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Abstract

Complex tasks in speech and language processing ofterdanciundom
variables with large state spaces, both in speech taskntradve pre-
dicting words and phonemes, and in joint processing of pipdlsys-
tems, in which the state space can be the labeling of an esgtirgence.
In large state spaces, however, discriminative training lsa expen-
sive, because it often requires many calls to forward-backwBeam
search is a standard heuristic for controlling complexityinnly Viterbi
decoding, but during forward-backward, standard beamistees can
be dangerous, as they can make training unstable. We irtesgarse
forward-backward, a variational perspective on beam methods that uses
an approximating mixture of Kronecker delta functions. sTimotivates
a novelminimum-divergence beam criterion based on minimizing KL di-
vergence between the respective marginal distributions b®am selec-
tion approach is not only more efficient for Viterbi decoditgit also
more stable within sparse forward-backward training. Fataandard
text-to-speech problem, we reduce CREF training time fdderom
over a day to six hours—with no loss in accuracy.

1 Introduction

Complex tasks in speech and language processing ofterdincandom variables with
large state spaces. Training such models can be expensarefa linear chains, because
standard estimation techniques, such as expectation riration and conditional maxi-
mum likelihood, often require repeatedly running fowastkward over the training set,
which requires quadratic time in the number of states. Quviiterbi decoding, a standard
technique to address this problenbeam search, that is, ignoring variable configurations
whose estimated max-marginal is sufficiently low. For summdpct inference methods
such as forward-backward, beam methods can be dangerousyédm because standard
beam selection criteria can inappropriately discard podityamass in a way that makes
training unstable.

In this paper, we introduce a perspective on beam searchibtatates its use within sum-
productinference. In particular, we cast beam search asaioaal procedure that approx-
imates a distribution with a large state space by a mixtumaafy fewer Kronecker delta
functions. This motivatesparse forward-backward, a novel message-passing algorithm in
which after each message pass, approximate marginal jad¢earte compressed after each



pass. Essentially, this extends beam search from max-pratference to sum-product.
Our perspective also motivates thenimum-divergence beam, a new beam criterion that
selects a compressed marginal distribution with a fixedb&adk-Leibler (KL) divergence
of the true marginal. Not only does this criterion perfornttéethan standard beam crite-
ria for Viterbi decoding, it iteracts more stably with traig. On one real-world task, the
NetTalk text-to-speech data set [5], we can now train a d¢adil random field (CRF) in
about 6 hours for which training previously required ovegg,dvith no loss in accuracy.

2 Sparse Forward-Backward

Standard beam search can be viewed as maintaining sipgedemarginal distributions
such that together they are as close as possible to a largdwtion. In this section,
we formalize this intuition using a variational argumenhigh motivates our new beam
criterion for sparse forward-backward.

Consider a discrete distributigriy), wherey is assumed to have very many possible con-
figurations. We approximateby a sparse distributiog, which we write as a mixture of
Kronecker delta functions:

aly) = Z :9i(y), 1)
el
wherel = {iy,...,4x} is the set of indicessuch tha;(y = ¢) is non-zero, and;(y) = 1

if y = i. We refer to the sef asthe beam.

Consider the problem of finding the distributiaf{y) of smallest weight such that
KL (¢q||p) < e. First, suppose the sét= {iy,...,4} is fixed in advance, and we wish
to choose the probabilitieg to minimize KL(¢||p). Then the optimal choice is simply
¢ = pi/ Y Pi» @resultwhich can be verified using Lagrange multiplieréhemnormal-
ization constraint of.

Second, suppose we wish to determine the set of indioésa fixed sizek which minimize
KL (g|lp)- Then the optimal choice is wheh = {iy,...,i;} consists of the indices of
the largest: values of the discrete distributign First, defineZ(I) = >, p:, then the
optimal approximating distribution is:
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- . i pi/Z(I)
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That is, the optimal choice of indices is the one that retaiost probability mass. This
means that it is straightforward to find the discrete distidn ¢ of minimal weight such
that KL(¢||p) < e. We can sort the elements of the probability vegiptruncate after
log Z(I) exceeds-¢, and renormalize to obtaip

To apply these ideas to forward-backward, essentially wepress the marginal beliefs
after every message pass. We call this metpadse forward-backward, which we define
as follows. Consider a linear-chain probability distribatp(y, x) oc [, ¥¢(ye, ye—1,%),
such as an hidden Markov model (HMM) or conditional randortdfi€RF). Leta, (i)
denote the forward messagés(:) the backward messages, andi) = a.(i)5:(¢) be the
computed marginals. Then the sparse forward recursion is:

1. Pass the message in the standard way:

a(j) — Z‘M’j’ x)ay 1 (i) (5)



2. Compute the new dense beligfas

Ye(5) o< an(5)Be(d) (6)
3. Compress into a sparse beligf;), maintaining KL(+’||v) < e. That is, sort the
elements ofy and truncate aftdog Z (1) exceeds-¢. Call the resulting bearty.
4. Compressy (j) to respect the new beafmn

The backward recursion is defined similarly. Note that inrp\@®mpression operation,
the beaml; is recomputed from scratch; therefore, during the backvass, variable
configurations can both leave and enter the beam on the Haseckward information.
Just as in standard forward-backward, it can be shown bysmeuthat the sum of final
alphas yields the mass of the beam. That i§,i#fthe set of all state sequences in the beam,
thend_; ar(j) = >y er [1; We(yt, ye—1,%). Therefore, because backward revisions to the
beam do not decrease the local sum of betas, they do not daheageality of the global
beam over sequences.

The criterion in step 3 for selecting the beam is novel, andcaié it the miniumum-
divergence criterion. Alternatively, we could take the taly states, or all states within
a threshold. In the next section we will compare to theseradte criteria.

Finally, we discuss a few practical considerations. We Hauad improved results by
adding a minimum belief size constraifit, which prevents a belief statg(;) from being
compressed belo non-zero entries. Also, we have found that the minimum-djgace
criterion usually finds a good beam after a single forwardg pltnimizing the number of
passes is desirable, because if finding a good beam requameg fiorward and backward
passes, one may as well do exact forward-backward.

3 Resultsand Analysis

In this section we evaluate sparse forward-backward fdr batx-product and sum-product
inference in HMMs and CRFs and the well known NetTalk texsp@ech dataset [5] which
contains 20,008 English words. The task is to produce thpgumphones given a string of
letters as input.

3.1 Decoding Experiments

In this section we compare the our minimum-divergencerioiteo traditional beam search
criteria during Viterbi decoding. We generate synthetiadeom an HMM of lengthr5.
Transition matrix entries are sampled from a Dirichlet witvery o; = .1. Emission
matrices are generated from a mixture of two distributiqa$:a low entropy, sparse con-
ditional distribution with10 non-zero elements and (b) a high entropy Dirichlet with gver
a; = 10* with mixture weights of.75 and.25 respectively. The goal is to simulate a
regime where most states are highly informative about thestination, but a few are less
informative. We compared three beam criteria: (1) a fixedrbsize, (2) an adaptive beam
where message entries are retained if their log score isnaatfixed threshold of the best
so far, and (3) our minimum-divergence criterion with, < 0.001 and an additional min-
imum beam size constraint & > 4. Our minimum-divergence criterion finds the exact
Viterbi path an average onl.6 states per variable. On the other hand, the fixed beam re-
quires betweef0 and25 states to reads the same accuracy, and the simple threswotd b
requires30.4 states per variable. We have similar results on the NetTai& bmitted due
to space).

3.2 Training Experiments

In this section, we present results showing that sparsedimAlvackward can be embedded
within CRF training, yielding significant speedups in tiagptime with no loss in testing
performance.
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Figure 1:Comparison of sparse forward-backward methods for CRRifrgion both synthetic data
(left) and on the NetTalk data set (right). Both graphs piat likelihood on the training data as
a function of training time. In both cases, sparse forwaadkiward performs equivalently to exact
training on both training and test accuracy using only atguaf the training time.

First, we train CRFs using synthetic data generated frarfiCastate HMM in the same
manner as in the previous section. We G8esequences for training arit sequences for
testing. In all cases we use exact Viterbi decoding to comfmsting accuracy. We compare
five different methods for discarding probability mass: tf§ minimum-divergence beam
with K. < 0.5 and minimum beam siz& > 30 (2) a fixed beam of sizé( = 30,
(3) a fixed beam whose size was the average size used by thmumirdivergence beam,
(4) a threshold based beam which explores on average the rsamiger of states as the
minimum-divergence beam, and (5) exact forward backwamhrhing curves are shown
in Figure 1(a).

Compared to exact training, sparse forward-backward usedaurth of the time of exact

training with no loss in accuracy. Also, we find it is importéor the beam to be adaptive,
by comparing to the fixed beam whose size is the average nuofilstates used by our
minimume-divergence criterion. Although minimum divergenand the fixed beam con-
verge to the same solution, minimum divergence finishesfasticating that the adaptive
beam does help training time. Most of the benefit occurs latéraining, as the model

becomes farther from uniform.

In the case of the smaller, fixed beam of si¥e our L-BFGS optimizer terminated with
an error as a result of the noisy gradient computation. Ircse of the threshold beam,
the likelihood gradients were erratic, but L-BFGS did terate normally. However the
recognition accuracy of the final model was lowgat1%.

Finally, we present results from training on the real-wdddtTalk data set. In Figure
1(b) we present run time, model likelihood and accuracylte$or a52 state CRF for the
NetTalk problem that was optimized using 19075 exampledestdd using 934 examples.
For the minimum divergence beam, we set the divergencehbiets = .005 and the
minimum beam sizé > 10. We initialize the CRF parameters using a subset29f

of the data, before training on the full data until converggn/Ve used the beam methods
during the complete training run and during this initiatina period.

During the complete training run, the threshold beam gratdistimates were so noisy that
our L-BFGS optimizer was unable to take a complete step. tHgagard backward train-
ing produced a test set accuracydaf6%. Training using the larger fixed beany (= 20)
terminated normally but very noisy intermediate gradiemtse found in the terminating
iteration. The result was a much lower accuracg®f%. In contrast, the minimum diver-



gence beam achieved an accurac9bfr% in less thar25% of the time it took to exactly
train the CRF using forward-backward.

4 Related Work

Related to our work is zero-compression in junction tre¢sd@scribed in [2], which con-
siders every potential in a clique tree, and sets the smali¢ential values to zero, with the
constraint that the total mass of the potential does nob&tw a fixed valué. In contrast
to our work, they prune the model’s potentials once beforéopming inference, whereas
we dynamically prune the beliefs during inference, and @utthe beam can change during
inference as new information arrives from other parts ofrttael. Also, Jordan et al.
[4], in their work on hidden Markov decision trees, introdw variational algorithm that
uses a delta on a single best state sequence, but they pnovedgoerimental evaluation of
this technique. In computer vision, Coughlan and Ferrditdfve used a belief pruning
method within belief propagation for loopy models which &y similar to our threshold
beam baseline.

5 Conclusions

We have presented a principled method for significantly dipepup decoding and learning
tasks in HMMs and CRFs. We also have presented experimentéldemonstrating the
utility of our approach. As future work, we believe a promgsiavenue of exploration
would be to explore adaptive strategies involving intacacbf our L-BFGS optimizer,
detecting excessively noisy gradients and automaticattyng e values. While results here
were only with linear-chain models, we believe this apphosicould be more generally
applicable. For example, in pipelines of NLP tasks, it ienfbetter to pass lattices of
predictions rather than single-best predictions, in otd@reserve uncertainty between the
tasks. For such systems, the current work has implicationfidw to select the lattice
size, and how to pass informatidrackwards through the pipeline, so that higher-level
information from later tasks can improve performance otiezaasks.
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