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Abstract— Recent innovations in RFID technology are enabling
large-scale cost-effective deployments in retail, healthcare, phar-
maceuticals and supply chain management. The advent of mobile
or handheld readers adds significant new challenges to RFID
stream processing due to the inherent reader mobility, increased
noise, and incomplete data. In this paper, we address the
problem of translating noisy, incomplete raw streams from mobile
RFID readers into clean, precise event streams with location
information. Specifically we propose a probabilistic model based
on Dynamic Bayesian Networks to capture the mobility of the
reader, object dynamics, and noisy readings. Our model can
self-calibrate by automatically estimating key parameters from
observed data. Based on this model, we employ a sampling-
based technique called particle filtering to infer clean, precise
information about object locations from raw streams from mobile
RFID readers. Since inference based on standard particle filtering
is neither scalable nor efficient in our settings, we propose
three enhancements—particle factorization, spatial indexing, and
belief compression—for scalable inference over large numbers of

e Observed data reveals data of interest only indirectly
Raw RFID readings only contain tag identities and do not
contain additional high-level information such as object
locations or containments that are needed by tracking and
monitoring applications. require locations to be associated
with To infer locations, a reading only reveals that the object
was in the vicinity of a reader when it was sensed. If the
reader location is fixed and known, these readings provide
indirect coarse-grained location information for objects.
When mobile readers are used instead, their locations vary
over time and can be uncertain. Therefore, feeding readings
from such readers into a stream processor does not allow a
tracking and monitoring application to answer even simple
queries concerning object locations.

For these reasons, RFID data streams, particularly those

from mobile readers, are not “readily queriable”. We further

objects and high-volume streams. Our experiments show that our Note that hardware technology advances are not expected
approach outperforms a state-of-the-art cleaning approach such to address this problem for the foreseeable future. This is
as SMURF by XXX% while also being scalable and efficient.  because RFID technology is inherently designed for identifica-
tion rather than high-level information such as locationing or
containment. Even with multiple closely-spaced wall-mounted
readers, the precision of the acquired information is insuffi-
RFID deployments have become popular in domains such@ént for tracking and monitoring tasks such as identifying
retail management [16], healthcare [16], pharmaceuticals [16jisplaced inventory in retail stores and computing density
and library management [12], [30]. RFID applications enablsf flammable objects in each square foot area [16], [36].
unique identification of every tagged object and provide reghstead, software solutions are needed to enable rich stream
time monitoring and tracking capabilities. While early RFIQyuery processing for tracking and monitoring and to ultimately
deployments used fixed, wall-mounted readers, technologislize the promise of mobile RFID technology.
advancements have added mobile, handheld readers to the misherefore, in this paper, we address a fundamedédh
significantly complicating the tasks of stream processing agfkaning and transformation problem for mobile RFID
querying of RFID data. Recent research has adopted generata streams which translates noisy, raw data streams from
stream query processing to encode application informatigfobile RFID readers into clean, precise queriable event
needs as declarative queries and evaluate these queries gieams with location information. Informed by the demand of
real-time RFID streams [15], [30], [36], [34]. However, rawsubsequent stream query processing, our work aims to meet
RFID data, particularly from mobile readers, is unsuitable fahree objectives: i} high precision results of data cleaning
direct querying for two reasons: and transformation, which are able to simplify probabilistic
e Data is incomplete and noisy Despite technological query processing as shown ifi][ (i7) producing such results
advances, RFID readings continue to be noisy. Observatdstream speed;if) scaling this process for large tracking
read rates in actual deployments are significantly belosnd monitoring environments.
100% [20], largely due to the intrinsic sensitivity of radio Recent research on RFID data cleaning [15], [20] has
frequencies (RFs) to environmental factors such as interf@roposed building an abstraction of device data appropriate for
ence from nearby metal objects [13] and contention amofgther query processing. This approach focuses on the simpler
tags [14]. Also, it is hard to estimate the data qualitproblem of whether an object is in the (large) read range of
in advance, because the read rate depends greatly onatsatic reader. These smoothing techniques, when applied to
particular characteristics of the deployment. Mobile readensobile readers, provide information such as location only with
can produce even more noisy data than static readers siticgted precision, as we shall show in the performance analysis
they produce readings from arbitrary handheld orientatiorsf. this paper. The RFID data transformation componen®pf [

I. INTRODUCTION



generates low resolution location data, such as a person ireal-world traces and large-scale synthetic data show that (1)
particular office, which is inadequate for many tracking amgith an automatically and accurately configured model, our
monitoring tasks as mentioned above. Moreover, both of themgproach estimates object locations with high accuracy, e.g.,
studies consider at most one hundred RFID-tagged objects avithin a range of a few inches, (2) our approach outperforms
lack scalable solutions for large-scale environments suchthe state-of-the-art RFID data cleaning technique [20] by
typical warehouses. XXX%, (3) our system is robust to noise in both observed tags
In this paper, we present a novel approach for efficiernd observed reader locations, and (4) our system is the first to
scalable cleaning and transformation of mobile RFID datxale to tens of thousands of objects with small memory usage
streams while offering high precision results. Our approaemnd at a constant rate of XXX readings per second, which has
is based on the view that applications want to query againsached the maximum rate at which a mobile RFID reader
facts about the true state of the physical world, but these facen produce readings. In contrast, naive particle filtering can
are revealed only indirectly through a sensing process thaptpcess only 0.1 reading per second when given 20 objects
even for the data that can be generated, is lossy and noishile striving to achieve comparable accuracy.
The task of data cleaning and transformation is essentially Il PROBLEM STATEMENT AND OVERVIEW
to recover the facts necessary for query processing while :
mitigating the effects of data loss and sensing noise. Towardln this section, we present a problem formulation, illustrate
this goal, we employ a principled probabilistic approach to (1)ow this enables rich stream query processing, and briefly
model precisely how mobile RFID data is generated from tho8scuss our approach.
facts about the physical worland (2)infer likely estimates of
the facts as noisy, raw data streams arrive ] ]
While probabilistic inference is a well-established research G1ven a stream of raw readings of RFID tags and a sequence
area, applying it to clean and transform RFID data strearfi§ réader locations, both of which can be noisy, we wish
while meeting the three aforementioned objectives, namel, derive a clean, precise and queriable event stream where
high precision, stream speed, and scalability, pose consider [dD tag observations are augmented with the locations of

challenges. By way of addressing these challenges, we m&k@ corresponding objects. This high-level problem can be
the following contributions: further described using the underlying physical world, the data

Modeling the data generation process(§lll). First, we streams from a mobile reader, and the desired output stream.

design a probabilistic model that captures the underlying data! "€ Physical World. The physical world being monitored
generation process, including the key components such 5@ 1arge storage area comprising shelyemd a set of objects
reader motion, object movement, and noisy sensing of théde BOth shelves and objects are affixed with RFID tags. Since
objects by the reader. In particular, our model employs a flefi€ Shelves are at fixed locations, we assume that the precise
ible parametric RFID sensor model that can be automaticalffations of their tags are also known a priori. However, the
and accurately configured for a variety of environments usifipiect locations are unknown and must be determined as part
a standard learning technique. In contrast, existing proje the cleaning and transformation process. Typically, objects
resort to manual calibration of the sensor model for each RFFERY O the same shelf but can sometimes move from one shelf
deployment environment [19], [12], [20], precisely becaud® another.. The facts of.lnterest to the 'appI!catlon lare ihe (
they lacked such a flexible parametric sensor model. y, 2) location of each objeaD; at each time instant

Efficient, scalable inference(lV). To infer object locations A mob|_le RFID reader prowdes the only means to observe
from noisy, raw data streams, we apply a sampling-bas&? physical world. Mobile readers come in two flavors—
inference technique, called particle filtering, to the probabilify2ndneld readers that are used by humans to scan and
distribution developed above. Unfortunately, this inferendBONitor tagged objects (e.g., on store shelves), and readers

technique requires a prohibitively large number of sampl&ddt be mounted on robots for automated monitoring and
to cope with the number of objects typical in our targe‘i’rder processing (e.g., Kiva systems [22]). The mobile reader

environment, hence inadequate for stream processing. @griodically scans the storagg area. In _each round, the re_ader
second contribution is to enhance particle filteringstzale produces readings that contam_ the tag ids of observed objects
to large numbers of objectand keep up with high-volume (usually a subset of?) and tag ids of observed shelves (also

streamswhile offering high precision inference results. Td* SuPset of). In addition, the ¢, y, z) location of the reader
do so, we develop a suite of advanced techniques, includi'ﬁéelf at timet is computed using a positioning technology
c

particle factorization, spatial indexing, and belief compressiofiCh as indoor GPS or ultrasound [33].

These techniques lead to a solution that uses only a smalPata Streams from Mobile Readers Various readings

number of samples at any instant by focusing on a subset'§}T & mobile reader have the following characteristics:
No Information about object locationsSince an RFID

the objects, while maintaining high inference accuracy. | . ¢ ¢ i d ob .
Prototyping and evaluation (§V). Our third contribution is s_tream only consists of a sequence of tag ids and observation

a prototype implementation and detailed performance eval(4res, the locations of objects are not observed directly.
tion of our system for translating mobile RFID data streams; In this work, we assume that the facts of interest to the monitoring

into clean, precise event streams with location informatiogpplication only consist of object locations. The extension to also
Our results of running a location update query over bothclude inter-object relationships is a main task of our future work.

A. Problem Statement



Noisy object readingsObject readings are highly noisy.points: for example, within: seconds after an object was read,
First, if an object is on the boundary of the sensing areapon completion of a shelf scan, or upon completion of a full
in what is called theminor detection rangethe read rate area scan. The choice of when to output reports is left to the
is far less than 100%. Even if the object is close to thdiscretion of the application.
reader, in what is called thmajor detection rangeobjects i
can be missed due to environment factors such as occl- Support for Stream Query Processing
ing metal objects, interference from other electronic devices,We next illustrate the rich stream query processing that
and contention among tags. Sometimes objects can be read event stream enables but raw streams from mobile RFID
unexpectedly due to reflection of radio waves by obstructingaders do not. We write our example queries in the CQL
objects. Finally, mobile readers have greater noise and lovegream query language [1]. The first query reports the location
read rates than fixed readers—mobile readers tend to red@nge of each object. It simply reads the event stream,
objects from arbitrary orientations, and certain orientations caonsiders the most recent location report of each object, and
result in poor read rates. if the location differs from the previous one, outputs the tag

Uncertainty in reader locationsThe exact reader locationid and the new location of the object.
is usually uncertain. For example, even when handheld reader
are coupled with indoor positioning systems such as ultrasounq%
locationing, the reported locations are imprecise ( e.g., accu- S )
racy is about tens of centimeters for moving objects [33]). As The seconq query detec;ts potential violations of a fire code:
another example, a robotic reader can measure its locatfaplay of solid merchandise shall not exceed 200 pounds per
using dead reckoning, essentially by counting the numbfuare foot of shelf area.
of times that its wheels have revolved. But such location seject  Rstream(E2.area, sum(E2.weight))

elect Istream(E.tag 4id, E.(x, y, 2)
rom EventStream E [Partition By tag _id Row 1]

estimates may contain significant noise because the robot cafrom (Select Rstream(*,
drift sideways due to inertia or forward due to wheel slippage, sfeﬂga‘fg;za('i% )st\)/\)/e@it)area'
as we observed in our lab deployment (detailed\C). From  EventStream E [Now])

While the exact data format varies with the reader, in this E2 [Range 5 seconds]

Group By E2.area

work we assume that readings are produced in two S€PAYjaving ~ sum(E2.weight) > 200 pounds

rate streams: the RFID reading stream has readitigs,
tag _id of object O; or tag _id of shelf S;) and the The nestedselect-From  query simply adds two attributes

reader location stream has repofti;e, (x, y, z)) . In to each event: the square foot area that each object belongs
practice, these streams may be slightly out-of-sync in timk®, computed by a function on its:(y, z) location, and the
In our model, however, a time step (also calledegnoch is  Weight of the object, retrieved by another function using its
fairly coarse-grained, e.g., a second. This allows us to genert&@ id. Then the outer query considers events in each 5 second
synchronized streams via simple low-level processing, suchwi®idow, groups them based on the square foot area, computes
assigning the same time to RFID readings produced in ofe total weight of the objects in each group. For the groups
epoch and taking average of multiple location updates in #fth the total weight greater than 200 pounds, it reports the
epoch to produce a single update. Therefore, we consider o@fga and the total weight in output.
synchronized streams in the rest of the paper. Crucially, both of these queries require reliable knowledge
Output Event Stream. Our goal is to translate noisy, of the object location, which is unavailable without processing
primitive data streams from a mobile RFID reader intgnd transforming the raw data streams. While the focus of

clean, precise event streams with location information. RIS paper is not sophisticated probabilistic query processing
the output stream, each event reports the location of &wch asT], we view our work as a crucial data cleaning and
object as followsitime, tag _id of O, (x, y, z) of transformation step that enables such query processing over
0;, (statistics)?) . Events are output for not only ob-real-world RFID data streams.
served objects but also objects with missed readings. In other
words, the output stream not only augments the input streams
with object locations but also mitigates the effect of missed In this section, we present a probabilistic model that cap-
readings: In addition, the optional statistics field can bdures how raw data streams are generated by a mobile RFID
used to report summary information of the estimated locatid@ader from the true state of the world. Given the complexity of
distribution, such as its variance or confidence regions.  the problem, our model incorporates the motion of the reader,

Finally note that as the reader moves, it may obsertke object dynamics, and most importantly, the noisy sensing
an object several times from different locations. Combiningf objects and reader locations.
such multiple readings provides valuable information about Formally, the world is modeled as a vector @ndom
the object location. To avoid fluctuating values in the outpu¢ariables, which are represented as nodes in Figure 1. There
our system outputs an event for an object only at particulare two types of variablegvidence variablethat we observe

in the data, andlidden variableghat we wish to infer from the

2 While transforming raw data streams into an event stream, Wformation contained in the evidence. In our application, the
can also archive the raw streams for post-facto analysis. hidden variables are the true reader locatiynrand the object

I11. A PROBABILISTIC DATA GENERATION MODEL



R; True reader location at time. Vector containing

(2,7, 2) position and orientation RFID sensor model Given that the read rate of an RFID

R, Noisy observation of reader location at time readgr is Ie§s than 100%, it. .is_natural to model th? re_ader’s

Oq; True location of object at timet. Vector containing sensing region in a probabilistic manner: each point in the
(z,y, z) position. sensing region has a non-zero probability that represents

O.; Binary variable indicating whether objects observed the likelihood of an object being read at that location. To
at timet determine the probabilistic values for different points, we can

Si True location of shelf tag represent the sensing region as thelihood of reading a

Swi Binary variable indicating whether shelf tagis ob- tag based on the factors including the distance and angle
served at time

R Matrix of all true reader location&R, Rs . .. R to the regder. Since the sensor noise varies with time .and

R Matrix of all observed reader location&, s . . . Fir] Iocat!on,_ it is also poss!ble to introduce other parameters into

O, Matrix of all true object locations at time the likelihood, and estimate those parameters based on the

O Matrix of all true object locations at all time steps specifics of the deployment environment.

O, Binary vector[O; 1 ... O; ] of all readings at time Formally, we introduce a flexible parametric model that

O Matrix of all object readings at all time steps describes how the read rate of an RFID reader decays with

TABLE | distance and angle. Given the true locati®nof the reader and

SUMMARY OF NOTATION IN THIS PAPER. O,; of the objecti, the sensor model is a conditional distribu-

. . . tion p(Oy| O, R;) that models the probability of reading the
reader motion and location sensing , ¥ 2
. ¢ tal . tag. If we denote the reader location by the ve¢tét r/, r7],
R, | Rt and the reader angle in relation to the reference coordinate
frame byrf, then we can compute the distanég and the

I
1
R, I. R, angled,; between the reader and the tag as follows:
;Otl I: Ot+1% §:Ot,i_[rfvrty7rf]
@6, | 0,,.,©@ dii = VoTo
sensor ! ’ 0. — 6T [cos ¥, sin 7]
model ﬁ_TCi costis = des
t2 ) V2 ¢
4 Coa @ Empirically, we have found that the read rate decreases
t,2 i Oty12 approximately quadratically with distance and with angle,
@8 ! 3 so that the probability can be written as a function like
& E sl S22 ae(d) + 32, be(6::)¢, where the{a.} and {b.} are

coefficients that we expect to be negative. But strictly speaking
this quadratic function cannot be a probability distribution,
because it is not restricted {0, 1]. To fix this, we compose
Fig. 1. Model of reader and object locations. The shaded region at tipe quadratic function with the sigmoid functiofiz) =
contains the reader motion model and reader location sensing model. 'Iit}e(l + exp{—x}), which has the effect of squashing a real
lightly-shaded region at bottom contains the RFID sensor model. number into the intervadO, 1). This transformation yields the

logistic regressionrmodel, which is a standard technique for

locations Oy;, which are represented by the unshaded nodggpapilistic binary classification from the statistics literature.
in Figure 1. The evidence variables are the reported reaggy;

gure - abls ] O tting this together, the sensor model is:

location R; and the object readings;;, which are indicated
by the shaded nodes in Figure 1. (For definitions of all the . 1
notation used in.this sgctioq, see Tablg 1) N ~ (O = 0ldui, 0i) = 1+ exp{3.°_y ac(de)® + 2, be(0rs)e}

The goal of this section will be to define a joint probability
distribution p(R, O, R, O) over both hidden and observed The coefficientsz. andb. are real-valued model parameters
variables. Then, given observed valiBsand O, this joint that are learned from data in a calibration step, discussed in
model induces a conditional distributigfR, O|R, O) over Section III-C. We use the same sensor model for both the
the true locations, which can be used to predict the objec@bject tags and the S_helf tags. T_he _only difference is that for
locations. We describe various components of our model ihe shelf tags, we write the distribution agS; = 0[dy;, 04:),
Section 1lI-A, how we combine them into a single jointout the same model and coefficients are used in both cases.
distribution in Section 11I-B, and how we estimate model As our results in Section V show, our sensor model is

shelf tags
S (time independent)

parameters in Section II-C. a flexible parametric form that can fit a variety of sensing
regions, including conical and spherical regions (examples of
A. Components of the Model learned sensor models are shown in Figure 5(b)-5(d)).

Reader motion model This model describes how the
Our joint model over the entire world is divided into fourreader moves. We assume that the reader moves with a
components that separately model different aspects of tt@nstant velocity that varies somewhat over time. In other
domain. We explain each of the components in detail belowvords, the new location is the old location plus a noisy version



of the average velocity. Formally, the new locati®n can be The factorization of (2) can be depicted as a directed acyclic
computed from the old location &, = R; 1 + A+¢, where graph called alirected graphical modedr aBayesian network
A is the average velocity of the reader, ands the noise. as shown in Figure 1. Our model is a particular case of a
The motion noise is a Gaussian random variable with meadynamic Bayesian network (DBN) [26], but with conditional
0 and diagonal covariance matrkx,, . probability functions specially designed for our problem.
Reader location sensing modelThis model describes the . ) . )
noise in our observations of the reader’s location. For exampfe, Parameter Estimation using Learning
an RFID-equipped robot may compute its location by deadWe next describe the self-calibration step in which we
reckoning, that is, basically by counting how many times itsstimate the model parameters from data. The parameters
wheels have revolved. We assume that this measurement nofseur model are the coefficients.} U {b.} of the sensor
is Gaussian with mean, and covarianc&,. A more complex model, the average reader velocity, the varianceX,, of
noise model is not necessary here, because errors in the retfuieereader velocity, and the mean and variance; of the
location can be corrected by information from the static sheibise in reader location sensing. The sensor model in particular
tags as shown in our experiments in Section V. depends not only on the type of reader used, but also on the
Object location modet We further model the fact that specifics of the environment such as metal objects and density
objects can change locations in a warehouse scenario. chttags. One way to calibrate the sensor model is to perform
each timet, we say that an object changes its location withalibration in the lab [19], [12], [20], in which the read rate is
probability «,, in which case the new location is distributedneasured when a reader and an RFID tag are placed at various
uniformly across all shelves; otherwise, the object locatidthown distances and angles. Such manual lab calibration is not
does not change. We write this model as a conditional distfnly tedious but also inaccurate in real deployments due to the
bution p(O+;|O;—1 ;). This model contains no distinguishingchange of environmental factors in those deployments.
information about the object’s new location, but such infor- An important benefit of having a flexible parametric model
mation is not needed here: The object location model is usisdhat we can automatically learn the model parameters using
to temporarily create samples that will be weighted based arsmall training data set collected from the same environment
the actual observations in the inference process; the new objectvhich the system is to be fielded. The training set includes
location will be eventually inferred from the readings from thahe observed reader locations and readings of a small set of
location (details of this process are given in Section IV-A). tags, some of which are shelf tags with known locations. We
perform parameter estimation using Expectation-Maximization
B. Formal Definition (EM), a standard method for parameter estimation in the
Resence of hidden variables [3]. In Section V, we show that
nly a small number of shelf tags (e.g., less than 20) are
eeded to learn accurate sensor models.

Now we describe how the component models can be co
bined to define a joint model over the entire domain. B
way of illustration, we first describdnow the data would
be generated if the world behaved according to our model |\, EFFICIENT, SCALABLE INFERENCE OVERSTREAMS

Assume that the initial reader locatid®y, is known. Sample . i
initial object locationsO; from a uniform distribution over S NOISy, raw data streams emanate from a mobile RFID

the shelf. Then for each time step perform the following reader, the task of translating them into a clean, precise event

five steps. (1) Generate the new reader locafiorfrom the stream with location information is treated as an inference
previous locationR,_, by sampling from the reader motionPrOc€ss in our work. Inference is essentially to estimate the

model p(R;|R._1). (2) Generate a noisy observatidty of true locations of objects for each tinteeven if there are no
the reader location from the reader noise moﬂ@‘ﬁftht)- readings returned for some of the objects. Formally speaking,

(3) Generate new object locatiom®; from the object loca- O™ the joint distributionp(R, O, R, O) defined previously
tion modelp(0;|O;_,). (4) Decide whether each object jover both the phy5|ca'l .WOI’|d gnd. noisy readlnAgs,Alnfere.nce is
observed using the sensor model. Each objeit observed to compute the conditional distribution(R, O|R, O). This

with probabilityp(Oti|Rt,Oti). (5) Decide whether each shelfconditional distribution can be used to predict true object

tag is observed using the sensor model. Each shelf tag Iocations' and optionally the true _reader Iocation..
observed with probability(Sy| R:, S;). Exact inference for our model is very challenging, because

Anythe true conditional distribution has a complex shape. Instead,

Now we give the formal description of our model. R . . :
distribution that can be sampled in the manner above can afép Sample from the distribution approximately using a generic

be factorized into the following product of local probabilitym‘p"chine Igarnipg glgorithm calleplarticle filtering_ How to_
distributions: apply particle filtering to our particular problem is described

in Section IV-A. However, a naive implementation of particle
»(R,R,0,0|S) :p(RhOI)HP(Rt|Rt—1)p(Rt|Rt) filtering does not scale to the enormous number of objects
. that would be expected in a real warehouse. To handle this,
x [] p(O+ilO+—1.:)p(Ovil Re, Ovi) @ we augment the basic algorithm in thrge noyel ways:
o o We first propose an advanced technicpeeticle factoriza-
% Hp(gti|Rt7St)' tion, to reduce the number of samples needed for accurate

ies inference for a large number of objects (Section 1V-B).



egion v T 0 Step 1 Initialization. Generate a set of initial particles
i an 3‘7 {2{"|j = 1...J} from the prior distributionp(R1, O1).
N postion 1 =) L positon 2 Step 2 Update Let the vectory, contain all of the obser-
reader position ream:ment reader position? Vations at tlmet Then for eaCh t|me Steﬂ
(a) five initial samples ~ (0) more likely samples  (c) a likely sample of the reader e Sampling For each particle:ﬁi)l, generate a new parti-
of object O's location of object O's location position given a shelf tag S

cle a:%” from a proposal distributiom(xt|x§]_)1,yt). The
Fig. 2. Weighting samples of object and reader locations. proposal distribution is an arbitrary distribution chosen to
be easy to sample from. In this work, we use the reader
¢ We then augment the factorized particle filter with spatial motion model and object location model for sampling.
indexing structures to limit the set of objects that are * Weighting Compute a new particle weight
actually processed at each time step (Section IV-C). . . @29,y
e At some point in inference, the particles for an object may wy = Cw;™y -
stabilize in a small region. In this case, we compress the par-
ticle representation of the object’s location into a parametric ~ whereC' is a constant with respect g chosen so that
distribution to save both space and time (Section IV-D). Zj wﬁ” = 1. This weight adjusts for the fact that the
A. Particle Filtering particles were samplgd .fror.n the proposal distribution,

: rather than the true distribution of the model.

In this section, we describe the main intuitions behind ¢ Re-sampldrom the particles to reproduce the highest-
sampling-based inference for our problem. We also give a for- \weight ones. Each of the new particles is selected by
mal description of how the generic particle filtering algorithm  sampling from the set of old particles with replacement.
[11] is applied to our particular probability distribution, which A particle is selected with probability equal to its weight.
provides a technical context for our later extensions. Step 3 Inference output At any time step, the posterior

The basic idea is to maintain a weighted list of samplegjstribution over the hidden variables can be estimated by a
each of which contains a hypothesis about the true locatigizighted average of the particles. More formally,

of each object as well as a hypothesis about the true reader
location. Each sample has an associated weight, representing
the likelihood of the sample being true. The weight of a sample
is assigned based on the following intuitions. ) o _ o )
As Figure 2(a) shows, if a reader detects the tag of obje¥{N€re1li.—s) is an indicator function that i$ if and only if
O once, the tag must be in the vicinity of the reader. We cdn= - A similar formula is used for the reader location. From
generate multiple samples about the tag location in the readdpgse distributions, it is easy to compute any desired statistics,
sensing region (or a slightly larger area) but cannot furth&HCh as the mean, the variance, or a confidence region.
distinguish these samples. However, if the reader detects th&ensible initialization of the particles is also important,
tag again from a nearby position, then the samples that resRgeause otherwise many samples will begin far away from the
in the intersection of the sensing regions at the two read@iiect’s actual location. In this work, we create new particles
positions will be assigned higher weights (Figure 2(b)). rdor an object When_we see it the first time or at a location far
garding the reader location, samples are weighted based ond#@Y from the previous location of observing it. At the current
likelihood of seeing all observed objects from that location. dpcation, we initialize the particle locations from a uniform
particular importance are the shelf tags with known |Ocationg|_.str|butlon over a cone originating at the reader location. The
As Figure 2(c) shows, an observed shelf fagan be used to width of the cone is chosen to pe an overestimate of the true
distinguish good samples of the reader location, from whi¢Ange of the reader. We call this initializatiGensor-model
the reader can detect the shelf tag, from those bad sample§@tedinitialization.
the reader location, from which the reader cannot. B
At the next time step, these samples are updated to reflect ) ) .
expected changes of reader and object locations. Their weight§© far every particle has included a sample of the locations
are adjusted based on the new observations from that st@pall objects. To get good accuracy, intuitively we expect
At any point, we can use this weighted list of samples 4@ Use a large number of particles in the number of objects
a distribution over the hidden variables, i.e., the true objed¥hich was observed in our experiments presented in Section
locations and reader location, given the observations—exac‘ﬂgp)- This is because éven if a particle contains good Ipcat|on
the result that inference aims to compute. eStimates for some objects, it may contain bad locations for
Formally, we denote a set of samples (ternpeuiticlesin  Other objects, simply through random chance in the sampling
the literature) at time using z!, ---, JU%J)_ We denote the irt()(r:]edcl;rel.( F|gur)e 3(a) _|Ilustratesdan elem(;plle of_ thl?: Pg[)t_lcle
- : ) ) AU ) the dark stars) contains a good sampled location for Object
J Ejh) Pamcle by 2 vgctomt = (R 04 ’ Oin): );vr_]ere 1 but not for Object 2. On the other hand, particle B (the light
Ry’ is a hypothesis about the reader location g 1S@ stars) contains a good sampled location for Object 2 but not
hypothesis about an object location. Let the Weighkﬁf be Object 1. As the number of objects grows, it becomes more
w,fj). The particle filtering algorithm in our application is: likely that most particles will happen to have sampled a bad

a2 Te 3)
a(z |z, y)

J
p(Om‘ \ RL..t, 01.A.t) ~ Z wﬁ”l{omzolg{)}’ (4)
Jj=1

Particle Factorization



Object 1 Reader Particle Eisade L oxSionSC in the factored representation, the weight of a particle for

Particles Particles

Reader ocaton parice on object: does not depend on weights of particles for any other
ight um . . .

-9 ; objects. To compute the new weights, the new incremental
Object Particte 2 weight for each reader particle'’) can be computed as
Tag ID

p(R|RY) [Lics p(Su|RY, S,). The new incremental weight
for an object particled?"* is p(Oy|RY, 09).

It can be shown that this weighting step is equivalent to
(2) Motivation  (b) Factored particles  (¢) Index of factored particles the standard particle filtering weight step applied to the full
set of unfactored particles. Mathematically, this is because our
proposal distribution and our model factorize in the same way
as our data structures do. To see this, consider the weight
Kpdate (3) for unfactored particles:

Object location
Reader location index
Weight

Object 2

Fig. 3. Motivation and data structures for factored particles.

location for some object. One way to overcome this proble
is simply to use more particles, but this becomes prohibitive
expensive when there are large numbers of objects. ) v

In this section, we introduce an advanced technique that” = Cwi”, -
enables the particle filter to scale dramatically in the number of

p(jo)> Ogj) |jof>17 Oz(tjjl’ Rt*h Oifl)
q(jo)v 01(:j) ‘REQD 05];)1, Ri—lv C)t—l)

objects. In this technique, which we calrticle factorization G B p) 5 1 p0) S G) AG)

WeJ break a large pargcle over all the%bjects into smaller par- Cuip(Bel Ry )Ep(&ﬁRt »St) Zl;[lp(o”lRt 0)
ticles over individual objects. This allows us to combine good N

particles from different objects and, essentially, to represent = cw?), - v Hwt(g> (5)
an exponentially large number of unfactored particles in the i=1

amount of space linear in the number of objects. The challengghere in the second line, we substitute definitions: and
is to ensure that the operations required by the particle filtgf the Jast line we simply defines’?) and w? to be the
. . . . T (3
can still be performed in this factored representation. ¢qorresponding terms from the previous equation. This equation
First we explain the data structures that we use to maintaiRows that that the weights can be computed separately for
these factored particles. As shown in Figure 3(b), we maintain ., object, with the same result as if the weight had been

a list of reader particles, each of which contains a hypothegismputed for the exponential number of unfactored particles
about the reader location and an associated weight. Eqgh; is implicit in our representation.

object particle contaips a hypqthesis of the object Io.catio.n Finally, performing resampling in this representation is a
and the reader location (a pointer to the reader particle i trivial task. For the object particles, we resample them
our implementation), a weight, and the object's tag id. W the usual way while ensuring that their pointers to the
also maintain an index of object particles that maps from apsqciated reader locations are preserved. On the other hand,
object’s tag id to the list of object particles for that tag idyhen we resample reader locations, we instrument resampling
further, each object particle refers to the corresponding reaggfiayor reader particles that are associated with good object
particle via the contained pointer (Figure 3(c)). particles. Details of the resampling algorithm are omitted due
In addition to maintaining factorized particles, we alsg, space limitations (but are available i)
maintain factorized weights. Each reader partigld) has an oy factorization scheme is related to that of [27], but with
associated weight]. The reader particle also has a list okeveral important differences. The main difference is that our
associated object particle@t(g’l) ... OEf’K) for each object particle weights are also factorized, while the previous work
1. Each of these object particles has a weiglfif’“). The ignores the weights entirely by resampling at every time step.
semantics of the factored weights is: If we were to expariy maintaining factorized weights, our method avoids both the
the factored representation into the exponentially-long list obst of resampling at most time steps, and the bias introduced
unfactored particles, then the weight of the unfactored partidiy resampling in the factorized representation.
is the factored reader weight times all of the factored object ) )
weights. In our factorized particle filter presented in the re§t SPatial Indexing
of this section, we manipulate these weights without actually Even with factored particles, the inference algorithm pre-
constructing unfactored particles. sented so far must process all the objects in the world at
Now we explain how these data structures can be usedery time step. This is because the weighting step described
to efficiently implement the factorized particle filter. Firstjn Section IV-A is performed for all objects, whether their
the sampling step can be performed entirely on the factort)s were read or not. In this section, we introduce spatial
representation. To sample from the proposal distribution, fisidexing as a further approximation that dramatically reduces
for each reader particle, we sample a new reader location fréine processing cost. It is important to note that spatial indexing
the reader motion model, and then for for each associatisgpossible only after the particles have already been factorized.
object particle, we sample a new object location from the The main insight is that even if the number of objects is
object location model. large, only a much smaller number of them are near the reader
Second, the weights of the new particles can also bé any given time. If we can restrict the processing to only
computed in a factored manner. The important point is thétose objects near the reader, a significant amount of work



Seneing ] oblects processed: distributions. For example, when an object is first detected, its
ase 1: read a . . .
read at t Case 1 Case 1 Case 2: not read at t but read before near (x,y,z) location could be anyWI:]ere W|t.h|n a Iarge and Oddly-shaped
objects ignored: area. But as more readings arrive, often the location particles
not read CeaZ ;| Cases gf;ei{f";ifr;ﬁﬁ)yb;‘::gi;ij;da“ stabilize to a small region. If this occurs, the object location
ase - 2 Y .
near (xy,2) farfrom (xy:z) Object Location could be represented much more compactly by a parametric

distribution. For example, the particle-based representation
may require 1000 particles, but a three-dimension Gaussian

(a) Processed and ignored objects at time t given reader location (x,y,z)

Spatial Index requires only 9 real numbers to store its parameters. Therefore,

reader location (xy.2 — compression to the parametric distribution saves considerable

(y1,z1 AR space. Compression can also save time as it often allows infer-

e e ence to use fewer particles on the compressed representation.
(b Index from sensing current readeFlocation (x.y,2) Per—yobject_ based compressionWe first describe how an

regions to objects (c) Spatial index over sensing regions object’s particles can be compressed. Suppose that a weighted
Fig. 4. Intuitions and data structures for spatial indexing. set of particles over the location of objectlefines a distri-

bution 5(O; ;) as in (4), and we wish to compress this into a
can be saved. This intuition is more precisely described Baussiany(O, ;) with meany and covariance matriX. This
the diagram in Figure 4(a), which classifies objects based & be done by minimizing the KL divergence lf|¢), which
their distance from the reader location at titér axis) and is a standard measure of “distance” between distributions.
the result of RFID sensing at(y axis). There are four cases:Wheng is Gaussian, the KL amounts essentially to a weighted
Case 1:If an object is read at time, no matter how far it average of the squared distance betwgeand the particles
is from the reader, it should be processed in inference. ~ comprisingp. It can be shown that the optimal choice of
Case 2:If an object is not read atbut was read before nearuses the sample mean and empirical covariance matrix, that
the current reader location, the object needs to be procesised = 3wy’ O ands = ¥, w?) (O — 1) (OF) — ).
so that the particle filter can downweight the particles of thehe KL divergence at these parameters measures how much
object that are very close to the current reader location. i lost by compression, in the sense of the expected squared
Case 3:If an object is near the reader but has never be&fror (€.g., in squared feet) of the resulting Gaussian.
detected from its current location, it is simply invisible to the Several methods are possible for choosing individual objects
inference procedure since RFID sensing is the only meansteftompress. One possibility is to compress an object whenever
observing the world. its tag has not been read for several time steps. This is
Case 4:Last, the object is far from the reader and indee@pplicable if an object leaving the read range means that it
not detected at. According to our sensor model, such objectwill not be observed for a long time. An alternative method is
have a very small (but nonzero) read probability, but roundirig rank the uncompressed objects by the KL of the compressed
this probability to zero appears to be a good approximatioriepresentation, and compress the objects that would have the
Therefore, we design a spatial index to distinguish Caseléast compression error. This method can be further augmented
from Case 4 so that we can save work for objects belongiidth a threshold. That is, we only compress the particle
to Case 4. For each reported reader location, we construdegresentation if the KL is above the threshold.
bounding box of the sensing region. Then our index has twoDecompression (sampling) and re-compressiohater on,
components. The first component, shown in Figure 4(b), map§en a compressed object has its tag read again, we need to
from bounding boxes to the set of objects that have at leg@grform the particle filtering steps on the compressed represen-
one particle within the bounding box. The second componefafion. To do this, we sample a small number of particles from
shown in Figure 4(c), is a standard spatial index (a simplifighe Gaussian to decompress the representation. Empirically,
R*-tree [2]) over the bounding boxes. we find that many fewer particles are required for accurate
At each time during inference, we construct a bounding béxference after decompression than for the original particle
of the current sensing region and probe the spatial index fitter, because the compressed representation tends to be well-
retrieve all potentially overlapping bounding boxes inserted kehaved. When the object leaves scope, if its particles are still
the past. For each of those boxes, we retrieve all containéll-represented by a Gaussian, it can be re-compressed.
objects. This gives us the full set of objects belonging to Our idea behind compression is similar to the Boyen
Case 2. Finally, we run particle filtering as usual, but restriégnd Koller method [4]. However, their method performs
sampling and weighting only to the objects in Cases 1 and@mpression only, while our method embeds compression
within a larger sampling procedure. Moreover, we can employ
compression on a per-object basis and hence has greater
We next present a compression technique that can fexibility to explore the benefits of Gaussian and particle-
embedded in our factorized particle filter to further redudeased representations wherever appropriate.
space consumption and improve inference speed. Recall that Eomment on accuracy Theoretically, there are no known
weighted set of particles for each object defines a distributioesults (even in the machine learning community) that can
over the the object's location. The main advantage of thpiantify the error from compression of arbitrary distributions
particle representation is the ability to represent arbitratike our object location distributions. However, our experi-

D. Belief Compression



ments provide empirical evidence that inference accuracy dodse parameters for data generation include: AR,.q; or,
not degrade because object particles can indeed stabilize toyadefault 100%, (2) read frequend®F, by default once
small region when compression is applied (see Section V-@\kery second, (3) the Gaussian model for reader motion, whose
default isy,,, =0, 0,,,=.01 for bothz andy dimensions, and (4)
V. PERFORMANCEEVALUATION the Gaussian model for reader location sensing, whose default

We have implemented all our inference techniques inisus=0,0,,=.01 for bothxz andy. Each trace contains readings
prototype system in Java. In this section, we present a detait#tfained from a single pass of scan of all the tags.
analysis of our system using both real RFID traces and large-Real lab deployment To evaluate our system in real-
scale synthetic data. Our results show that (1) our systeworld settings, we also created a lab deployment with a robot-
can offer clean, precise event streams with accurate locatimounted RFID reader, which we detail §v-C.
information, e.g., within a range of a few inches, and is robust
to noise; (2) our system outperforms SMURF [20], a state-0&. Model Calibration and Initial System Testing
the-art RFID data cleaning technique by XX%; (3) our system _ ) -
scales to tens of thousands of objects with small memory usagé’ the section, we evaluate our system for its ability to
and at a constant rate of XXX readings per second, while naivadlibrate the probabilistic model based on the characteristics of

various factors. We used simulation in this set of experiments.
A. Experimental Setup As a baseline, we also ran a method, calledform that

Query. In all experiments, we ran the location update queﬂgﬂiformly randomly samples an object's location over the_
described in Section Il over the event stream generated by QYerlapping area of the sensor model and the shelf. This
system. Recall that this query examines the most recent ev@ageline is used as a bound on the worse-case inference error.
of each object, and if the location in this event differs from Learning RFID sensor model As noted in Section IlI-A,
the previous event, outputs the tag id and new object locatidhe most challenging part of modeling is the sensor model
We ran this query over both real RFID traces and simulat&gcause it varies with the type of reader, environmental noise,
streams in a warehouse scenario (detailed below). To avéi§- To test the flexibility and accuracy of our probabilistic
fluctuating values in output, our system produced a locati&§@nsor model, we used a small trace consisting of readings of
event 60 seconds after an object was read the first time in cH&tags for learning the model using EM. To investigate the
round of scan (although inference was running in real-timemount of information needed for accurate learning, we varied

Metrics. The accuracy of query output can be measurdfe number of tags with known locations, assumed to be shelf
using two related metrics: The first is the average distant&gs, in the training data from 0 to 20. When fewer than 20
between reported object locations and true object locatiofdgs were used as shelf tags, the rest of the tags were treated
called theinference error Assuming the application has a@s object tags whose true locations are unknown.
precision requirement, e.g., within half a foot from the true Fig. 5(a) shows the true sensor model in simulation and
location, the second metric measures the percentage of locafiég 5(b) and 5(c) show the sensor models learned with 20
updates that fail to satisfy the requirement, called ¢éneor shelf tags and 4 shelf tags, respectively. Most importantly, our
rate. The performance metric is the average time that ogensor model learned from 20 shelf tags is very close to the
system takes to process each RFID reading. true model. Such approximation degrades only gradually as

Simulator. To obtain insight into various factors on perforwe reduce the number of shelf tags. When 4 shelf tags or
mance and perform scalability tests, we developed a simulafewer are used, the learned sensor model starts to deviate fast
for a warehouse scenario that produces synthetic RFID stredf@n the true model, because EM in this case is likely to be
with various controlled properties. The simulated warehoustck in some local maxima.
consists of consecutive shelves aligned on ghaxis, with After training, we used the learned sensor models to perform
objects evenly spaced on the shelves. Both shelves and obj#figrence over a test trace with 10 object tags and 4 shelf tags,
are affixed with RFID tags. For simplicity, we assume the sanusing 1000 particles per object. Most learned models (except
height for all tags and hence ignore thaxis. An RFID reader those from 0 and 4 shelf tags) result in small inference errors
is mounted on a robot that moves down thaxis facing the that are comparable to the results using the true model, and
shelves. In every epoch, it travels about 0.1 foot (which can bauch better than the baseline, as shown in Fig. 5(e). This
varied), stops, senses its current location and reads objectsshaws that our system can indeed learn accurate sensor models
the current shelf with added noise, and sends both its sen$en small traces with a few tags of known locations.
location and the RFID readings to our system. Handling RFID sensing noise We then investigate the

RFID readings were generated using a cone-shaped sersssitivity of our system to RFID sensing noise by varying the
model as shown in Fig. 5(a) (where white is for good reagad rate in the reader’s major detection ramg&,,q .., from
rate). The sensor model has a 30 degree open angle for 108% to 50%. Fig. 5(f) shows the results using a trace with
major detection range, in which the read rate is uniforrh6 object tags and 4 shelf tags. Our system again performs
and its value is controlled by a parametéiR,,.;or, and much better than the baseline, and degrades its accuracy only
an additional 15 degree angle for the minor detection ranggowly as RR,,q;or is reduced. This is because inference can
in which the read rate degrades froR\R,,,q;.» down to 0. intelligently exploit the facts from the past to smooth noisy
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Fig. 5. Results of model calibration and initial system testing

object readings and derive their locations, hence not highdgnsitivity of our system to these factors. Details are omitted
sensitive to the changes of the read rate. in the interest of space but available .
Handling reader location noise We next evaluate our ) )
system’s ability to handle reader location noise. We generafed Evaluation using Real Traces
traces by varying the parameters of the reader location sensinJo evaluate our system in real-world settings, we generated
model: the systematic error along theaxis p¥ € [0,1], a lab RFID deployment. As Fig. 6(a) shows, we erected two
indicating a constant distance between the measured locafianallel shelves (assumed to be along #haxis), containing
and the true location; the random nois¢ = 0.01 or 0.2, 80 EPC Gen2 Class 1 tags spaced four inches apart. Each shelf
representing little or high variation. Given the amount of noideas five evenly-spaced reference tags whose true positions are
present, we used 5000 particles per object to stabilize tkeown a priori. We constructed a mobile reader by mounting
performance. Fig. 5(g) shows the resultsr$f= 0.2 (the figure a bi-static antenna connected to a ThingMagic Mercury5
for c¥ = 0.01 is similar, hence omitted). RFID reader on an iRobot Create robot (Fig. 6(a)). The
Our system’s ability to overcome reader location noise i®bot was programmed to scan one row of tags, and turn
demonstrated by the difference between the bottom curamund to scan the other row, at a speed of 0.1 foot/sec with
(“motion model On - true”), which is our system using the truesadings performed once every second. The robot computed its
parameters of the reader location sensing model, and the cuo@ation using dead reckoning. We observed significant error
(“motion model Off’), which is a simplified technique thatin reported location, e.g. up to 1 foot off from the true location.
always uses the reported location as true location in inferende. emulate various read rates, we varied the reader’s timeout
As p¥ increases, our system is very effective in correctingetting—the amount of time a tag is given to respond after the
the systematic error, mostly through the evidence of the shiftial signal is sent by the reader—from 0.25 to 0.75 second.
tags. In contrast, the lack of motion model leads to degradatioriWe used the reference shelf tags to create a training trace to
almost linearly inu¥. Moreover, the curve (“motion model Onrun EM and learn the physical sensor model for our antenna.
- learned”) shows that we can very well approximate the beBhe result, shown in Fig. 5(d), reveals that our antenna’s read
system performance by learning the parameters of the locatamea is akin to a balloon with a wide minor range, whose read
sensing model from a small training trace. rate is inversely related to an observed object’s angle from the
Other experiments.We also explored other factors such asenter of the antenna; this agrees well with manually calibrated
the read frequency, the noise in reader motion, and the sizesefisor models for similar Thingmagic readers [24].
shelf area for particle initialization. Overall, we observed little We next compare the accuracy of our system to SMURF



Timeout Our System SMURF (improved) Uniform Sampling
(ms) X [ Y@ [ XY() | X)) [ Y@ [ XY@ [ X{@) [ Y [ XY
250 (SS)| 0.29 | 0.33 0.44 0.33 | 0.60 0.70 0.33 | 3.96 3.97
500 (SS)| 0.28 | 0.39 0.48 0.33 | 0.88 0.94 0.33 | 3.98 3.97
750 (SS)| 0.27 | 0.35 0.44 0.33 | 0.76 0.83 0.33 | 3.95 3.97
250 (LS) | 0.17 | 0.41 0.44 1.31 | 0.60 1.44 131 | 3.98 4.19
500 (LS) | 0.35 | 0.36 0.51 1.31 | 0.58 1.43 1.31 | 3.98 4.19
750 (LS) | 055 | 0.31 0.64 131 | 0.69 1.48 131 | 3.98 4.19

(&) A robot-mounted reader (b) Inference error of our system, an improved version of SMURF, and Uniform Sampling.
scanning two rows of tags SS denotes a small imagined shelf (0.66x4ft) and LS a large imagined shelf (2.6x4ft).

Fig. 6. Evaluation results using real traces.

[20] using traces collected from our lab. SMURF is essentiallgcation. We used our simulator to create synthetic streams.
an adaptive smoothing technique that for each epoch, deciddisCPU measurements were obtained from a 3Ghz dual-core
if a tag has moved away from the sensing region when therexeson processor with 6GB memory available for use in Java.
a missed reading. However, it cannot directly translate RFID Varying number of particles. First, we investigate how
readings into location events. For effective comparison to onrany particles are needed to meet the accuracy requirement.
system, we augmented SMURF with additional sampling: lIintuitively, a technique that needs more patrticles is less likely
each epoch, if SMURF decides that the tag is still in range scale. We ran the basic particle filter (unfactorized) and our
as a result of smoothing, a location of the tag is obtained Kyctorized particle filter. The parameter varied is the number
randomly sampling over the intersection of the current read particlesP: P unfactorized particles for the basic filter and
range and the shelf. At some point, when SMURF decides thatparticles per object for the factorized filter, which consume
the tag is no longer in scope, all sampled locations generathd same amount of space. As Fig. 7(a) shows, our factorized
in those consecutive epochs are averaged to produce the ffitidr quickly stabilizes its accuracy at around 0.2 foot after
estimate. Finally, SMURF does not support learning of the reaches 500. In contrast, the basic filter slowly improves
sensor model, so we approximate the read range based oniuaccuracy and has not reached 0.5 foot even with 10,000
learned model to enable sampling of the tag location. particles. As explained iflV-B, the basic filter cannot scale
Fig. 6(b) shows results of our system, improved SMURIgue to its excess need of particles to achieve decent accuracy.
and uniform sampling, with the first three rows generated from Varying number of objects. We next increased the number
a small imagined shelf, and the next three rows from a largé objects from 10 to 20,000 and ran all three advanced
imagined shelf. Since the read range can be large, such shethniques as well as the basic filter. Fig. 7(b) and 7(c) report
information helps restrict the area for object location samplingh the inference error and the average time taken to process
in all three algorithms. As can be seen, the accuracy of ogéich reading (on a log scale). As can be seen, given 20
system is within 0.44 to 0.63 foot. In comparison, the error @hbjects, the basic filter takes about 10 second to process each
SMUREF is 1.6 to 2.0 times of our system when the shelf are@ading, by using XXX particles yet still violating the accuracy
is small and is over 2.3 times when the shelf area is increasesfjuirement. The factorized filter, by using XXX particles per
These differences can be explained by two main reasondject, well meets the accuracy requirement and improves
First, SMURF can not correct the error in reported readgrocessing cost significantly. However, this cost still degrades
location as observed in our traces. While smoothing may kst as the object count increases. Augmenting the factorized
affective, sampling of object location is always performefilter with an spatial index reduces the objects processed at
from the reported reader location. This explains the differenegach time to a small number, yielding a much reduced cost at
between our system and SMURF along thexis where the a constant 10 msec per reading. Finally, belief compression
robot drifted significantly away from the expected locatiordrastically reduces the cost to 0.1 msec per reading due
Second, object location sampling that we added to SMURE the ability to use fewer particles (in this case only 10
is rather primitive compared to the sampling-based inferengarticles) after decompression. Neither spatial indexing nor
employed in our system. Their different effects are shown Iyelief compression causes obvious degradation of accuracy.
the error inz; the error of SMUREF is strictly half of the shelf  Other experiments We also ran tests with more noise in
size inx, as inaccurate as uniform sampling. reader location, which requires more particles to handle the
D. Scalability Tests using Simulation noise. Belief compression still achieved a constant throughput

Finally, we show how our system improves over basfef .1500 readings per second while meeting the accuracy re-
particle filtering §IV-A) in scalability while maintaining high duirement. Moreover, the memory usage of belief compression
accuracy. We examine our proposed techniques, particle facfgf-these tests was within 20MB. Details are availableh |
ization §IV-B), spatial index §IV-C), and belief compression
(8§1V-D), each including the preceding technique(s) in that
order. For scalability tests, we assume that the applicationDirectly relevant research has been addressed in previous
has an accuracy requirement of within 0.5 foot from the trusections. We survey broader areas of related work below.

VI. RELATED WORK
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Fig. 7. Results of scalability tests

RFID stream processingThe HiFi project[15] offers a important aspects. First, in previous work the sensor model is
declarative framework for RFID data cleaning and processinganually calibrated [19], [12], which is problematic because
Its techniques focus on temporal and spatial smoothing @fader performance depends greatly on the characteristics of
readings generated by a fixed set of static readers. SMURIE environment. Second, in [12], the reader motion model is
[20] is a particular cleaning approach employed in HiFi andmitted, which significantly simplifies inference. Third, and
we experimentally demonstrate the benefits of our approactost important, this line of work is not designed to produce
over SMURF for mobile readers. Architectural issues fajyueriable streams for scalable stream query processing—
probabilistic RFID processing have discussed in context ekisting work does not support online inference over RFID
Data Furnace [17] but the research is still underway. streams [12] and does so only for a small set of objects [19].

Sensor data managemef®5], [8], [10], [32] mostly con- In contrast, our work employs several techniques to produce
siders environmental phenomena such as temperature godriable streams and scales inference to large numbers of
light. Techniques for data acquisition [25], [7], model-baseabjects at stream speeds.
processing [8], and approximation [6], are geared towards
queries (e.g., selection and aggregation) natural to such data. VIl. CONCLUSIONS

In contrast, RFID data captures object identification and to|n this paper, we presented a probabilistic approach to trans-
support querying, such noisy, primitive data needs to be filgte noisy, primitive data streams from mobile RFID readers
transformed to clean, rich location data. Model-based viewso clean, rich event streams with location information, and
over sensor data streams [9] employ probabilistic inferengther, to do so at stream speed for large numbers of objects.
but are restricted to GPS readings (which already reveal objexir results show that with an automatically and accurately
locations) and small numbers of objects. learned probabilistic model, our approach can augment object
RFID warehousedssues in RFID data management includidentities with estimated locations with high accuracy, e.g.,
ing inference are discussed in [5]. A high-level design of @ithin a range of a few inches, and is robust to noise in
large-scale RFID system is presented in [35]. Applicatiombserved tags and reader locations. Such inference further
specific rules are used to archive and compress RFID datales to large numbers of objects (e.g., 10’s of thousands
into databases [34]. Inside RFID databases, advanced dstahem) with small memory usage and at a constant rate of
compression techniques are available [18] and data cleansiy@r 1000 readings per second.
can be integrated with query processing [29]. We plan to extend our research in several directions. We
Object and person tracking23], [28], [31] focuses on will extend our work to include inter-object relationships such
tracking moving targets when the association is uncertag containment of interest to monitoring applications. We will
between the observed features of an object and the objegfso extend it to handle handheld readers that are operated
true identity. In the RFID setting, however, object identitiegy humans and do not offer reader locations. Fina”y, we

are given as part of the readings; the challenge is to infgfil explore stream query processing over the inferred data

Iocat|on§. Therefore, models from this rese.a}rch area are @9kupport a range of monitoring applications.
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