we assume that the precise
locations of their tags are also known a priori. However, the
object locations are unknown and must be determined as part
of the cleaning and transformation process. Typically, objects
stay on the same shelf but can sometimes move from one shelf
to another. The facts of interest to the application are the (x,
y, z) location of each objectOi at each time instantt.1

A mobile RFID reader provides the only means to observe
the physical world. Mobile readers come in two flavors—
handheld readers that are used by humans to scan and
monitor tagged objects (e.g., on store shelves), and readers
that be mounted on robots for automated monitoring and
order processing (e.g., Kiva systems [22]). The mobile reader
periodically scans the storage area. In each round, the reader
produces readings that contain the tag ids of observed objects
(usually a subset ofO) and tag ids of observed shelves (also
a subset ofS). In addition, the (x, y, z) location of the reader
itself at time t is computed using a positioning technology
such as indoor GPS or ultrasound [33].

Data Streams from Mobile Readers. Various readings
from a mobile reader have the following characteristics:

No Information about object locations. Since an RFID
stream only consists of a sequence of tag ids and observation
times, the locations of objects are not observed directly.

1 In this work, we assume that the facts of interest to the monitoring
application only consist of object locations. The extension to also
include inter-object relationships is a main task of our future work.



Noisy object readings. Object readings are highly noisy.
First, if an object is on the boundary of the sensing area,
in what is called theminor detection range, the read rate
is far less than 100%. Even if the object is close to the
reader, in what is called themajor detection range, objects
can be missed due to environment factors such as occlud-
ing metal objects, interference from other electronic devices,
and contention among tags. Sometimes objects can be read
unexpectedly due to reflection of radio waves by obstructing
objects. Finally, mobile readers have greater noise and lower
read rates than fixed readers—mobile readers tend to read
objects from arbitrary orientations, and certain orientations can
result in poor read rates.

Uncertainty in reader locations. The exact reader location
is usually uncertain. For example, even when handheld readers
are coupled with indoor positioning systems such as ultrasound
locationing, the reported locations are imprecise ( e.g., accu-
racy is about tens of centimeters for moving objects [33]). As
another example, a robotic reader can measure its location
using dead reckoning, essentially by counting the number
of times that its wheels have revolved. But such location
estimates may contain significant noise because the robot can
drift sideways due to inertia or forward due to wheel slippage,
as we observed in our lab deployment (detailed in§V-C).

While the exact data format varies with the reader, in this
work we assume that readings are produced in two sepa-
rate streams: the RFID reading stream has readings(time,
tag id of object Oi or tag id of shelf Sj) and the
reader location stream has reports(time, (x, y, z)) . In
practice, these streams may be slightly out-of-sync in time.
In our model, however, a time step (also called anepoch) is
fairly coarse-grained, e.g., a second. This allows us to generate
synchronized streams via simple low-level processing, such as
assigning the same time to RFID readings produced in one
epoch and taking average of multiple location updates in an
epoch to produce a single update. Therefore, we consider only
synchronized streams in the rest of the paper.

Output Event Stream. Our goal is to translate noisy,
primitive data streams from a mobile RFID reader into
clean, precise event streams with location information. In
the output stream, each event reports the location of an
object as follows:(time, tag id of Oi, (x, y, z) of
Oi, (statistics)?) . Events are output for not only ob-
served objects but also objects with missed readings. In other
words, the output stream not only augments the input streams
with object locations but also mitigates the effect of missed
readings.2 In addition, the optional statistics field can be
used to report summary information of the estimated location
distribution, such as its variance or confidence regions.

Finally note that as the reader moves, it may observe
an object several times from different locations. Combining
such multiple readings provides valuable information about
the object location. To avoid fluctuating values in the output,
our system outputs an event for an object only at particular

2 While transforming raw data streams into an event stream, we
can also archive the raw streams for post-facto analysis.

points: for example, withinx seconds after an object was read,
upon completion of a shelf scan, or upon completion of a full
area scan. The choice of when to output reports is left to the
discretion of the application.

B. Support for Stream Query Processing

We next illustrate the rich stream query processing that
our event stream enables but raw streams from mobile RFID
readers do not. We write our example queries in the CQL
stream query language [1]. The first query reports the location
change of each object. It simply reads the event stream,
considers the most recent location report of each object, and
if the location differs from the previous one, outputs the tag
id and the new location of the object.

Select Istream(E.tag id, E.(x, y, z))
From EventStream E [Partition By tag id Row 1]

The second query detects potential violations of a fire code:
display of solid merchandise shall not exceed 200 pounds per
square foot of shelf area.

Select Rstream(E2.area, sum(E2.weight))
From (Select Rstream(*,

SquareFtArea(E.(x, y, z)) As area,
Weight(E.tag id) As weight)

From EventStream E [Now])
E2 [Range 5 seconds]

Group By E2.area
Having sum(E2.weight) > 200 pounds

The nestedSelect-From query simply adds two attributes
to each event: the square foot area that each object belongs
to, computed by a function on its (x, y, z) location, and the
weight of the object, retrieved by another function using its
tag id. Then the outer query considers events in each 5 second
window, groups them based on the square foot area, computes
the total weight of the objects in each group. For the groups
with the total weight greater than 200 pounds, it reports the
area and the total weight in output.

Crucially, both of these queries require reliable knowledge
of the object location, which is unavailable without processing
and transforming the raw data streams. While the focus of
this paper is not sophisticated probabilistic query processing
such as [?], we view our work as a crucial data cleaning and
transformation step that enables such query processing over
real-world RFID data streams.

III. A P ROBABILISTIC DATA GENERATION MODEL

In this section, we present a probabilistic model that cap-
tures how raw data streams are generated by a mobile RFID
reader from the true state of the world. Given the complexity of
the problem, our model incorporates the motion of the reader,
the object dynamics, and most importantly, the noisy sensing
of objects and reader locations.

Formally, the world is modeled as a vector ofrandom
variables, which are represented as nodes in Figure 1. There
are two types of variables:evidence variablesthat we observe
in the data, andhidden variablesthat we wish to infer from the
information contained in the evidence. In our application, the
hidden variables are the true reader locationRt and the object



Rt True reader location at timet. Vector containing
(x, y, z) position and orientation.

R̂t Noisy observation of reader location at timet.
Oti True location of objecti at time t. Vector containing

(x, y, z) position.
Ôti Binary variable indicating whether objecti is observed

at time t
Si True location of shelf tagi
Ŝti Binary variable indicating whether shelf tagi is ob-

served at timet
R Matrix of all true reader locations[R1R2 . . . RT ]

R̂ Matrix of all observed reader locations[R̂1R̂2 . . . R̂T ]
Ot Matrix of all true object locations at timet
O Matrix of all true object locations at all time steps
Ôt Binary vector[Ôt,1 . . . Ôt,M ] of all readings at timet
Ô Matrix of all object readings at all time steps

TABLE I

SUMMARY OF NOTATION IN THIS PAPER.
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Fig. 1. Model of reader and object locations. The shaded region at top
contains the reader motion model and reader location sensing model. The
lightly-shaded region at bottom contains the RFID sensor model.

locationsOti, which are represented by the unshaded nodes
in Figure 1. The evidence variables are the reported reader
location R̂t and the object readingŝOti, which are indicated
by the shaded nodes in Figure 1. (For definitions of all the
notation used in this section, see Table I.)

The goal of this section will be to define a joint probability
distribution p(R,O, R̂, Ô) over both hidden and observed
variables. Then, given observed valuesR̂ and Ô, this joint
model induces a conditional distributionp(R,O|R̂, Ô) over
the true locations, which can be used to predict the objects’
locations. We describe various components of our model in
Section III-A, how we combine them into a single joint
distribution in Section III-B, and how we estimate model
parameters in Section III-C.

A. Components of the Model

Our joint model over the entire world is divided into four
components that separately model different aspects of the
domain. We explain each of the components in detail below.

RFID sensor model: Given that the read rate of an RFID
reader is less than 100%, it is natural to model the reader’s
sensing region in a probabilistic manner: each point in the
sensing region has a non-zero probability that represents
the likelihood of an object being read at that location. To
determine the probabilistic values for different points, we can
represent the sensing region as thelikelihood of reading a
tag based on the factors including the distance and angle
to the reader. Since the sensor noise varies with time and
location, it is also possible to introduce other parameters into
the likelihood, and estimate those parameters based on the
specifics of the deployment environment.

Formally, we introduce a flexible parametric model that
describes how the read rate of an RFID reader decays with
distance and angle. Given the true locationRt of the reader and
Oti of the objecti, the sensor model is a conditional distribu-
tion p(Ôti|Oti, Rt) that models the probability of reading the
tag. If we denote the reader location by the vector[rx

t , ry
t , rz

t ],
and the reader angle in relation to the reference coordinate
frame byrφ

t , then we can compute the distancedti and the
angleθti between the reader and the tag as follows:

δ = Ot,i − [rx
t , ry

t , rz
t ]

dti =
√

δT δ

cos θti =
δT [cos rφ

t , sin rφ
t ]

dti

Empirically, we have found that the read rate decreases
approximately quadratically with distance and with angle,
so that the probability can be written as a function like∑2

c=0 ac(dti)c +
∑2

c=1 bc(θti)c, where the{ac} and{bc} are
coefficients that we expect to be negative. But strictly speaking
this quadratic function cannot be a probability distribution,
because it is not restricted to[0, 1]. To fix this, we compose
the quadratic function with the sigmoid functionf(x) =
1/(1 + exp{−x}), which has the effect of squashing a real
number into the interval(0, 1). This transformation yields the
logistic regressionmodel, which is a standard technique for
probabilistic binary classification from the statistics literature.
Putting this together, the sensor model is:

p(Ôti = 0|dti, θti) =
1

1 + exp{
∑2

c=0 ac(dti)c +
∑2

c=1 bc(θti)c}
.

(1)
The coefficientsac and bc are real-valued model parameters

that are learned from data in a calibration step, discussed in
Section III-C. We use the same sensor model for both the
object tags and the shelf tags. The only difference is that for
the shelf tags, we write the distribution asp(Ŝi = 0|dti, θti),
but the same model and coefficients are used in both cases.

As our results in Section V show, our sensor model is
a flexible parametric form that can fit a variety of sensing
regions, including conical and spherical regions (examples of
learned sensor models are shown in Figure 5(b)-5(d)).

Reader motion model: This model describes how the
reader moves. We assume that the reader moves with a
constant velocity that varies somewhat over time. In other
words, the new location is the old location plus a noisy version



of the average velocity. Formally, the new locationRt can be
computed from the old location asRt = Rt−1 +∆+ ε, where
∆ is the average velocity of the reader, andε is the noise.
The motion noiseε is a Gaussian random variable with mean
0 and diagonal covariance matrixΣm.

Reader location sensing model: This model describes the
noise in our observations of the reader’s location. For example,
an RFID-equipped robot may compute its location by dead
reckoning, that is, basically by counting how many times its
wheels have revolved. We assume that this measurement noise
is Gaussian with meanµs and covarianceΣs. A more complex
noise model is not necessary here, because errors in the reader
location can be corrected by information from the static shelf
tags as shown in our experiments in Section V.

Object location model: We further model the fact that
objects can change locations in a warehouse scenario. At
each timet, we say that an object changes its location with
probability α, in which case the new location is distributed
uniformly across all shelves; otherwise, the object location
does not change. We write this model as a conditional distri-
bution p(Oti|Ot−1,i). This model contains no distinguishing
information about the object’s new location, but such infor-
mation is not needed here: The object location model is used
to temporarily create samples that will be weighted based on
the actual observations in the inference process; the new object
location will be eventually inferred from the readings from that
location (details of this process are given in Section IV-A).

B. Formal Definition

Now we describe how the component models can be com-
bined to define a joint model over the entire domain. By
way of illustration, we first describehow the data would
be generated if the world behaved according to our model:
Assume that the initial reader locationR1 is known. Sample
initial object locationsO1 from a uniform distribution over
the shelf. Then for each time stept, perform the following
five steps. (1) Generate the new reader locationRt from the
previous locationRt−1 by sampling from the reader motion
model p(Rt|Rt−1). (2) Generate a noisy observation̂Rt of
the reader location from the reader noise modelp(R̂t|Rt).
(3) Generate new object locationsOt from the object loca-
tion model p(Ot|Ot−1). (4) Decide whether each object is
observed using the sensor model. Each objecti is observed
with probabilityp(Ôti|Rt, Oti). (5) Decide whether each shelf
tag is observed using the sensor model. Each shelf tagi is
observed with probabilityp(Ŝti|Rt, St).

Now we give the formal description of our model. Any
distribution that can be sampled in the manner above can also
be factorized into the following product of local probability
distributions:

p(R, R̂,O, Ô|S) = p(R1,O1)
∏

t

p(Rt|Rt−1)p(R̂t|Rt)

×
∏
i∈O

p(Oti|Ot−1,i)p(Ôti|Rt, Oti)

×
∏
i∈S

p(Ŝti|Rt, St).

(2)

The factorization of (2) can be depicted as a directed acyclic
graph called adirected graphical modelor aBayesian network,
as shown in Figure 1. Our model is a particular case of a
dynamic Bayesian network (DBN) [26], but with conditional
probability functions specially designed for our problem.

C. Parameter Estimation using Learning

We next describe the self-calibration step in which we
estimate the model parameters from data. The parameters
of our model are the coefficients{ac} ∪ {bc} of the sensor
model, the average reader velocity∆, the varianceΣm of
the reader velocity, and the meanµs and varianceΣs of the
noise in reader location sensing. The sensor model in particular
depends not only on the type of reader used, but also on the
specifics of the environment such as metal objects and density
of tags. One way to calibrate the sensor model is to perform
calibration in the lab [19], [12], [20], in which the read rate is
measured when a reader and an RFID tag are placed at various
known distances and angles. Such manual lab calibration is not
only tedious but also inaccurate in real deployments due to the
change of environmental factors in those deployments.

An important benefit of having a flexible parametric model
is that we can automatically learn the model parameters using
a small training data set collected from the same environment
in which the system is to be fielded. The training set includes
the observed reader locations and readings of a small set of
tags, some of which are shelf tags with known locations. We
perform parameter estimation using Expectation-Maximization
(EM), a standard method for parameter estimation in the
presence of hidden variables [3]. In Section V, we show that
only a small number of shelf tags (e.g., less than 20) are
needed to learn accurate sensor models.

IV. EFFICIENT, SCALABLE INFERENCE OVERSTREAMS

As noisy, raw data streams emanate from a mobile RFID
reader, the task of translating them into a clean, precise event
stream with location information is treated as an inference
process in our work. Inference is essentially to estimate the
true locations of objects for each timet even if there are no
readings returned for some of the objects. Formally speaking,
from the joint distributionp(R,O, R̂, Ô) defined previously
over both the physical world and noisy readings, inference is
to compute the conditional distributionp(R,O|R̂, Ô). This
conditional distribution can be used to predict true object
locations and optionally the true reader location.

Exact inference for our model is very challenging, because
the true conditional distribution has a complex shape. Instead,
we sample from the distribution approximately using a generic
machine learning algorithm calledparticle filtering. How to
apply particle filtering to our particular problem is described
in Section IV-A. However, a naive implementation of particle
filtering does not scale to the enormous number of objects
that would be expected in a real warehouse. To handle this,
we augment the basic algorithm in three novel ways:
• We first propose an advanced technique,particle factoriza-
tion, to reduce the number of samples needed for accurate
inference for a large number of objects (Section IV-B).
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Fig. 2. Weighting samples of object and reader locations.

• We then augment the factorized particle filter with spatial
indexing structures to limit the set of objects that are
actually processed at each time step (Section IV-C).
• At some point in inference, the particles for an object may
stabilize in a small region. In this case, we compress the par-
ticle representation of the object’s location into a parametric
distribution to save both space and time (Section IV-D).

A. Particle Filtering

In this section, we describe the main intuitions behind
sampling-based inference for our problem. We also give a for-
mal description of how the generic particle filtering algorithm
[11] is applied to our particular probability distribution, which
provides a technical context for our later extensions.

The basic idea is to maintain a weighted list of samples,
each of which contains a hypothesis about the true location
of each object as well as a hypothesis about the true reader
location. Each sample has an associated weight, representing
the likelihood of the sample being true. The weight of a sample
is assigned based on the following intuitions.

As Figure 2(a) shows, if a reader detects the tag of object
O once, the tag must be in the vicinity of the reader. We can
generate multiple samples about the tag location in the reader’s
sensing region (or a slightly larger area) but cannot further
distinguish these samples. However, if the reader detects the
tag again from a nearby position, then the samples that reside
in the intersection of the sensing regions at the two reader
positions will be assigned higher weights (Figure 2(b)). Re-
garding the reader location, samples are weighted based on the
likelihood of seeing all observed objects from that location. Of
particular importance are the shelf tags with known locations.
As Figure 2(c) shows, an observed shelf tagS can be used to
distinguish good samples of the reader location, from which
the reader can detect the shelf tag, from those bad samples of
the reader location, from which the reader cannot.

At the next time step, these samples are updated to reflect
expected changes of reader and object locations. Their weights
are adjusted based on the new observations from that step.
At any point, we can use this weighted list of samples as
a distribution over the hidden variables, i.e., the true object
locations and reader location, given the observations—exactly
the result that inference aims to compute.

Formally, we denote a set of samples (termedparticles in
the literature) at timet using x1

t , · · · , x
(J)
t . We denote the

j-th particle by a vectorx(j)
t = (R(j)

t , O
(j)
t,1 , . . . , O

(j)
t,n), where

R
(j)
t is a hypothesis about the reader location andO

(j)
t,i is a

hypothesis about an object location. Let the weight ofx
(j)
t be

w
(j)
t . The particle filtering algorithm in our application is:

Step 1 Initialization. Generate a set of initial particles
{x(j)

1 |j = 1 . . . J} from the prior distributionp(R1,O1).
Step 2 Update. Let the vectoryt contain all of the obser-

vations at timet. Then for each time stept:
• Sampling. For each particlex(j)

t−1, generate a new parti-
cle x

(j)
t from a proposal distributionq(xt|x(j)

t−1, yt). The
proposal distribution is an arbitrary distribution chosen to
be easy to sample from. In this work, we use the reader
motion model and object location model for sampling.
• Weighting. Compute a new particle weight

w
(j)
t = Cw

(j)
t−1 ·

p(x
(j)
t |x(j)

t−1, yt)

q(x
(j)
t |x(j)

t−1, yt)
, (3)

whereC is a constant with respect toj, chosen so that∑
j w

(j)
t = 1. This weight adjusts for the fact that the

particles were sampled from the proposal distribution,
rather than the true distribution of the model.
• Re-samplefrom the particles to reproduce the highest-
weight ones. Each of the new particles is selected by
sampling from the set of old particles with replacement.
A particle is selected with probability equal to its weight.

Step 3 Inference output. At any time step, the posterior
distribution over the hidden variables can be estimated by a
weighted average of the particles. More formally,

p(Oti | R̂1...t, Ô1...t) ≈
J∑

j=1

w
(j)
t 1{Oti=O

(j)
ti }, (4)

where1{a=b} is an indicator function that is1 if and only if
a = b. A similar formula is used for the reader location. From
these distributions, it is easy to compute any desired statistics,
such as the mean, the variance, or a confidence region.

Sensible initialization of the particles is also important,
because otherwise many samples will begin far away from the
object’s actual location. In this work, we create new particles
for an object when we see it the first time or at a location far
away from the previous location of observing it. At the current
location, we initialize the particle locations from a uniform
distribution over a cone originating at the reader location. The
width of the cone is chosen to be an overestimate of the true
range of the reader. We call this initializationsensor-model
basedinitialization.

B. Particle Factorization

So far every particle has included a sample of the locations
of all objects. To get good accuracy, intuitively we expect
to use a large number of particles in the number of objects
(which was observed in our experiments presented in Section
V-D). This is because even if a particle contains good location
estimates for some objects, it may contain bad locations for
other objects, simply through random chance in the sampling
procedure. Figure 3(a) illustrates an example of this: Particle
A (the dark stars) contains a good sampled location for Object
1 but not for Object 2. On the other hand, particle B (the light
stars) contains a good sampled location for Object 2 but not
Object 1. As the number of objects grows, it becomes more
likely that most particles will happen to have sampled a bad
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location for some object. One way to overcome this problem
is simply to use more particles, but this becomes prohibitively
expensive when there are large numbers of objects.

In this section, we introduce an advanced technique that
enables the particle filter to scale dramatically in the number of
objects. In this technique, which we callparticle factorization,
we break a large particle over all the objects into smaller par-
ticles over individual objects. This allows us to combine good
particles from different objects and, essentially, to represent
an exponentially large number of unfactored particles in the
amount of space linear in the number of objects. The challenge
is to ensure that the operations required by the particle filter
can still be performed in this factored representation.

First we explain the data structures that we use to maintain
these factored particles. As shown in Figure 3(b), we maintain
a list of reader particles, each of which contains a hypothesis
about the reader location and an associated weight. Each
object particle contains a hypothesis of the object location
and the reader location (a pointer to the reader particle in
our implementation), a weight, and the object’s tag id. We
also maintain an index of object particles that maps from an
object’s tag id to the list of object particles for that tag id;
further, each object particle refers to the corresponding reader
particle via the contained pointer (Figure 3(c)).

In addition to maintaining factorized particles, we also
maintain factorized weights. Each reader particleR

(j)
t has an

associated weightw(j)
rt . The reader particle also has a list of

associated object particlesO(j,1)
ti . . . O

(j,K)
ti for each object

i. Each of these object particles has a weightw
(jk)
ti . The

semantics of the factored weights is: If we were to expand
the factored representation into the exponentially-long list of
unfactored particles, then the weight of the unfactored particle
is the factored reader weight times all of the factored object
weights. In our factorized particle filter presented in the rest
of this section, we manipulate these weights without actually
constructing unfactored particles.

Now we explain how these data structures can be used
to efficiently implement the factorized particle filter. First,
the sampling step can be performed entirely on the factored
representation. To sample from the proposal distribution, first
for each reader particle, we sample a new reader location from
the reader motion model, and then for for each associated
object particle, we sample a new object location from the
object location model.

Second, the weights of the new particles can also be
computed in a factored manner. The important point is that

in the factored representation, the weight of a particle for
objecti does not depend on weights of particles for any other
objects. To compute the new weights, the new incremental
weight for each reader particlew(j)

rt can be computed as
p(R̂t|R(j)

t )
∏

i∈S p(Ŝti|R(j)
t , St). The new incremental weight

for an object particleO(j,k)
ti is p(Ôti|R(j)

t , O
(j)
ti ).

It can be shown that this weighting step is equivalent to
the standard particle filtering weight step applied to the full
set of unfactored particles. Mathematically, this is because our
proposal distribution and our model factorize in the same way
as our data structures do. To see this, consider the weight
update (3) for unfactored particles:

w
(j)
t = Cw

(j)
t−1 ·

p(R
(j)
t ,O

(j)
t |R(j)

t−1,O
(j)
t−1, R̂t−1, Ôt−1)

q(R
(j)
t ,O

(j)
t |R(j)

t−1,O
(j)
t−1, R̂t−1, Ôt−1)

= Cw
(j)
t−1p(R̂t|R(j)

t )
∏
i∈S

p(Ŝti|R(j)
t , St)

N∏
i=1

p(Ôti|R(j)
t , O

(j)
ti )

= Cw
(j)
t−1 · w

(j)
rt

N∏
i=1

w
(j)
ti (5)

where in the second line, we substitute definitions; and
in the last line we simply definew(j)

rt and w
(j)
ti to be the

corresponding terms from the previous equation. This equation
shows that that the weights can be computed separately for
each object, with the same result as if the weight had been
computed for the exponential number of unfactored particles
that is implicit in our representation.

Finally, performing resampling in this representation is a
non-trivial task. For the object particles, we resample them
in the usual way while ensuring that their pointers to the
associated reader locations are preserved. On the other hand,
when we resample reader locations, we instrument resampling
to favor reader particles that are associated with good object
particles. Details of the resampling algorithm are omitted due
to space limitations (but are available in [?]).

Our factorization scheme is related to that of [27], but with
several important differences. The main difference is that our
particle weights are also factorized, while the previous work
ignores the weights entirely by resampling at every time step.
By maintaining factorized weights, our method avoids both the
cost of resampling at most time steps, and the bias introduced
by resampling in the factorized representation.

C. Spatial Indexing

Even with factored particles, the inference algorithm pre-
sented so far must process all the objects in the world at
every time step. This is because the weighting step described
in Section IV-A is performed for all objects, whether their
tags were read or not. In this section, we introduce spatial
indexing as a further approximation that dramatically reduces
the processing cost. It is important to note that spatial indexing
is possible only after the particles have already been factorized.

The main insight is that even if the number of objects is
large, only a much smaller number of them are near the reader
at any given time. If we can restrict the processing to only
those objects near the reader, a significant amount of work
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can be saved. This intuition is more precisely described by
the diagram in Figure 4(a), which classifies objects based on
their distance from the reader location at timet (x axis) and
the result of RFID sensing att (y axis). There are four cases:

Case 1:If an object is read at timet, no matter how far it
is from the reader, it should be processed in inference.

Case 2:If an object is not read att but was read before near
the current reader location, the object needs to be processed
so that the particle filter can downweight the particles of the
object that are very close to the current reader location.

Case 3:If an object is near the reader but has never been
detected from its current location, it is simply invisible to the
inference procedure since RFID sensing is the only means of
observing the world.

Case 4:Last, the object is far from the reader and indeed
not detected att. According to our sensor model, such objects
have a very small (but nonzero) read probability, but rounding
this probability to zero appears to be a good approximation.

Therefore, we design a spatial index to distinguish Case 2
from Case 4 so that we can save work for objects belonging
to Case 4. For each reported reader location, we construct a
bounding box of the sensing region. Then our index has two
components. The first component, shown in Figure 4(b), maps
from bounding boxes to the set of objects that have at least
one particle within the bounding box. The second component,
shown in Figure 4(c), is a standard spatial index (a simplified
R*-tree [2]) over the bounding boxes.

At each time during inference, we construct a bounding box
of the current sensing region and probe the spatial index to
retrieve all potentially overlapping bounding boxes inserted in
the past. For each of those boxes, we retrieve all contained
objects. This gives us the full set of objects belonging to
Case 2. Finally, we run particle filtering as usual, but restrict
sampling and weighting only to the objects in Cases 1 and 2.

D. Belief Compression

We next present a compression technique that can be
embedded in our factorized particle filter to further reduce
space consumption and improve inference speed. Recall that a
weighted set of particles for each object defines a distribution
over the the object’s location. The main advantage of the
particle representation is the ability to represent arbitrary

distributions. For example, when an object is first detected, its
location could be anywhere within a large and oddly-shaped
area. But as more readings arrive, often the location particles
stabilize to a small region. If this occurs, the object location
could be represented much more compactly by a parametric
distribution. For example, the particle-based representation
may require 1000 particles, but a three-dimension Gaussian
requires only 9 real numbers to store its parameters. Therefore,
compression to the parametric distribution saves considerable
space. Compression can also save time as it often allows infer-
ence to use fewer particles on the compressed representation.

Per-object based compression.We first describe how an
object’s particles can be compressed. Suppose that a weighted
set of particles over the location of objecti defines a distri-
bution p̂(Ot,i) as in (4), and we wish to compress this into a
Gaussianq(Ot,i) with meanµ and covariance matrixΣ. This
can be done by minimizing the KL divergence KL(p̂‖q), which
is a standard measure of “distance” between distributions.
Whenq is Gaussian, the KL amounts essentially to a weighted
average of the squared distance betweenµ and the particles
comprising p̂. It can be shown that the optimal choice ofq
uses the sample mean and empirical covariance matrix, that
is, µ =

∑
j w

(j)
t,i O

(j)
t,i andΣ =

∑
j w

(j)
t,i (O(j)

t,i −µ)(O(j)
t,i −µ)T .

The KL divergence at these parameters measures how much
is lost by compression, in the sense of the expected squared
error (e.g., in squared feet) of the resulting Gaussian.

Several methods are possible for choosing individual objects
to compress. One possibility is to compress an object whenever
its tag has not been read for several time steps. This is
applicable if an object leaving the read range means that it
will not be observed for a long time. An alternative method is
to rank the uncompressed objects by the KL of the compressed
representation, and compress the objects that would have the
least compression error. This method can be further augmented
with a threshold. That is, we only compress the particle
representation if the KL is above the threshold.

Decompression (sampling) and re-compression.Later on,
when a compressed object has its tag read again, we need to
perform the particle filtering steps on the compressed represen-
tation. To do this, we sample a small number of particles from
the Gaussian to decompress the representation. Empirically,
we find that many fewer particles are required for accurate
inference after decompression than for the original particle
filter, because the compressed representation tends to be well-
behaved. When the object leaves scope, if its particles are still
well-represented by a Gaussian, it can be re-compressed.

Our idea behind compression is similar to the Boyen
and Koller method [4]. However, their method performs
compression only, while our method embeds compression
within a larger sampling procedure. Moreover, we can employ
compression on a per-object basis and hence has greater
flexibility to explore the benefits of Gaussian and particle-
based representations wherever appropriate.

Comment on accuracy. Theoretically, there are no known
results (even in the machine learning community) that can
quantify the error from compression of arbitrary distributions
like our object location distributions. However, our experi-



ments provide empirical evidence that inference accuracy does
not degrade because object particles can indeed stabilize to a
small region when compression is applied (see Section V-D).

V. PERFORMANCEEVALUATION

We have implemented all our inference techniques in a
prototype system in Java. In this section, we present a detailed
analysis of our system using both real RFID traces and large-
scale synthetic data. Our results show that (1) our system
can offer clean, precise event streams with accurate location
information, e.g., within a range of a few inches, and is robust
to noise; (2) our system outperforms SMURF [20], a state-of-
the-art RFID data cleaning technique by XX%; (3) our system
scales to tens of thousands of objects with small memory usage
and at a constant rate of XXX readings per second, while naive
particle filtering cannot scale beyond 20 objects.

A. Experimental Setup

Query. In all experiments, we ran the location update query
described in Section II over the event stream generated by our
system. Recall that this query examines the most recent event
of each object, and if the location in this event differs from
the previous event, outputs the tag id and new object location.
We ran this query over both real RFID traces and simulated
streams in a warehouse scenario (detailed below). To avoid
fluctuating values in output, our system produced a location
event 60 seconds after an object was read the first time in one
round of scan (although inference was running in real-time).

Metrics. The accuracy of query output can be measured
using two related metrics: The first is the average distance
between reported object locations and true object locations,
called the inference error. Assuming the application has a
precision requirement, e.g., within half a foot from the true
location, the second metric measures the percentage of location
updates that fail to satisfy the requirement, called theerror
rate. The performance metric is the average time that our
system takes to process each RFID reading.

Simulator. To obtain insight into various factors on perfor-
mance and perform scalability tests, we developed a simulator
for a warehouse scenario that produces synthetic RFID streams
with various controlled properties. The simulated warehouse
consists of consecutive shelves aligned on they axis, with
objects evenly spaced on the shelves. Both shelves and objects
are affixed with RFID tags. For simplicity, we assume the same
height for all tags and hence ignore thez axis. An RFID reader
is mounted on a robot that moves down they axis facing the
shelves. In every epoch, it travels about 0.1 foot (which can be
varied), stops, senses its current location and reads objects on
the current shelf with added noise, and sends both its sensed
location and the RFID readings to our system.

RFID readings were generated using a cone-shaped sensor
model as shown in Fig. 5(a) (where white is for good read
rate). The sensor model has a 30 degree open angle for the
major detection range, in which the read rate is uniform
and its value is controlled by a parameter,RRmajor, and
an additional 15 degree angle for the minor detection range,
in which the read rate degrades fromRRmajor down to 0.

The parameters for data generation include: (1)RRmajor,
by default 100%, (2) read frequencyRF , by default once
every second, (3) the Gaussian model for reader motion, whose
default isµm=0, σm=.01 for bothx andy dimensions, and (4)
the Gaussian model for reader location sensing, whose default
is µs=0,σm=.01 for bothx andy. Each trace contains readings
obtained from a single pass of scan of all the tags.

Real lab deployment. To evaluate our system in real-
world settings, we also created a lab deployment with a robot-
mounted RFID reader, which we detail in§V-C.

B. Model Calibration and Initial System Testing

In the section, we evaluate our system for its ability to
calibrate the probabilistic model based on the characteristics of
the RFID deployment, and test the sensitivity of our system to
various factors. We used simulation in this set of experiments.
As a baseline, we also ran a method, calleduniform, that
uniformly randomly samples an object’s location over the
overlapping area of the sensor model and the shelf. This
baseline is used as a bound on the worse-case inference error.

Learning RFID sensor model. As noted in Section III-A,
the most challenging part of modeling is the sensor model
because it varies with the type of reader, environmental noise,
etc. To test the flexibility and accuracy of our probabilistic
sensor model, we used a small trace consisting of readings of
20 tags for learning the model using EM. To investigate the
amount of information needed for accurate learning, we varied
the number of tags with known locations, assumed to be shelf
tags, in the training data from 0 to 20. When fewer than 20
tags were used as shelf tags, the rest of the tags were treated
as object tags whose true locations are unknown.

Fig. 5(a) shows the true sensor model in simulation and
Fig. 5(b) and 5(c) show the sensor models learned with 20
shelf tags and 4 shelf tags, respectively. Most importantly, our
sensor model learned from 20 shelf tags is very close to the
true model. Such approximation degrades only gradually as
we reduce the number of shelf tags. When 4 shelf tags or
fewer are used, the learned sensor model starts to deviate fast
from the true model, because EM in this case is likely to be
stuck in some local maxima.

After training, we used the learned sensor models to perform
inference over a test trace with 10 object tags and 4 shelf tags,
using 1000 particles per object. Most learned models (except
those from 0 and 4 shelf tags) result in small inference errors
that are comparable to the results using the true model, and
much better than the baseline, as shown in Fig. 5(e). This
shows that our system can indeed learn accurate sensor models
from small traces with a few tags of known locations.

Handling RFID sensing noise. We then investigate the
sensitivity of our system to RFID sensing noise by varying the
read rate in the reader’s major detection range,RRmajor, from
100% to 50%. Fig. 5(f) shows the results using a trace with
16 object tags and 4 shelf tags. Our system again performs
much better than the baseline, and degrades its accuracy only
slowly asRRmajor is reduced. This is because inference can
intelligently exploit the facts from the past to smooth noisy
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Fig. 5. Results of model calibration and initial system testing

object readings and derive their locations, hence not highly
sensitive to the changes of the read rate.

Handling reader location noise. We next evaluate our
system’s ability to handle reader location noise. We generated
traces by varying the parameters of the reader location sensing
model: the systematic error along they axis µy

s ∈ [0, 1],
indicating a constant distance between the measured location
and the true location; the random noiseσy

s = 0.01 or 0.2,
representing little or high variation. Given the amount of noise
present, we used 5000 particles per object to stabilize the
performance. Fig. 5(g) shows the results ofσy

s = 0.2 (the figure
for σy

s = 0.01 is similar, hence omitted).
Our system’s ability to overcome reader location noise is

demonstrated by the difference between the bottom curve
(“motion model On - true”), which is our system using the true
parameters of the reader location sensing model, and the curve
(“motion model Off’), which is a simplified technique that
always uses the reported location as true location in inference.
As µy

s increases, our system is very effective in correcting
the systematic error, mostly through the evidence of the shelf
tags. In contrast, the lack of motion model leads to degradation
almost linearly inµy

s . Moreover, the curve (“motion model On
- learned”) shows that we can very well approximate the best
system performance by learning the parameters of the location
sensing model from a small training trace.

Other experiments.We also explored other factors such as
the read frequency, the noise in reader motion, and the size of
shelf area for particle initialization. Overall, we observed little

sensitivity of our system to these factors. Details are omitted
in the interest of space but available in [?].

C. Evaluation using Real Traces

To evaluate our system in real-world settings, we generated
a lab RFID deployment. As Fig. 6(a) shows, we erected two
parallel shelves (assumed to be along they axis), containing
80 EPC Gen2 Class 1 tags spaced four inches apart. Each shelf
has five evenly-spaced reference tags whose true positions are
known a priori. We constructed a mobile reader by mounting
a bi-static antenna connected to a ThingMagic Mercury5
RFID reader on an iRobot Create robot (Fig. 6(a)). The
robot was programmed to scan one row of tags, and turn
around to scan the other row, at a speed of 0.1 foot/sec with
readings performed once every second. The robot computed its
location using dead reckoning. We observed significant error
in reported location, e.g. up to 1 foot off from the true location.
To emulate various read rates, we varied the reader’s timeout
setting—the amount of time a tag is given to respond after the
initial signal is sent by the reader—from 0.25 to 0.75 second.

We used the reference shelf tags to create a training trace to
run EM and learn the physical sensor model for our antenna.
The result, shown in Fig. 5(d), reveals that our antenna’s read
area is akin to a balloon with a wide minor range, whose read
rate is inversely related to an observed object’s angle from the
center of the antenna; this agrees well with manually calibrated
sensor models for similar Thingmagic readers [24].

We next compare the accuracy of our system to SMURF



(a) A robot-mounted reader
scanning two rows of tags

Timeout Our System SMURF (improved) Uniform Sampling
(ms) X(ft) Y(ft) XY(ft) X(ft) Y(ft) XY(ft) X(ft) Y(ft) XY(ft)

250 (SS) 0.29 0.33 0.44 0.33 0.60 0.70 0.33 3.96 3.97
500 (SS) 0.28 0.39 0.48 0.33 0.88 0.94 0.33 3.98 3.97
750 (SS) 0.27 0.35 0.44 0.33 0.76 0.83 0.33 3.95 3.97

250 (LS) 0.17 0.41 0.44 1.31 0.60 1.44 1.31 3.98 4.19
500 (LS) 0.35 0.36 0.51 1.31 0.58 1.43 1.31 3.98 4.19
750 (LS) 0.55 0.31 0.64 1.31 0.69 1.48 1.31 3.98 4.19

(b) Inference error of our system, an improved version of SMURF, and Uniform Sampling.
SS denotes a small imagined shelf (0.66x4ft) and LS a large imagined shelf (2.6x4ft).

Fig. 6. Evaluation results using real traces.

[20] using traces collected from our lab. SMURF is essentially
an adaptive smoothing technique that for each epoch, decides
if a tag has moved away from the sensing region when there is
a missed reading. However, it cannot directly translate RFID
readings into location events. For effective comparison to our
system, we augmented SMURF with additional sampling: In
each epoch, if SMURF decides that the tag is still in range
as a result of smoothing, a location of the tag is obtained by
randomly sampling over the intersection of the current read
range and the shelf. At some point, when SMURF decides that
the tag is no longer in scope, all sampled locations generated
in those consecutive epochs are averaged to produce the final
estimate. Finally, SMURF does not support learning of the
sensor model, so we approximate the read range based on our
learned model to enable sampling of the tag location.

Fig. 6(b) shows results of our system, improved SMURF,
and uniform sampling, with the first three rows generated from
a small imagined shelf, and the next three rows from a large
imagined shelf. Since the read range can be large, such shelf
information helps restrict the area for object location sampling
in all three algorithms. As can be seen, the accuracy of our
system is within 0.44 to 0.63 foot. In comparison, the error of
SMURF is 1.6 to 2.0 times of our system when the shelf area
is small and is over 2.3 times when the shelf area is increased.

These differences can be explained by two main reasons:
First, SMURF can not correct the error in reported reader
location as observed in our traces. While smoothing may be
affective, sampling of object location is always performed
from the reported reader location. This explains the difference
between our system and SMURF along they axis where the
robot drifted significantly away from the expected location.
Second, object location sampling that we added to SMURF
is rather primitive compared to the sampling-based inference
employed in our system. Their different effects are shown by
the error inx; the error of SMURF is strictly half of the shelf
size inx, as inaccurate as uniform sampling.
D. Scalability Tests using Simulation

Finally, we show how our system improves over basic
particle filtering (§IV-A) in scalability while maintaining high
accuracy. We examine our proposed techniques, particle factor-
ization (§IV-B), spatial index (§IV-C), and belief compression
(§IV-D), each including the preceding technique(s) in that
order. For scalability tests, we assume that the application
has an accuracy requirement of within 0.5 foot from the true

location. We used our simulator to create synthetic streams.
All CPU measurements were obtained from a 3Ghz dual-core
xeon processor with 6GB memory available for use in Java.

Varying number of particles. First, we investigate how
many particles are needed to meet the accuracy requirement.
Intuitively, a technique that needs more particles is less likely
to scale. We ran the basic particle filter (unfactorized) and our
factorized particle filter. The parameter varied is the number
of particlesP : P unfactorized particles for the basic filter and
P particles per object for the factorized filter, which consume
the same amount of space. As Fig. 7(a) shows, our factorized
filter quickly stabilizes its accuracy at around 0.2 foot after
P reaches 500. In contrast, the basic filter slowly improves
its accuracy and has not reached 0.5 foot even with 10,000
particles. As explained in§IV-B, the basic filter cannot scale
due to its excess need of particles to achieve decent accuracy.

Varying number of objects. We next increased the number
of objects from 10 to 20,000 and ran all three advanced
techniques as well as the basic filter. Fig. 7(b) and 7(c) report
on the inference error and the average time taken to process
each reading (on a log scale). As can be seen, given 20
objects, the basic filter takes about 10 second to process each
reading, by using XXX particles yet still violating the accuracy
requirement. The factorized filter, by using XXX particles per
object, well meets the accuracy requirement and improves
processing cost significantly. However, this cost still degrades
fast as the object count increases. Augmenting the factorized
filter with an spatial index reduces the objects processed at
each time to a small number, yielding a much reduced cost at
a constant 10 msec per reading. Finally, belief compression
drastically reduces the cost to 0.1 msec per reading due
to the ability to use fewer particles (in this case only 10
particles) after decompression. Neither spatial indexing nor
belief compression causes obvious degradation of accuracy.

Other experiments. We also ran tests with more noise in
reader location, which requires more particles to handle the
noise. Belief compression still achieved a constant throughput
of 1500 readings per second while meeting the accuracy re-
quirement. Moreover, the memory usage of belief compression
for these tests was within 20MB. Details are available in [?].

VI. RELATED WORK

Directly relevant research has been addressed in previous
sections. We survey broader areas of related work below.
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Fig. 7. Results of scalability tests

RFID stream processing. The HiFi project[15] offers a
declarative framework for RFID data cleaning and processing.
Its techniques focus on temporal and spatial smoothing of
readings generated by a fixed set of static readers. SMURF
[20] is a particular cleaning approach employed in HiFi and
we experimentally demonstrate the benefits of our approach
over SMURF for mobile readers. Architectural issues for
probabilistic RFID processing have discussed in context of
Data Furnace [17] but the research is still underway.

Sensor data management[25], [8], [10], [32] mostly con-
siders environmental phenomena such as temperature and
light. Techniques for data acquisition [25], [7], model-based
processing [8], and approximation [6], are geared towards
queries (e.g., selection and aggregation) natural to such data.
In contrast, RFID data captures object identification and to
support querying, such noisy, primitive data needs to be first
transformed to clean, rich location data. Model-based views
over sensor data streams [9] employ probabilistic inference
but are restricted to GPS readings (which already reveal object
locations) and small numbers of objects.

RFID warehouses. Issues in RFID data management includ-
ing inference are discussed in [5]. A high-level design of a
large-scale RFID system is presented in [35]. Application-
specific rules are used to archive and compress RFID data
into databases [34]. Inside RFID databases, advanced data
compression techniques are available [18] and data cleansing
can be integrated with query processing [29].

Object and person tracking[23], [28], [31] focuses on
tracking moving targets when the association is uncertain
between the observed features of an object and the object’s
true identity. In the RFID setting, however, object identities
are given as part of the readings; the challenge is to infer
locations. Therefore, models from this research area are not
appropriate for our problem. Some probabilistic models are
based on GPS readings [23], [28], but these do not apply to
our problem, because unlike GPS, RFID readings do not reveal
locations directly. Moreover, the work in this area is designed
for small numbers of objects (on the order of 10 objects), and
does not scale to a warehouse setting.

RFID-equipped robotshave previously been used to es-
timate locations of robots [21] or of RFID-affixed objects
[19], [12]. However, this work differs from ours in several

important aspects. First, in previous work the sensor model is
manually calibrated [19], [12], which is problematic because
reader performance depends greatly on the characteristics of
the environment. Second, in [12], the reader motion model is
omitted, which significantly simplifies inference. Third, and
most important, this line of work is not designed to produce
queriable streams for scalable stream query processing—
existing work does not support online inference over RFID
streams [12] and does so only for a small set of objects [19].
In contrast, our work employs several techniques to produce
queriable streams and scales inference to large numbers of
objects at stream speeds.

VII. C ONCLUSIONS

In this paper, we presented a probabilistic approach to trans-
late noisy, primitive data streams from mobile RFID readers
into clean, rich event streams with location information, and
further, to do so at stream speed for large numbers of objects.
Our results show that with an automatically and accurately
learned probabilistic model, our approach can augment object
identities with estimated locations with high accuracy, e.g.,
within a range of a few inches, and is robust to noise in
observed tags and reader locations. Such inference further
scales to large numbers of objects (e.g., 10’s of thousands
of them) with small memory usage and at a constant rate of
over 1000 readings per second.

We plan to extend our research in several directions. We
will extend our work to include inter-object relationships such
as containment of interest to monitoring applications. We will
also extend it to handle handheld readers that are operated
by humans and do not offer reader locations. Finally, we
will explore stream query processing over the inferred data
to support a range of monitoring applications.
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