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Abstract A drawback of structured prediction methods is that parame-
ter estimation requires repeated inference, which is intractable for general
structures. In this paper, we present an approximate training algorithm
called piecewise training that divides the factors into tractable subgraphs,
which we call pieces, that are trained independently. Piecewise training can
be interpreted as approximating the exact likelihood using belief propaga-
tion, and different ways of making this interpretation yield different insights
into the method. We also present an extension to piecewise training, called
piecewise pseudolikelihood, designed for when variables have large cardi-
nality. On several real-world NLP data sets, piecewise training performs
superior to Besag’s pseudolikelihood and sometimes comparably to exact
maximum likelihood. In addition, PWPL performs similarly to piecewise
and superior to standard pseudolikelihood, but is five to ten times more
computationally efficient than batch maximum likelihood training.

1 Introduction

Fundamental to many applications is the ability to predict multiple variables
that depend on each other. Such applications are as diverse as classifying
regions of an image [Li, 2001], estimating the score in a game of Go [Stern
et al., 2005], segmenting genes in a strand of DNA [Bernal et al., 2007], and
extracting syntax from natural-language text [Taskar et al., 2004b]. In such
applications, we wish to predict a vector y = {y0, y1, . . . , yT } of random
variables given an observed feature vector x. A relatively simple example
from natural-language processing is part-of-speech tagging, in which each
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variable ys is the part-of-speech tag of the word at position s, and the input
x is divided into feature vectors {x0,x1 . . .xT }. Each xs contains various
information about the word at position s, such as its identity, orthographic
features such as prefixes and suffixes, membership in domain-specific lexi-
cons, and information in semantic databases such as WordNet.

An attractive approach to such problems is provided by structured pre-
diction methods. Structured prediction methods are essentially a combi-
nation of classification and graphical modeling, combining the ability to
compactly model multivariate data with the ability to perform prediction
using large sets of input features. The idea is, for an input x, to define a
discriminant function Ψ(y,x), and predict y∗ = arg maxy Ψ(y,x). Just as
in graphical modeling, this discriminant function factorizes according to a
set of local factors. But as in classification, each local factor is modeled as
a linear function of x, although perhaps in some induced high-dimensional
space. Examples of structured prediction methods include conditional ran-
dom fields [Lafferty et al., 2001, Sutton and McCallum, 2007a], max-margin
Markov networks [Taskar et al., 2004a], MIRA [Crammer and Singer, 2003],
and search-based methods [Daumé III and Marcu, 2005].

A main drawback to structured prediction methods is that parameter
estimation requires repeated inference. This is because parameters are typ-
ically chosen by M-estimation: if θ are the model parameters, then the
parameter estimate is θ̂ = maxθ

∑

i ℓ(y(i),x(i); θ) for some function ℓ, such
as the likelihood or the margin. Numerical optimization of this objective
typically requires performing inference over each data point at many differ-
ent values in parameter space. For models with tractable structure, such as
chains and parse trees, this is often feasible if sometimes computationally
expensive, but for general structures inference is intractable. Therefore, the
need for repeated inference during training is a significant challenge to ap-
plying structured prediction methods to large-scale data, especially when
the model has complex structure. For this reason, approximate training
methods for structured models are of great interest.

An attractive family of approximate training methods is local training
methods, which are training methods that depend on sums of local func-
tions of only a few factors rather than on global functions of the entire
graph like the likelihood. In other words, the function ℓ can be written
as ℓ(x,y, θ) =

∑

a ℓa(xa,ya; θ), where each local function ℓa can be com-
puted efficiently from only a few of the factors of the full structured model.
The best-known example of a local training method is Besag’s pseudolike-
lihood [Besag, 1975], which is a product of the conditional probability of
each node given its Markov blanket. The chief attraction of this method is
that it achieves consistency without requiring inference in the training pro-
cedure. Although in some situations pseudolikelihood can be very effective
[Parise and Welling, 2005, Toutanova et al., 2003], in other applications, its
accuracy can be poor.

In this paper, we present a novel local training method called piecewise
training, in which the model’s factors are divided into possibly overlap-
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ping sets of pieces, which are each trained separately. At test time, the
resulting weights are used just as if they had been trained using maximum
likelihood, that is, on the unseen data they are used to predict the labels
using a standard approximate inference algorithm, such as max-product BP.
This method has been employed occasionally throughout the literature, but
to our knowledge its properties have never been systematically examined.
When using piecewise training, the modeler must decide how to split the
model into pieces before training. In this paper, we focus on the factor-
as-piece approximation, in which each factor of the model is placed in a
separate piece.

We motivate this procedure as an approximation to the likelihood of
a conditional random field. In particular, this training procedure can be
viewed in two ways. First, separate training of each piece can be accom-
plished by numerically maximizing an approximation to the likelihood. This
approximate likelihood can be seen as the true likelihood on a transforma-
tion of the original graph, which we call the node-split graph, in which
each of the pieces is an isolated component. The second view is based on
belief propagation; namely, the objective function of piecewise training is
the same as the BP approximate likelihood with uniform messages, as if
BP has been stopped after zero iterations. We call this the pseudomarginal
view of piecewise training, for reasons explained in Section 3.5. These two
viewpoints will prove useful both for understanding these algorithms, and
for designing extensions of these methods.

Second, we consider an extension to piecewise training, tailored for the
case in which the variables have large cardinality. When variables have
large cardinality, training can be computationally demanding even when
the model structure is tractable. For example, consider a series of processing
steps of a natural-language sentence [Sutton et al., 2004, Finkel et al., 2006],
which might begin with part-of-speech tagging, continue with more detailed
syntactic processing, and finish with some kind of semantic analysis, such
as relation extraction or semantic entailment. This series of steps might be
modeled as a simple linear chain, but each variable has an enormous number
of outcomes, such as the number of parses of a sentence. In such cases, even
training using forward-backward is infeasible, because it is quadratic in the
variable cardinality. Thus, we also desire approximate training algorithms
not only that are sub exponential in the model’s treewidth, but also that
scale well in the variable cardinality. The Besag pseudolikelihood (PL) is at-
tractive here, because its running time is linear in the variable cardinality.
However, piecewise training performs significantly better than pseudolikeli-
hood on the real-world data considered here, but unlike pseudolikelihood it
does not scale well in the variable cardinality.

To address this problem, we introduce and analyze a hybrid method,
called piecewise pseudolikelihood (PWPL), that combines the advantages of
both approaches. Essentially, while pseudolikelihood conditions each vari-
able on all of its neighbors, PWPL conditions only on those neighbors within
the same piece of the model, for example, that share the same factor. This
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is illustrated in Figure 2. PWPL can be viewed as double approximation:
Rather than performing maximum likelihood on the node-split graph, as
regular piecewise does, PWPL performs pseudolikelihood on the node-split
graph. Remarkably, this double approximation performs better than the
pseudolikelihood approximation alone on several real-world NLP data sets.
In other words, in testing accuracy PWPL behaves more like piecewise than
like pseudolikelihood. The training speed-up of PWPL can be significant
even in linear-chain CRFs, because forward-backward training is quadratic
in the variable cardinality.

In the remainder of this paper, we define piecewise training (Section 3),
explaining it from the perspectives of the node-split graph (Section 3.1)
and of belief propagation (Sections 3.2 and 3.3). Then we present PWPL
(Section 4.1), describing it in terms of the node-split graph. This viewpoint
allows us to show that under certain conditions, PWPL converges to the
piecewise solution in the asymptotic limit of infinite data (Section 4.2). In
addition, it provides some insight into when PWPL may be expected to
do well and to do poorly, an insight that we verify on synthetic data (Sec-
tion 5.2.1). Finally, we apply both piecewise and PWPL to several natural-
language data sets. The model resulting from the piecewise approximation
has better accuracy than pseudolikelihood and is sometimes comparable
to exact maximum likelihood (Section 5.1). Finally, we evaluate PWPL on
several real-world NLP data sets (Section 5.2.2), finding that it performs
often comparably to piecewise training and to maximum likelihood, and
on all of our data sets PWPL has higher accuracy than pseudolikelihood.
Furthermore, PWPL can be as much as ten times faster than batch CRF
training.

2 Background

2.1 Structured modeling and pseudolikelihood

In this paper, we are interested in estimating the conditional distribution
p(y|x) of a discrete output vector y given an input vector x. We model p
by a factor graph G with variables s ∈ S and factors {Ψa}

A
a=1 as

Normalizing F to obtain a conditional distribution yields

p(y|x) =
1

Z(x)

A
∏

a=1

Ψa(ya,xa), (1)

where Z(x) is a normalization constant. A conditional distribution which
factorizes in this way is called a conditional random field Lafferty et al.
[2001], Sutton and McCallum [2007a]. Typically, each factor is modeled in
an exponential form

Ψa(ya,xa) = exp{λ⊤
a fa(ya,xa)}, (2)
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where λa is real-valued parameter vector, and fa returns a vector of features
or sufficient statistics over the variables in the set a. The parameters of the
model are the set Λ = {λa}

A
a=1, and we will be interested in estimating them

given a sample of fully observed input-output pairs D = {(x(i),y(i))}N
i=1.

Maximum likelihood estimation of Λ is intractable for general graphs,
so parameter estimation is performed approximately. One approach is to
approximate the partition function log Z(x) directly, such as by MCMC or
variational methods. In this paper, we take a different approach, which is
to use a different objective function for parameters that is more computa-
tionally tractable.

An example of a computationally convenient objective for estimation
is the pseudolikelihood of Besag [1975]. Pseudolikelihood simultaneously
classifies each node given its neighbors in the graph. For a variable s, let
N(s) be the set of all of its neighbors, not including s itself. Then the
pseudolikelihood is defined as

ℓpl(Λ) =
∑

s

log p(ys|yN(s),x),

where the conditional distributions are

p(ys|yN(s),x) =

∏

a∋i Ψa(ys, yN(s),xa)
∑

y′

s

∏

a∋s Ψa(y′
s, yN(s),xa)

. (3)

where a ∋ s means the set of all factors a that depend on the variable s.
In other words, this is a sum of conditional log likelihoods, where for each
variable we condition on the true values of its neighbors in the training data.

It is a well-known result that if the model family includes the true distri-
bution, then pseudolikelihood converges to the true parameter setting in the
limit of infinite data [Gidas, 1988, Hyvarinen, 2006]. One way to understand
this is that pseudolikelihood attempts to match all of model conditional dis-
tributions to the data. If it succeeds in matching them all exactly, then a
Gibbs sampler run on the model distribution will have the same invariant
distribution as a Gibbs sampler run on the true data distribution.

2.2 Free energies

Piecewise training has a close connection with approximate inference meth-
ods based on the Bethe free energy, so in this section we give some back-
ground on belief propagation and approximate divergence measures.

The general idea behind any variational inference algorithm is to ap-
proximate a difficult distribution p by a distribution q drawn from some
family Q in which all distributions are tractable. To pick q, we select the
distribution that minimizes some divergence measure D(q, p) over q ∈ Q. A
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natural choice of divergence measure is the KL divergence

O(q) = KL(q‖p) − log Z (4)

= −H(q) −
∑

a

q(ya) log Ψa(ya). (5)

However, minimizing this divergence function is intractable, if Q is taken
to be to the set of all possible distributions. Therefore we make two ap-
proximations. First, we approximate the entropy term H(q) of (5), which
is intractable for arbitrary distributions. If q were a tree-structured distri-
bution, then its entropy could be written exactly as

HBethe(q) =
∑

a

q(ya) log q(ya) +
∑

i

(1 − di)q(yi) log q(yi). (6)

If q is not a tree, then we can still take HBethe as an approximation to H
to compute the exact variational objective O. This yields the Bethe free
energy:

OBethe(q) = HBethe(q) −
∑

a

q(ya) log Ψa(ya) (7)

The objective OBethe depends on q only through its marginals, so rather
than optimizing it over all probability distributions q, we can optimize over
the space of all marginal vectors. Following this idea yields the result that
loopy belief propagation optimizes a particular further approximation to
this optimization problem [Yedidia et al., 2004], but we do not pursue the
details here.

A second way of formulating BP as a variational algorithm yields a
dual form of the Bethe energy that will prove particularly useful [Minka,
2005]. This dual energy arises from the expectation propagation view of BP
[Minka, 2001a]. Suppose that we approximate each factor Ψa by a product
of functions that depend on one variable:

Ψa(ya) ≈ t̃a(ya) =
∏

i∈a

mai(yi). (8)

This yields an approximation to the distribution p, namely, p(y) ≈ q(y) =
∏

a t̃a(ya). Observe that q is possibly unnormalized.

In the context of belief propagation, we can view each factor mai as the
message from factor a to variable i, which have not necessarily converged.
In other words, we view the outgoing messages from each factor as approx-
imating it. As Minka [2001a] observes, each message update of loopy BP
can be viewed as refining one of the terms t̃a so that q is closer, in terms of
KL divergence.

Since q was therefore chosen to approximate p, it makes sense to use
the mass of q to approximate the mass of p. More precisely, let p′ be the
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unnormalized version of p, that is, p′(y) =
∏

a Ψa(ya). Then define rescaled
versions of t̃a and q as

t̄a(ya) = sat̃a(ya) (9)

q̄(y) =
∏

a

t̄a(ya) (10)

Then the idea is to scale each of the t̄a so that the resulting
∑

y
q̄(y) matches

as closely as possible the partition function
∑

y
p′(y). This can be done by

optimizing local divergences in an analogous manner to EP. Define q̄\a as
the approximating q̄ without the factor t̃a, that is, each sa is separately
chosen to optimize

min
sa

KL(Ψa(ya)q̄\a(ya)‖sat̃a(ya)q̄\a(ya)). (11)

Observe that because q̄\a depends on all of the scale factors sb for all factors
b, the local objective function depends on all of the other scale factors as
well. The optimal sa is given by

sa =

∑

y

Ψa(ya)

t̃(ya)
q(y)

∑

y
q(y)

. (12)

Thus the optimal sa actually does not depend on the other scale values.
Now taking the integral

∑

y
q̄(y) yields the following approximation to the

partition function

ZBetheDual =
∏

i

(

∑

yi

qi(yi)

)1−di

∏

a

(

∑

ya

Ψa(ya)

t̃(ya)
q(ya)

)

. (13)

It can be shown [Minka, 2001b] that this is also a free energy for BP, that
is, that fixed points of BP are stationary points of this objective.

A third view of BP, which is also useful in understanding piecewise
training, is the reparameterization viewpoint [Wainwright et al., 2003a]. In
this view, the BP updates are expressed solely in terms of the beliefs bn at
each iteration n of the algorithm. The beliefs are initialized as b0

a ∝ Ψa for
all factors, and b0

s ∝ 1 for all variables. The updates at iteration n are

bn
s (ys) =

∑

yN(s)

Bn−1
s (ys,yN(s))

bn
a(ya) =

∑

yN(a)

Bn−1
a (ya,yN(a))

(14)

where the distributions Bn−1
a and Bn−1

s are defined as

Bn−1
s (ys,yN(s)) ∝ bn−1(ys)

∏

a∋s

bn−1
a (ya)

bn−1
s (ys)

Bn−1
a (ya,yN(a)) ∝ bn−1

a (ya)
∏

s∈a

∏

c∋s\a

bc(yc)

bs(ys)

(15)
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(This notation is adapted from Rosen-Zvi et al. [2005].)

It can be shown that the beliefs from the message-based recursions are
equal to those from the reparameterization-based recursions. That is, for all
iterations m, qn

s = bn
s and qn

a = bn
a . This can be seen by induction, substi-

tuting the messages corresponding to qn−1 into the update equations (14)
for bn.

The reason for the term “reparameterization” is that at each iteration
n, we can construct a distribution T n(y) over the full space with factors

T n
s = bn

s , T n
a =

bn
a

∏

s∈a bn
s

. (16)

This distribution is invariant under the message update, that is, T n =
T n−1 = · · · = T 0 = p. So each T n can be viewed as a reparameterization
of the original distribution. This view of BP will prove especially useful in
Section 3.3.

3 Piecewise Training

In this section, we present piecewise training. The motivation is that in some
applications, the local information in each factor alone, without performing
inference, is enough to do fairly well at predicting the outputs, but some
amount of global information can help. Therefore, to reduce training time,
it makes sense to perform less inference at training time than at test time,
because at training time we loop through the examples repeatedly, whereas
at test time we only need to make each prediction once. For example, sup-
pose we want to train a loopy pairwise MRF. In piecewise estimation, what
we will do is to train the parameters of each edge independently, as if each
edge were a separate two-node MRF of its own. Finally, on test data, the
parameters resulting from this local training become the parameters used
to perform global inference, using some standard approximate inference al-
gorithm.

Now we define the piecewise estimator more generally. Let the distri-
bution p(y|x) be defined by a factor graph, where Ψa(ya,xa, θ) has the
exponential form (2), and suppose that we wish to estimate θ. Assume that
the model’s factors are divided into a set P = {R0, R1 . . .} of pieces; each
piece R ∈ P is a set of factors R = {Ψa}. The pieces need not be disjoint.
For example, in a grid-shaped MRF with unary and pairwise factors, we
might isolate each factor in its own piece, or alternatively we might choose
one piece for each row and each column of the MRF, in which case each
unary factor would be shared between its row piece and its column piece.

To train the pieces separately, each piece R has a local likelihood

ℓR(θ) =
∑

a∈R

θ⊤a fa(ya,xa) − AR(θ;x). (17)
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where AR(θ;x) is the local log partition function for the piece, that is,

AR(θ;x) = log
∑

yR

exp{
∑

a∈R

θ⊤a fa(ya,xa)}, (18)

where yR is the vector of variables used anywhere in piece R. This is the
likelihood for the piece R if it were a completely separate graphical model.
If the pieces are disjoint, and no parameters are shared between distinct
factors, then we could train each piece by separately computing parameters
θR

PW
= maxθR

ℓR(θR). But in order to handle parameter tying and overlap-
ping pieces, we instead perform a single optimization, maximizing the sum
of all of the single-piece likelihoods. So for a set P of pieces, the piecewise
likelihood becomes

ℓpw(θ) =
∑

R∈P

∑

a∈R

θafa(ya,xa) −
∑

R∈P

AR(θ;x). (19)

For example, consider the special case of per-edge pieces in a pairwise
MRF with no tied parameters. Then, for an edge (s, t), we have Ast(θ) =
log
∑

ys,yt
Ψ(ys, yt), so that the piecewise estimator corresponds exactly to

training independent probabilistic classifiers on each edge.
Now let us compare the approximate likelihood (19) to the exact likeli-

hood. Recall that the true likelihood is

ℓ(θ) =
∑

a

θafa(ya,xa) − A(θ;x)

A(θ;x) = log
∑

y

exp{
∑

a

θafa(ya,xa)}.

Notice that the first summation contains exactly the same terms as in the
exact likelihood. The only difference between the piecewise objective and
the exact likelihood is in the second summation of (19). So APW(θ;x) =
∑

R AR(θ;x) can be viewed as an approximation of the log partition func-
tion. Standard maximum-likelihood training for CRFs can require evalu-
ating the instance-specific log partition function A(θ;x) for each training
instance for each iteration of an optimization algorithm. By using piecewise
training, we need to compute only local normalization over small cliques,
which for loopy graphs is potentially much more efficient.

A choice of pieces to which we devote particular attention is the factor-
as-piece approximation, in which each factor in the model is assigned to its
own piece. There is a potential ambiguity in this choice. To see, write out
the summation contained within the dot product of (2)

Ψa(ya) = exp{
∑

k

θakfak(ya)},

so that each factor has multiple parameters and sufficient statistics. But we
could just as well place each sufficient statistic in a factor all to itself, that
is,

Ψak(ya) = exp{θakfak(ya)}, (20)
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Fig. 1 Example of node splitting. Left is the original model, right is the version
trained by piecewise. In this example, there are no unary factors.

and define the pieces at that level of granularity. Such a fine-grained choice of
pieces could be useful. For example, in a linear-chain model, we might choose
to view the model as a weighted finite-state machine, and partition the state-
transition diagram into pieces. In this paper, however, when we use the
factor-as-piece approximation, we will not use the fine-grained factorization
of (20), that is, we will assume that the graph has been constructed so that
no two factors share exactly the same support.

3.1 The Node-split Graph

The piecewise likelihood (19) can be viewed as the exact likelihood in a
transformation of the original graph. In the transformed graph, we split the
variables, adding one copy of each variable for each factor that it participates
in, as pictured in Figure 1. We call the transformed graph the node-split
graph.

Formally, the splitting transformation is as follows. Given a factor graph
G, create a new graph G′ with variables {yas}, where a ranges over all factors
in G and s over all variables in a. For any factor a, let πa map variables in
G to their copy in G′, that is, πa(ys) = yas for any variable s in G. Finally,
for each factor Ψa(ya, θ) in G, add a factor Ψ ′

a to G′ as

Ψ ′
a(πa(ya), θ) = Ψa(ya, θ). (21)

If we wish to use pieces that are larger than a single factor, then the defini-
tion of the node-split graph can be modified accordingly.

Clearly, piecewise training in the original graph is equivalent to exact
maximum likelihood training in the node-split graph. This view of piecewise
training will prove useful for understanding PWPL in Section 4.

This viewpoint also makes clear the bias in the piecewise estimate. Sup-
pose that the model family contains the true distribution, and let p(y|x; θ∗)
be the true distribution of the data. The piecewise likelihood cannot distin-
guish this distribution from the distribution pNS over the original space that
is defined by the product of marginals on the node-split graph

pNS(y|x) ∝
∏

a∈G′

p(π−1(yas)|x; θ∗), (22)
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where G′ is the node-split graph, and p(ya|x; θ∗) is the marginal distribution
of the variables in factor a according to the true distribution. By that we
mean that the piecewise likelihood of any parameter setting θ when the
data distribution is exactly the true distribution p is equal to the piecewise
likelihood of θ when the data distribution equals the distribution pNS.

For example, suppose that, unknown to the modeler, all the variables
in the graph are actually independent. Then pNS(y|x) =

∏

s∈G p(ys|x)d(s),
where d(s) is the degree of variable s, and the piecewise estimate will con-
verge to this distribution in the limit of infinite data rather than the true
distribution. Essentially, piecewise overcounts the effect of the variables that
share multiple factors.

3.2 The Belief Propagation Viewpoint

Another way of understanding piecewise training arises from belief propaga-
tion. Let M = {mai(yi)} be a set of BP messages, not necessarily converged.
We view all of a factor’s outgoing messages as approximating it, that is, we
define Ψ̃a =

∏

i∈a mai. Recall from Section 2.2 that the dual energy of belief
propagation yields an approximate partition function

ZBP(θ, M) =
∏

a

(

∑

ya

Ψa(ya, θ)

Ψ̃a(ya)
q(ya)

)

∏

i

(

∑

yi

q(yi)

)1−di

, (23)

where q denotes the unnormalized beliefs

q(y) =
∏

a

Ψ̃a(ya) =
∏

a

∏

i

mai(yi), (24)

with q(ya) =
∑

y\ya
q(y) and q(yi) =

∑

y\yi
q(y).

Now, let M0 be the uniform message setting, that is, mai = 1 for all a
and i. This is a common initialization for BP. Then the unnormalized beliefs
are q(y) = 1 for all y, and the approximate partition function is

ZBP(θ, M0) =
∏

a

(

Ca

∑

ya

Ψa(ya, θ)

)

∏

i

C1−di

i , (25)

where Ca and Ci are constants that do not depend on θ. This approximate
partition function is the same as that used by piecewise training with one
factor per piece, up to a multiplicative constant that does not change the
gradient. So another view is that piecewise training approximates the likeli-
hood using belief propagation, except that we cut off BP after 0 iterations.
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3.3 Pseudo-Moment Matching Viewpoint

Piecewise training is based on the intuition that if all of the local factors fit
the data well, then the resulting global distribution is likely to be reasonable.
An interesting way of formalizing this idea is by way of the pseudo-moment
matching estimator of Wainwright et al. [2003b]. In this section, we show
that there is a sense in which piecewise training can be viewed as an exten-
sion of the pseudo-moment matching estimator.

First, consider the case in which a discrete distribution p(y) factorizes
according to a graph G with fully-parameterized tables, that is,

Ψa(ya) = exp{
∑

y′

a

θ(y′
a)1{ya=y′

a
}}. (26)

Here we are not (yet) conditioning on any input variables. Let p̃(y) be the
empirical distribution, that is, p̃(y) ∝

∑

i 1{y=y(i)}.

The pseudo-moment matching estimator chooses parameters that max-
imize the BP likelihood without actually computing any of the message
updates. This estimator is

θ̂a(ya) = log
p̃(ya)

∏

s∈a p̃(ys)

θ̂s(ys) = log p̃(ys).

(27)

For these parameters, there exists a set of messages that (a) are a fixed-
point of BP, and (b) the resulting beliefs qa and qs equal the empirical
marginals. This can be seen using the reparameterization perspective of
BP [Wainwright et al., 2003a] described in Section 2.2, because with those
parameters the belief-based updates of (14) yield a fixed point immediately.

For conditional random fields, however, we are interested in estimating
the parameters of conditional distributions p(y|x). A simple generalization
is to require for all inputs x with p̃(x) > 0 that

Ψa(ya,x) =
p̃(ya|x)

∏

s∈A p̃(ys|x)

Ψs(ys,x) = p̃(ys|x).

(28)

However, we can no longer expect to find parameters that satisfy these
equations in closed form. This is because the factor values of Ψa(·,x) do
not have an independent degree of freedom for each input value x. Instead,
to promote generalization across different inputs, the factors Ψa have some
complex parameterization, such as the linear form (2), in which parameters
are tied across different input values. Therefore, a natural approach is to
treat the equations (28) as a nonlinear set of equations to be solved. To do
this, we optimize the objective function

min
θ

∑

a

D(Ψa‖p̃a) +
∑

s

D(Ψs‖p̃s), (29)
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where D(·‖·) is a divergence measure. By a divergence measure D(p‖q), we
simply mean a nonnegative function that is 0 if and only if p = q. Then
if a parameter setting θ exists such that the divergence is zero, then the
equations have been solved exactly, and θ optimizes the BP likelihood.

This provides another view of piecewise training, because choosing us-
ing KL(p̃a‖Ψa) for the divergence in (29) yields an equivalent optimization
problem to the piecewise likelihood (19). This provides a justification of the
intuition that fitting locally can lead to a reasonable global solution: it is not
the case that fitting factors locally causes the true marginals to be matched
to the empirical distribution, but it does cause the BP approximation to
the marginals to be matched to the empirical distribution, over the inputs
that were observed in the training data.

3.4 Approximation to the likelihood

One rationale for the piecewise estimator is that it bounds the likelihood.

Proposition 1 For any set P of pieces, the piecewise partition function is
an upper bound on the true partition function:

A(θ;x) ≤
∑

R∈P

AR(θ;x). (30)

Proof The bound is immediate upon expansion of A(θ;x).

A(θ;x) = log
∑

y

∏

R∈P

exp

{

∑

a∈R

θafa(ya,xa)

}

(31)

≤ log
∏

R∈P

∑

xR

exp

{

∑

a∈R

θafa(ya,xa)

}

(32)

=
∑

R∈P

AR(θ;x). (33)

The bound from (31) to (32) is justified by considering the expansion of
the product in (32). The expansion contains every term of the summation
in (31), and all terms are nonnegative.

Therefore, the piecewise likelihood is a lower bound on the true likelihood.
If the graph is connected, however, then the bound is not tight, and in
practice it is extremely loose.

This bound is actually a special case of the tree-reweighted bounds of
Wainwright, Jaakkola, and Willsky [2002], a connection which suggests gen-
eralizations of the simple piecewise training procedure. As in that work, we
will obtain the upper bound by writing the original parameters θ as a mix-
ture of tractable parameter vectors θ(T ). Consider the set T of tractable
subgraphs induced by single factors in G. Precisely, for each factor Ψa in G,
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we add a (non-spanning) tree TR which contains only the factor Ψa and its
associated variables. With each tree TR we associate an exponential param-
eter vector θ(TR).

Let µ be a strictly positive probability distribution over factors. To use
Jensen’s inequality, we will need to have the constraint

θ =
∑

R

µRθ(TR). (34)

Now, each parameter θi corresponds to exactly one factor of G, which ap-
pears in only one of the TR. Therefore, only one choice of subgraph param-
eter vectors {θ(TR)} meets the constraint (34), namely:

θ(TR) =
θ|r
µR

, (35)

where θ|R is the restriction of θ to R; that is, θ|R has the same entries and
dimensionality as θ, but with zeros in all entries that are not included in
the piece R.

Therefore, using Jensen’s inequality, we immediately have the bound

A(θ) ≤
∑

R

µRA

(

θ|R
µR

)

. (36)

This is the exact bounding strategy used by Wainwright et al. [2002], except
that we have chosen to use the set of all single-factor trees to derive the
bound, rather than the set of all spanning trees.

This reweighted piecewise bound is clearly related to the basic piecewise
bound in (30), because A(θ|R) differs from AR(θ) only by an additive con-
stant which is independent of θ. In fact, a version of Proposition 1 can be
derived by considering the limit of (36) as µ approaches a point mass on an
arbitrary single piece R∗.

The connection to the Wainwright et al. work suggests at least two gen-
eralizations of the basic piecewise method. The first is that the reweighted
piecewise bound in (36) can itself be minimized as an approximation to
A(θ), yielding a variation of the basic piecewise method.

The second is that this line of analysis can naturally handle the case
when pieces overlap. For example, in an MRF with both node and edge fac-
tors, we might choose each piece to be an edge factor with its corresponding
node factors, hoping that this overlap will allow limited communication be-
tween the pieces which could improve the approximation. As long as there
is a value of µ for which the constraint in (35) holds, then (36) provides a
bound we can minimize in an overlapping piecewise approximation.

3.5 Three Views of Approximate Training Algorithms

The connections between belief propagation and piecewise training suggest a
general framework for viewing local training algorithms, which was describe
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by Sutton and Minka [2006]. They describe three different viewpoints on
local training, which suggest different algorithms. First, many local training
algorithms are straightforwardly viewed as performing exact inference on
a transformed graph that cuts the global dependencies in the model. For
example, standard piecewise performs maximum-likelihood training in a
node-split graph in which variables are duplicated so that each factor is in
its own connected component. Sutton and Minka refer to this viewpoint as
the neighborhood graph view of a training algorithm.

Second, many local training algorithms can be interpreted as approx-
imating log Z by the Bethe energy log ZBP at a particular message set-
ting. Sutton and Minka call this the pseudomarginal view, because un-
der this view, the estimated parameters are chosen to match the pseudo-
marginals to the empirical marginals. For any approximate partition func-
tion Z̃, the pseudomarginals are the derivatives ∂ log Z̃/∂θak. To explain
the terminology, suppose that the unary factors have the form Ψi(yi) =
exp{

∑

y′

i

θi,y′

i
1{yi=y′

i}
}. Then the derivative ∂ log Z/∂θi(yi) of the true par-

tition function yields the marginal distribution, so the corresponding deriva-
tive of log Z̃ is called a pseudomarginal.

As a third viewpoint, any approximate inference algorithm can be used
to perform approximate ML training, by substituting the approximate be-
liefs for the exact marginals in the ML gradient. They call this the belief view
of an approximate training algorithm. For example, this is the standard way
of implementing approximate training using BP. Interestingly, although ev-
ery approximate likelihood yields approximate gradients through the pseu-
domarginals, not all approximate gradients can themselves be obtained as
the exact gradient of any single approximate objective function. Recently,
training methods that have a pseudomarginal interpretation—that is, those
that can be described as numerically optimizing an objective function—have
received much attention, but it is not clear if training methods that have a
pseudomarginal interpretation should be preferred over ones that do not.

The pseudomarginal and belief viewpoints are distinct. Explaining this
requires making a distinction that is not always clear in the literature, be-
tween beliefs and pseudomarginals. By the belief of a node i, we mean its
normalized product of messages, which is proportial to q(yi). By pseudo-
marginal, on the other hand, we mean the derivative of log Z̃ with respect
to θi. These quantities are distinct. For example, in standard piecewise,
the pseudomarginal ∂ log ZPW/∂θi(yi) equals pi(yi), but the belief is propor-
tional to q(yi) =

∑

y\yi
q(yi) = 1.

This point may be confusing for several reasons. First, when the messages
m are a fixed point of BP, then the pseudomarginal always equals the belief.
But this does not hold before convergence, such as the all-ones message
setting used in standard piecewise training. A second potential confusion
arises because we define ZBP using the dual Bethe energy (13) rather than
the primal (7). In the primal Bethe energy, the pseudomarginal equals the
belief at all message settings, but this is not true of the dual energy. The dual
energy both helps in interpreting local training algorithms, as in Section 3.2,
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and also tends to be a better approximation to log Z at intermediate message
settings.

When calculating pseudomarginals ∂ log Z̃/∂θi, we must recognize that
the message setting is often itself a function of θ. For example, suppose we
stop BP after one iteration, that is, we take Z̃(θ) = ZBP(θ, m

(1)(θ)), where
m(1) are the messages after one BP iteration. Then, because the message
setting is clearly a function of θ, we need to take ∂m(1)/∂θi into account
when computing the pseudomarginals of Z̃.

Sutton and Minka [2006] use this viewpoint to explore several other local
training algorithms based on early stopping of BP, but we do not pursue
the details here.

4 Piecewise Pseudolikelhood

Although piecewise training breaks apart intractable structures, it can still
be computationally expensive when the variables have large cardinality.
This is because computing the local normalization functions AR in (19)
requires summing over all assignments to a piece. For example, if all factors
are binary, then this summation requires quadratic time in the variable
cardinality. Although this is feasible for many models, if the cardinality is
large, this cost can be unacceptable.

Pseudolikelihood (Section 2.1), on the other hand, scales linearly in the
variable cardinality, because each term in the pseudolikelihood conditions
all but one variable in the model. However, on the data that we consider
here, PL has considerably worse accuracy than piecewise training. This
suggests a hybrid method, in which we apply pseudolikelihoodization to the
node-split graph (Section 3.1) rather than the original graphical model. We
call this training method piecewise pseudolikelihood (PWPL). Surprisingly,
we find that two approximations work better than one: on the data con-
sidered here, PWPL—which applies the node-split approximation before
pseudolikelihood—works better than the pseudolikelihood approximation
alone.

This section proceeds as follows. In Section 4.1, we describe PWPL in
terms of the node-split graph, which was presented previously in Section 3.1.
This viewpoint allows us to show that under certain conditions, PWPL
converges to the piecewise solution in the asymptotic limit of infinite data
(Section 4.2). In addition, it provides some insight into when PWPL may be
expected to do well and to do poorly, an insight that we verify on synthetic
and real-world data in Section 5.2.

4.1 Definition

In this section, I define piecewise pseudolikelihood (Section 4.1), and de-
scribe its asymptotic behavior using well-known results about pseudolikeli-
hood (Section 4.2).
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Fig. 2 Illustration of the difference between piecewise pseudolikelihood (PWPL)
and standard pseudolikelihood. In standard PL, at left, the local term for a vari-
able ys is conditioned on its entire Markov blanket. In PWPL, at right, each local
term conditions only on the neighbors within a single factor.

The main motivation of piecewise training is computational efficiency,
but in fact piecewise does not always provide a large gain in training time
over other approximate methods. In particular, the time required to eval-
uate the piecewise likelihood at one parameter setting is the same as is
required to run one iteration of belief propagation (BP). More precisely,
piecewise training uses O(mK) time, where m is the maximum number of
assignments to a single variable ys and K is the size of the largest fac-
tor. Belief propagation also uses O(mK) time per iteration; thus, the only
computational savings over BP is a factor of the number of BP iterations
required. In tree-structured graphs, piecewise training is no more efficient
than forward-backward.

To address this problem, we propose piecewise pseudolikelihood. Piece-
wise pseudolikelihood (PWPL) is defined as:

ℓpwpl(Θ;x,y) =
∑

a

∑

s∈a

log pLCL(ys|ya\s,x, θa), (37)

where (x,y) are an observed data point, the index a ranges over all factors
in the model, the set a\s means all of the variables in the domain of factor
a except for s, and pLCL is a locally-normalized score similar to a conditional
probability and defined below.

So the piecewise pseudolikelihood is a sum of local conditional log-
probabilities. Each variable s participates as the domain of a conditional
once for each factor that it neighbors. As in piecewise training, the local
conditional probabilities pLCL are not the true probabilities according to the
model, but are a quantity computed locally from a single piece (in this case,
a single factor). The local probabilities pLCL are defined as

pLCL(ys|ya\s,x, θa) =
Ψa(ys,ya\s,xa)

∑

y′

s

Ψa(y′
s,ya\s,xa)

. (38)
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Then given a data set D = {(x(i),y(i))}, we select the parameter setting
that maximizes

Opwpl(θ; D) =
∑

i

ℓpwpl(θ;x
(i),y(i)) −

∑

a

‖θa‖
2

2σ2
, (39)

where the second term is a Gaussian prior on the parameters to reduce
overfitting. The piecewise pseudolikelihood is convex as a function of θ, and
so its maximum can be found by standard techniques. In the experiments
below, we use limited-memory BFGS [Nocedal and Wright, 1999].

For simplicity, we have presented PWPL for the case in which each piece
contains exactly one factor. If larger pieces are desired, then simply take the
summation over a in (37) to be over pieces rather than over factors, and
generalize the definition of pLCL appropriately.

Compared to standard piecewise, the main advantage of PWPL is that
training requires only O(m) time rather than O(mK). Compared to pseudo-
likelihood, the difference is that whereas in pseudolikelihood each local term
conditions on the entire Markov blanket, in PWPL each local term condi-
tions only on a variable’s neighbors within a single factor. For this reason,
the local terms in PWPL are not true conditional distributions according
to the model. The difference between PWPL and pseudolikelihood is illus-
trated in Figure 2. In the next section, we discuss why in some situations
this can cause PWPL to have better accuracy than pseudolikelihood.

4.2 Analysis

PWPL can be readily understood from the node-split viewpoint. In particu-
lar, the piecewise pseudolikelihood is simply the standard pseudolikelihood
applied to the node-split graph. In this section, we use the asymptotic con-
sistency of standard pseudolikelihood to gain insight into the performance
of PWPL.

So equivalently, we suppose that we are given an infinite data set drawn
from the distribution pNS, as defined in Section 3.1. Now, the standard
consistency result for pseudolikelihood is that if the model class contains
the generating distribution, then the pseudolikelihood estimate converges
asymptotically to the true distribution. In this setting, that implies the
following statement. If the model family defined by G′ contains pNS, then
piecewise pseudolikelihood converges in the limit to the same parameter
setting as standard piecewise.

Because this is an asymptotic statement, it provides no guarantee about
how PWPL will perform on real data. Even so, it has several interesting
consequences that provide insight into the method. First, it may impact
what sort of model is conducive to PWPL. For example, consider a Potts
model with unary factors Ψ(ys) = [1 eθs ]⊤ for each variable s, and pairwise
factors

Ψ(ys, yt) =

(

eθst 1
1 1.

)

, (40)
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for each edge (s, t), so that the model parameters are {θs} ∪ {θst}. Then
the above condition for PWPL to converge in the infinite data limit will
never be satisfied, because the pairwise piece cannot represent the marginal
distribution of its variables. In this case, PWPL may be a bad choice, or it
may be useful to consider pieces that contain more than one factor.

Second, this analysis provides intuition about the differences between
piecewise pseudolikelihood and standard pseudolikelihood. For each vari-
able s with neighborhood N(s), standard pseudolikelihood approximates the
model marginal p(yN(s)) over the neighborhood by the empirical marginal
p̃(yN(s)). We expect this approximation to work well when the model is a
good fit, and the data is ample.

In PWPL, we perform the node-splitting transformation on the graph
prior to maximizing the pseudolikelihood. The effect of this is to reduce
each variable’s neighborhood size, that is, the cardinality of N(s).

This has two potential advantages. First, because the neighborhood size
is small, PWPL may converge to piecewise faster than pseudolikelihood
converges to maximum likelihood. One may reasonably expect maximum
likelihood to be better than piecewise, so whether to prefer standard PL
or piecewise PL depends on precisely how much faster the convergence is.
Second, the node-split model may be able to exactly model the marginal
of its neighborhood in cases where the original graph may not be able to
model its larger neighborhood. Because the neighborhood is smaller, the
pseudolikelihood convergence condition may hold in the node-split model
when it does not in the original model. In other words, standard pseudolike-
lihood requires that the original model is a good fit to the full distribution.
In contrast, we expect piecewise pseudolikelihood to be a good approxima-
tion to piecewise when each individual piece fits the empirical distribution
well. The performance of piecewise pseudolikelihood need not require the
node-split model to represent the distribution across pieces.

Finally, this analysis suggests that we might expect piecewise pseudolike-
lihood to perform poorly in two regimes: First, if so much data is available
that pseudolikelihood has asymptotically converged, then it makes sense to
use pseudolikelihood rather than piecewise pseudolikelihood. Second, if fea-
tures of the local factors cannot fit the training data well, then we expect the
node-split model to fit the data quite poorly, and piecewise pseudolikelihood
cannot possibly do well.

5 Experiments

5.1 Piecewise Training

In this section, we compare piecewise training to both maximum likelihood
and pseudolikelihood on three real-world natural language tasks.

To be as fair as possible to pseudolikelihood, we compare to two varia-
tions of pseudolikelihood, one based on nodes and a structured version based
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Method Overall F1

Piecewise 91.2

Pseudolikelihood 84.7
Per-edge PL 89.7

Exact 90.6

Table 1 Comparison of piecewise training to exact and pseudolikehood training
on a linear-chain CRF for named-entity recognition. On this tractable model,
piecewise methods are more accurate than pseudolikelihood, and just as accurate
as exact training.

Method Noun-phrase F1

Piecewise 88.1

Pseudolikelihood 84.9
Per-edge PL 86.5

BP 86.0

Table 2 Comparison of piecewise training to other methods on a two-level fac-
torial CRF for joint part-of-speech tagging and noun-phrase segmentation.

Method Token F1
location speaker

Piecewise 87.7 75.4

Pseudolikelihood 67.1 25.5
Per-edge PL 76.9 69.3

BP 86.6 78.2

Table 3 Comparison of piecewise training to other methods on a skip-chain CRF
for seminar announcements.

on edges. As normally applied, pseudolikelihood is a product of per-node
conditional probabilities:

ℓpl(θ) = log
∏

s

p(ys|yN(s)),

where N(s) are the set of variables that neighbor variable s. But this per-
variable pseudolikelihood function does not work well for sequence labeling,
because of the strong interactions between neighboring sequence positions.
In order to have a stronger baseline, we also compare to a pairwise version
of pseudolikelihood:

ℓepl(θ) = log
∏

st

p(ys, yt|yN(s,t)), (41)

where the variables s, t range over all variables that share a factor. That is,
instead of using local conditional distributions over single variables, we use
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wt = w

wt matches [A-Z][a-z]+

wt matches [A-Z][A-Z]+

wt matches [A-Z]

wt matches [A-Z]+

wt contains a dash
wt matches [A-Z]+[a-z]+[A-Z]+[a-z]

The character sequence c0 . . . cn is a prefix of wt (where n ∈ [0, 4])
The character sequence c0 . . . cn is a suffix of wt (where n ∈ [0, 4])
The character sequence c0 . . . cn occurs in wt (where n ∈ [0, 4])
wt appears in list of first names,

last names, countries, locations, honorifics, etc.

qk(x, t + δ) for all k and δ ∈ [−2, 2]

Table 4 Input features qk(x, t) for the CoNLL named-entity data. In the above
wt is the word at position t, Tt is the POS tag at position t, w ranges over all
words in the training data, and T ranges over all Penn Treebank part-of-speech
tags. The “appears to be” features are based on hand-designed regular expressions
that can span several tokens.

distributions over pairs of variables, hoping to take more of the sequential
interactions into account.

We evaluate piecewise training on three models: a linear-chain CRF
(Section 5.1.1), a factorial CRF (Section 5.1.2), and a skip-chain CRF
(Section 5.1.3). All of these models use a large number of input features
such as word identity, part-of-speech tags, capitalization, and membership
in domain-specific lexicons.

In all the experiments below, we optimize ℓpw using limited-memory
BFGS. We use a Gaussian prior on weights to avoid overfitting. In previous
work, the prior parameter had been tuned on each data set for belief propa-
gation, and for the local models we used the same prior parameter without
change. At test time, decoding is always performed using max-product belief
propagation.

5.1.1 Linear-Chain CRF First, we evaluate the accuracy of piecewise train-
ing on a tractable model, so that we can compare the accuracy to exact
maximum-likelihood training. The task is named-entity recognition, that is,
to find proper nouns in text. We use the CoNLL 2003 data set, consisting of
14,987 newswire sentences annotated with names of people, organizations,
locations, and miscellaneous entities. We test on the standard development
set of 3,466 sentences. Evaluation is done using precision and recall on the
extracted chunks, and we report F1 = 2PR/(P + R). We use a linear-chain
CRF, whose features are described in Table 4.

Piecewise training performs better than either of the pseudolikelihood
methods. Furthermore, even though it is a completely local training method,
piecewise training performs comparably to exact CRF training.
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wt−δ = w

wt matches [A-Z][a-z]+

wt matches [A-Z]

wt matches [A-Z]+

wt matches [A-Z]+[a-z]+[A-Z]+[a-z]

wt matches .*[0-9].*

wt appears in list of first names,
last names, company names, days,
months, or geographic entities

wt is contained in a lexicon of words
with POS T (from Brill tagger)

Tt = T

qk(x, t + δ) for all k and δ ∈ [−3, 3]

Table 5 Input features qk(x, t) for the CoNLL data. In the above wt is the word
at position t, Tt is the POS tag at position t, w ranges over all words in the
training data, and T ranges over all part-of-speech tags.

Now, in a linear-chain model, piecewise training has the same computa-
tional complexity as exact CRF training, so we do not mean to advocate the
piecewise approximation for linear-chain graphs. Rather, that the piecewise
approximation loses no accuracy on the linear-chain model is encouraging
when we turn to loopy models, which we do next.

5.1.2 Factorial CRF The first loopy model we consider is the factorial
CRF introduced in Sutton et al. [2007]. As in that work, we consider the
task of jointly predicting part-of-speech tags and segmenting noun phrases
on the CoNLL 2000 data set. The structure of this model is a pair of coupled
chains. If w = (w1, w2, . . . wT ) denotes the part-of-speech labels and y =
(y1, y2, . . . yT ) denotes the noun-phrase labels, then the model is

p(y,w|x) =
T
∏

t=1

Ψ0(yt, yt−1,x)Ψ1(wt, wt−1,x)Ψ2(wt, yt,x), (42)

where each type of factor Ψ0, Ψ1, Ψ2 is expressed in the log-linear form of
(2). The features used are described in Table 5.

We report results here on subsets of 223 training sentences, and the
standard test set of 2012 sentences. Results are averaged over 5 different
random subsets. There are 45 different POS labels, and the three NP labels.
We report F1 on noun-phrase chunks.

In previous work, this model was optimized by approximating the parti-
tion function using belief propagation, but this was quite expensive. Training
on the full data set of 8936 sentences required about 12 days of CPU time.1

1 As we mentioned above, this result was obtained using batch limited-memory
BFGS. It is likely that stochastic gradient methods would have performed much
faster.
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wt = w

wt matches [A-Z][a-z]+

wt matches [A-Z][A-Z]+

wt matches [A-Z]

wt matches [A-Z]+

wt matches [A-Z]+[a-z]+[A-Z]+[a-z]

wt appears in list of first names,
last names, honorifics, etc.

wt appears to be part of a time followed by a dash
wt appears to be part of a time preceded by a dash
wt appears to be part of a date

qk(x, t + δ) for all k and δ ∈ [−4, 4]

Table 6 Input features qk(x, t) for the seminars data. In the above wt is the
word at position t, Tt is the POS tag at position t, w ranges over all words in
the training data, and T ranges over all Penn Treebank part-of-speech tags. The
“appears to be” features are based on hand-designed regular expressions that can
span several tokens.

Results on this loopy data set are presented in Table 2. Again, the piece-
wise estimator performs better both than either version of pseudolikelihood
and than maximum-likelihood estimation using belief propagation. On this
small subset, approximate ML training with BP requires 1.8 h, but piecewise
training is still twice as fast, using 0.83 h.

5.1.3 Skip-chain CRF Finally, we consider a model with many irregular
loops, which is the skip chain model introduced in Sutton and McCallum
[2004]. This model incorporates certain long-distance dependencies between
word labels into a linear-chain model for information extraction. The idea
is to exploit that when the same word appears multiple times in the same
message, it tends to have the same label. We represent this by adding edges
between output nodes (yi, yj) when the words xi and xj are identical and
capitalized.

For an sentence x, let I = {(u, v)} be the set of all pairs of sequence
positions for which there are skip edges. For example, in the experiments
reported here, I is the set of indices of all pairs of identical capitalized words.
Then the probability of a label sequence y given an input x is modeled as

pθ(y|x) =
1

Z(x)

T
∏

t=1

Ψt(yt, yt−1,x)
∏

(u,v)∈I

Ψuv(yu, yv,x), (43)
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Model Basic Reweighted

Linear-chain 91.2 90.4
FCRF 88.1 86.4

Skip-chain (location) 87.7 75.5
Skip-chain (speaker) 75.4 69.2

Table 7 Comparison of basic piecewise training to reweighted piecewise bound
with uniform µ.

where Ψt are the factors for linear-chain edges, and Ψuv are the factors over
skip edges. These factors are defined as

Ψt(yt, yt−1,x) = exp

{

∑

k

λ1kf1k(yt, yt−1,x, t)

}

(44)

Ψuv(yu, yv,x) = exp

{

∑

k

λ2kf2k(yu, yv,x, u, v)

}

, (45)

where θ1 = {λ1k}
K1

k=1 are the parameters of the linear-chain template, and

θ2 = {λ2k}
K2

k=1 are the parameters of the skip template. The full set of model
parameters are θ = {θ1, θ2}.

We use a standard data set of seminar announcements [Freitag, 1998].
Consistently with the previous work on this data set, we use 10-fold cross
validation with a 50/50 training/test split. We report per-token F1 on the
speaker and location fields, the most difficult of the four fields. The fea-
tures used are described in Table 6. Most documents contain many crossing
skip-edges, so that exact maximum-likelihood training using junction tree is
completely infeasible, so instead we compare to approximate training using
loopy belief propagation.

Results on this model are given in Table 3. Pseudolikelihood performs
particularly poorly on this model. Piecewise estimation performs much bet-
ter, but worse than approximate training using BP.

Piecewise training is faster than loopy BP: in our implementation piece-
wise training used on average 3.5 hr, while loopy BP used 6.8 hr. To get
these loopy BP results, however, we must carefully initialize the training
procedure, as discussed in Sutton [2008]. For example, if instead we initial-
ize the model to the uniform distribution, not only does loopy BP training
take much longer, over 10 hours, but testing performance is much worse,
because the convex optimization procedure has difficulty with noisier gradi-
ents. With uniform initialization, loopy BP does not converge for all training
instances, especially at early iterations of training. Carefully initializing the
model parameters seems to alleviate these issues, but this model-specific
tweaking was unnecessary for piecewise training.

5.1.4 Reweighted Piecewise Training We also evaluate a reweighted piece-
wise training, a modification to the basic piecewise estimator discussed in
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Fig. 3 Comparison of piecewise to pseudolikelihood on synthetic data. Pseu-
dolikelihood has slightly better accuracy on training instances than piecewise.
(Piecewise and PWPL perform exactly the same; this is not shown.)

Fig. 4 Learning curves for PWPL and pseudolikelihood. For smaller amounts of
training data PWPL performs better than pseudolikelihood, but for larger data
sets, the situation is reversed.

Section 3.4, in which the pieces are weighted by a convex combination.
The performance of reweighted piecewise training with uniform µR is pre-
sented in Table 7. In all cases, the reweighted piecewise method performs
worse than the basic piecewise method. What seems be happening is that
in each of these models, there are several hundred edges, so that the weight
µR for each region is rather small, perhaps around 0.01. For each piece R,
reweighted bound includes a term A (θ|R/µR). If µR is around 0.01, then
this means that we multiply the log factor values by 100 before evaluating
A. This multiplier is so extreme that the term A (θ|R/µR) is dominated by
maximum-value weight in θ|R.
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ML PL PW PWPL

POS

Accuracy 94.4 94.4 94.2 94.4

Time (s) 33846 6705 23537 3911

Chunking

Chunk F1 91.4 90.3 91.7 91.4

Time (s) 24288 1534 5708 766

Named-entity

Chunk F1 90.5 85.1 90.5 90.3

Time (s) 52396 8651 6311 4780

Table 8 Comparison of piecewise pseudolikelihood to standard piecewise and
to pseudolikelihood on real-world NLP tasks. Piecewise pseudolikelihood is in all
cases comparable to piecewise, and on two of the data sets superior to pseudolike-
lihood.

BP PL PW PWPL

Start-Time 96.5 82.2 97.1 94.1

End-Time 95.9 73.4 96.5 90.4

Location 85.8 73.0 88.1 85.3

Speaker 74.5 27.9 72.7 65.0

Table 9 F1 performance of PWPL, piecewise, and pseudolikelihood on infor-
mation extraction from seminar announcements. Both standard piecewise and
piecewise pseudolikelihood outperform pseudolikelihood.

5.2 Piecewise Pseudolikelihood

In this section, we compare PWPL to both regular piecewise and pseudo-
likelihood on both synthetic and real-world data. On synthetic data (Sec-
tion 5.2.1), we find that PWPL works better than PL for small amounts of
training data, but PL works better when the training set is larger, confirm-
ing the intuition resulting from the asymptotic arguments of Section 4.2.
Second, on real-world NLP data sets (Section 5.2.2), we find that PWPL
performs often comparably to piecewise training and to maximum likeli-
hood, and always better than pseudolikelihood. Furthermore, PWPL can
be as much as ten times faster than batch CRF training.

5.2.1 Synthetic Data In the previous section, we argued intuitively that
PWPL may perform better on small data sets, and pseudolikelihood on
larger ones. In this section we verify this intuition in experiments on syn-
thetic data. The general setup is replicated from Lafferty et al. [2001]. We



Piecewise Training for Structured Prediction 27

generate data from a second-order HMM with transition probabilities

pα(yt|yt−1, yt−2) = αp2(yt|yt−1, yt−2) + (1 − α)p1(yt|yt−1) (46)

and emission probabilities

pα(xt|yt, xt−1) = αp2(xt|yt, xt−1) + (1 − α)p1(xt|yt). (47)

Thus, for α = 0, the generating distribution pα is a first-order HMM, and
for α = 1, it is an autoregressive second-order HMM. We compare differ-
ent approximate methods for training a first-order CRF. Therefore higher
values of α make the learning problem more difficult, because the model
family does not contain second-order dependencies. We use five states and
26 possible observation values. For each setting of α, we sample 25 differ-
ent generating distributions. From each generating distribution we sample
1,000 training instances of length 25, and 1,000 testing instances. We use
α ∈ {0, 0.1, 0.25, 0.5, 0.75, 1.0}, for 150 synthetic generating models in all.

First, we find that piecewise pseudolikelihood performs almost identi-
cally to standard piecewise training. Averaged over the 150 data sets, the
mean difference in testing error between piecewise pseudolikelihood and
piecewise is 0.002, and the correlation is 0.999.

Second, we compare piecewise to traditional pseudolikelihood. On this
data, pseudolikelihood performs slightly better overall, but the difference is
not statistically significant (paired t-test; p > 0.1). However, when we ex-
amine the accuracy as a function of training set size (Figure 4), we notice an
interesting two-regime behavior. Both PWPL and pseudolikelihood seem to
be converging to a limit, and the eventual pseudolikelihood limit is higher
than PWPL, but PWPL converges to its limit faster. This is exactly the
behavior intuitively predicted by the argument in Section 4.2: that PWPL
can converge to the piecewise solution in less training data than pseudolike-
lihood to its (potentially better) solution.

Of course, the training set sizes considered in Figure 4 are fairly small,
but this is exactly the case we are interested in, because on natural lan-
guage tasks, even when hundreds of thousands of words of labeled data are
available, this is still a small amount of data compared to the number of
useful features.

5.2.2 Real-World Data Now, we evaluate piecewise pseudolikelihood on
four real-world NLP tasks: part-of-speech tagging, named-entity recogni-
tion, noun-phrase chunking, and information extraction.

For part-of-speech tagging (POS), we report results on the WSJ Penn
Treebank data set. Results are averaged over five different random subsets
of 1911 sentences, sampled from Sections 0–18 of the Treebank. Results
are reported from the standard development set of Sections 19–21 of the
Treebank. We use a first-order linear chain CRF. There are 45 part-of-
speech labels.
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In named-entity recognition, the task is to find proper nouns in text. We
use the CoNLL 2003 data set, consisting of 14,987 newswire sentences an-
notated with names of people, organizations, locations, and miscellaneous
entities. We test on the standard development set of 3,466 sentences. Eval-
uation is done using precision and recall on the extracted chunks, and we
report F1 = 2PR/(P + R). We use a linear-chain CRF, whose features are
described in Table 4.

For the task of noun-phrase chunking (chunking), we use a loopy model,
the factorial CRF described in Section 5.1.2, on the task of joint part-of-
speech and noun-phrase prediction. We report joint accuracy on (NP, POS)
pairs; other evaluation metrics show similar trends.

Finally, for the task of information extraction, we consider a model
with many irregular loops, which is the skip chain model described in Sec-
tion 5.1.3.

For all the data sets, we compare to pseudolikelihood, piecewise training,
and conditional maximum likelihood with belief propagation. All of these
objective functions are maximized using limited-memory BFGS. We use a
Gaussian prior with variance σ2 = 10.

5.2.3 Discussion For the first three tasks—part-of-speech tagging, chunk-
ing, and NER—piecewise pseudolikelihood and standard piecewise training
have equivalent accuracy both to each other and to maximum likelihood
(Table 8). Despite this, piecewise pseudolikelihood is much more efficient
than standard piecewise (Table 8). On the named-entity data, which has
the fewest labels, PWPL uses 75% of the time of standard piecewise, a
modest improvement. On the data sets with more labels, the difference is
more dramatic: on the POS data, PWPL uses 16% of the time of piecewise
and on the chunking data, PWPL needs only 13%. Similarly, PWPL is also
between is 5 to 10 times faster than maximum likelihood.

The training times of the baseline methods may appear relatively mod-
est. If so, this is because for both the chunking and POS data sets, we
use relatively small subsets of the full training data, to make running this
comparison more convenient. This makes the absolute difference in training
time even more meaningful than it may appear at first. Also, it may appear
from Table 8 that PWPL is faster than standard pseudolikelihood, but the
apparent difference is due to low-level inefficiencies in our implementation.
In fact the two algorithms have similar complexity.

On the skip chain data (Table 9), standard piecewise performs worse
than exact training using BP, and piecewise pseudolikelihood performs worse
than standard piecewise. Both piecewise methods, however, perform better
than pseudolikelihood.

As predicted in Section 4.2, pseudolikelihood is indeed a better approx-
imation on the node-split graph. In Table 8, PL performs much worse than
ML, but PWPL performs only slightly worse than PW. In Table 9, the dif-
ference between PWPL and PW is larger, but still less than the difference
between PL and ML.
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6 Related Work

Piecewise training and piecewise pseudolikelihood can both be considered
types of local training methods, that avoid propagation throughout the
graph. Such training methods have recently been the subject of much inter-
est [Abbeel et al., 2005, Toutanova et al., 2003, Punyakanok et al., 2005].
Of course, the local training method most closely connected to the cur-
rent work is pseudolikelihood itself. We are unaware of previous variants of
pseudolikelihood that condition on less than the full Markov blanket.

Because the piecewise estimator is such an intuitively appealing method,
it has been used in several scattered places in the literature, for tasks such as
information extraction [Wellner et al., 2004], collective classification [Greiner
et al., 2005], and computer vision [Freeman et al., 2000]. In these papers,
the piecewise method is reported as a successful heuristic for training large
models, but its performance is not compared against other training methods.
We are unaware of previous work systematically studying this procedure in
its own right.

As mentioned earlier, the most closely related procedure that has been
studied statistically is pseudolikelihood [Besag, 1975, 1977]. The main differ-
ence is that piecewise training does not condition on neighboring nodes, but
ignores them altogether during training. This is depicted schematically by
the factor graphs in Figure 5. In pseudolikelihood, each locally-normalized
term for a variable or edge in pseudolikelihood includes contributions from
a number of factors that connect to the neighbors whose observed values
are taken from labeled training data. All these factors are circled in the top
section of Figure 5. In piecewise training, each factor becomes an indepen-
dently, locally-normalized term in the objective function.

Huang and Ogata [1999] consider the asymptotic properties of gener-
alized pseudolikelihood estimators whose local conditional terms predict
subgraphs of the model rather than single nodes. A special case of this is
the pairwise pseudolikelihood that we compare against in Section 5.1.

Also, in statistics there has been work on general families of surrogate
likelihoods, called composite likelihoods, which are sums of marginal or con-
ditional log likelihoods [Lindsay, 1988, Cox and Reid, 2004]. Such composite
likelihoods are consistent and asymptotically normal under relatively gen-
eral assumptions. An example of using a composite likelihood on structured
models for natural-language data is Kakade et al. [2002]. But these are de-
signed for a different situation than ours, namely when the joint likelihoods
are difficult to compute but marginal likelihoods are easier to work with.
An example of this situation is the multivariate Gaussian. In our context,
marginal likelihoods are difficult to compute, so composite likelihoods are
not as useful. Piecewise estimation is not a type of composite likelihood,
because in the likelihood of each piece, the contribution of the rest of the
model is ignored, not marginalized out.
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Independently, Choi et al. [2007] present a node-splitting technique for
upper bounds during inference, which is closely related to the piecewise
upper bound that we use here for learning.

An interesting connection exists between piecewise pseudolikelihood and
maximum entropy Markov models (MEMMs) [Ratnaparkhi, 1996, McCal-
lum et al., 2000]. In a linear chain with variables y1 . . . yT , we can rewrite
the piecewise pseudolikelihood as

ℓpwpl(θ) =

T
∑

t=1

log pLCL(yt|yt−1,x)pLCL(yt−1|yt,x). (48)

The first part of (48) is exactly the likelihood for an MEMM, and the
second part is the likelihood of a backward MEMM. Interestingly, MEMMs
crucially depend on normalizing the factors at both training and test time.
To include local normalization at training time but not test time performs
very poorly. But by adding the backward terms, in PWPL we are able to
drop normalization at test time, and therefore PWPL does not suffer from
label bias.

Piecewise pseudolikelihood also has an interesting connection to search-
based learning methods [Daumé III and Marcu, 2005]. Such methods learn
a model to predict the next state of a local search procedure from a cur-
rent state. Typically, training is viewed as classification, where the correct
next states are positive examples, and alternative next states are negative
examples. One view of the current work is that it incorporates backward
training examples, that attempt to predict the previous search state given
the current state.

Finally, stochastic gradient methods, which make gradient steps based
on subsets of the data, have recently been shown to converge significantly
faster for CRF training than batch methods, which evaluate the gradient
of the entire data set before updating the parameters [Vishwanathan et al.,
2006]. Stochastic gradient methods are currently the method of choice for
training linear-chain CRFs, especially when the data set is large and redun-
dant. However, stochastic gradient methods can also be used to optimize
both standard piecewise likelihood and piecewise pseudolikelihood. Thus,
although the training time of our baselines could likely be improved consid-
erably, the same is true of our new approaches, so that our comparison is
fair.

Also, in some cases, such as in relational learning problems, the data are
not iid, and the model includes explicit dependencies between the training
instances. For such a model, it is unclear how to apply stochastic gradi-
ent, but piecewise pseudolikelihood may still be useful. Finally, stochastic
gradient methods do not address cases in which the variables have large
cardinality, or when the graphical structure of a single training instance is
intractable.

One challenge in the piecewise method is that it is not immediately
clear how to extend it to the case of latent variables, because if the same
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Fig. 5 Schematic factor-graph depiction of the difference between pseudolikeli-
hood (top) and piecewise training (bottom). Each term in pseudolikelihood nor-
malizes the product of many factors (as circled), while piecewise training normal-
izes over one factor at a time.

latent variable occurs in different pieces, it may have different semantics.
Recently, Liang et al. [2006, 2008] have presented a method in a similar spirit
that handles latent variables. They add an additional term to the objective
function that encourages pieces that share a latent variable to agree on its
distribution. They present two different EM-style algorithms for optimizing
this objective function efficiently.

Both likelihood-based methods and max-margin methods require per-
forming inference during training, so it is natural to wonder whether the
methods in this thesis can be adapted to loopy max-margin models. A sug-
gestive step in this direction is factorized MIRA [McDonald et al., 2005], in
which the margin constraints are required to hold only over single edges,
rather than the entire prediction. On a dependency parsing task, this method
had good accuracy, but it did not improve training time because the model
had special structure that made it amenable to exact inference. It may be
interesting to see whether analogs of piecewise methods work well for max-
margin training on loopy models.

Earlier versions of the current work have appeared in two conference
papers [Sutton and McCallum, 2005, 2007b].

7 Conclusion

This paper has presented piecewise training, an intuitively appealing pro-
cedure that separately trains factor subsets, called pieces, of a loopy graph.
We show that this procedure can be justified as maximizing a loose bound
on the log likelihood. On three real-world language tasks with different
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model structures, piecewise training outperforms several versions of pseu-
dolikelihood, a traditional local training method. On two of the data sets,
in fact, piecewise training is more accurate than global training using belief
propagation.

Second, we have introduced an extension called piecewise pseudolike-
lihood, that is especially attractive when the variables in the model have
large cardinality. Because PWPL conditions on fewer variables, it can have
better accuracy than standard pseudolikelihood, and is dramatically more
efficient than standard piecewise, requiring as little as 13% of the training
time.

Many properties of piecewise training remain to be explored. Our results
indicate that in some situations piecewise training should replace pseudo-
likelihood as the local training method of choice. In particular, the exper-
iments here all used conditional training, which make local training easier
because of the large amount of information in the conditioning variables. In
the data sets here, the local features, such as the word identity, provide a
large amount of information about the labels in their own right. In gener-
ative training, there may be much less local information, making piecewise
training much less effective. On the other hand, from the exponential fam-
ily perspective, piecewise training does still match expected statistics of a
subgraph to the empirical distribution, which still seems intuitively appeal-
ing. For this reason, it is hard to give a definitive characterization of when
piecewise training is expected to work well or poorly.

A possible explanation for the performance of piecewise training is that
it acts as a form of additional regularization, in that the objective function
disfavors parameter settings that obtain good joint likelihood by using long-
distance effects of weights. For this reason, connections to generalization
bounds for feature selection, some of which take into account the amount
of computation, may be interesting.

Finally, a natural question is how readily the methods here extend to the
case where pieces are treated as regions that are larger than a single factor.
The main challenges here seem to lie in first, how to handle the overlaps
among larger pieces, and second, how to choose the pieces. The connection
to the Bethe energy may be illuminating here.
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