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Abstract

Even in trees, exact probabilistic inference can be expenshen the
cardinality of the variables is large. This is especiallyutslesome for
learning, because many standard estimation techniquels asuEM and
conditional maximum likelihood, require calling an inface algorithm
many times. In max-product inference, a standard heufisticontrol-

ling this complexity in linear chains is beam search, thatdasignore
variable configurations during inference once their edtithgrobabil-
ity becomes sufficiently low. Although quite effective foramproduct,
during sum-product inference beam search discards prdlgabass in

a way that makes learning unstable. In this paper, we intre@uwaria-
tional perspective on beam search that uses a approxinratkigre of

Kronecker delta functions. This motivates a novel variadi@pproxima-
tion for arbitrary tree-structured models, which mainsaam adaptively-
sized sparse belief state—thus extending beam search feoaapnoduct
to sum-product, and from linear chains to arbitrary trees.réport effi-

ciency improvements for max-product inference over otleamb search
techniques. Also, unlike heuristic methods for discardimgbability

mass, our method can be used effectively for conditionalimam like-

lihood training. On both synthetic and real-world problems report
four-fold increases in learning speed with no loss in acoyra

1 Introduction

A standard technique for fast max-product inference withdaliscrete variables lzam
search, that is, ignoring variable configurations whose estimatek-marginal is suffi-
ciently low. Beam search is often quite effective, and isefydised in applications such as
speech recognition and natural-language parsing. In bpeeognition, for example, beam
search is a critically important component of large-scédieién Markov model (HMM)-
based systems [2, 5, 9].

But large variable spaces are problematic for parametanatsbn, because standard es-
timation techniques, such as expectation maximizationcmdlitional maximum likeli-
hood, require many calls to inference. Furthermore, wheslbeam search is quite effective
in max-product inference, many learning techniques calston-product inference, and
discarding probability mass during sum-product inferemiten makes learning unstable.



Inspired by beam search, in this paper we introdspagse belief propagation, that is, a
variational procedure that approximates a distributiotihérge variable state space by a
mixture of Kronecker delta functions that cover a much semadbrtion of the state space.
This motivates a novel message-passing algorithm in whigh aach message pass, the
belief is compressed while maintaining the approximatiodpgl distribution within a fixed
KL-divergence of the true distribution. Essentially, teistends beam search from max-
product inference to sum-product, and from linear-chaidet®to arbitrary trees.

For max-product, we show experimentally that this KL-dgyemce criterion is more robust
and efficient than simpler beam search methods. For sunupraaference, we present
results using sparse BP to compute marginals for approgitraining of conditional ran-
dom fields. Training using sparse BP can require less thariamth of the time of exact
training with no loss in accuracy, whereas more naive mettioddiscarding probability
mass Yield unstable training methods. On one real-workl thg NetTalk text-to-speech
data set [6], we can now train a CRF in about 6 hours for whiekipusly training required
over a day, with no loss in accuracy.

The rest of the paper is structured as follows. First, weflgrieview HMMs and CRFs
and discuss current methods for learning CRFs. We then mirese variational view of
beam search, and show how it leads to natural extensionaniepsoduct inference and
arbitrary graphs. Finally, we present experimental rediolt max-product inference, and
sum-product embedded within CRF training.

2 Notation and Background

In this section, we present our notation for chain-striedunodels, on which we focus in
this paper. We also briefly review current techniques for @Bfameter estimation.

HMMs are a classical type of generative sequence model. ®afirobservation sequence
of discrete random variables®s= z4, . . ., x,, and a sequence of discrete random variables
for the state (label) variables 3s = y1,...,y,. Then an HMM defines the sequence
probability as
n
p(y,x) = [ [ p@:lvi)p(yilyi—) €Y
i=1
where for simplicity we defin@(yi1|yo) = p(y1). For inference and estimation we are
often interested in computing posterior marginal distiiis over hidden labels. For many
decoding applications, we are interested in quickly conmgithe most probablg.

A conditional random field (CRF) represents a conditionabability distribution using

a set of features. Lep be a set of cliques in a undirected graph containing the mrando
variables inx andy. A CRF represents the conditional probability of the latsiablesy
given observations as

p(y1) = 755 T Wl ) )
q€Q

whereZ(x) = 3°, <. [1,c0 Ya(yq: xq) is @ normalizing factor over all output configura-

tions. A CRF is usually parameterized using feature fumstifunctions{ fi.} for eachq
such that

\I/q(Yquq) = €xXp (Z /\kfk(}’qvxq)>a ©))
k

where)\; are the parameters or feature weights for the model.

Parameter estimation in a CRF is typically accomplished byimizing the log-likelihood
of fully-observed training dat® = {x;,y;}X,. If we defineX as a parameter vectdf,



as a feature function arli(y, x) = >__ F'(v4,%,) as theglobal feature function, then the
gradient of the log-likelihood with respect to the model parameters is given by

xac_v(Z)%MM&Aﬁ—}j@@n@—Eﬂﬂwim) (4)
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whereE, (-) denotes the expectation under the distribugica p(y;|%;, A). Itis important
to observe that this requires performing inference oncesémh sequence, per iteration
of the optimizer. For data sets with large state spacesptiisedure can require days of
computation.

Following previous work [7], we optimize the parametersngsiimited-memory BFGS
[4], a quasi-Newton gradient based optimizer. This has itapibns for inference algo-
rithms that compute®, (-) approximately. Inaccurate marginals lead to inaccuraaeigr
ents, which will severely hurt the convergence of any gnatdimsed optimizer, as observed
in negative results with early stopping of loopy BP [8].

3 Sparse Belief Propagation

Beam search can be viewed as maintaining a sparse digtribtihtat is as close as possi-
ble to a large distribution. In this section, we formalizéstimtuition using a variational
argument, which motivates several new beam-search-ligeapnation algorithms.

3.1 Unstructured Discrete Distributions

Consider a discrete distributigriz), wherex is assumed to have very many possible con-
figurations. We approximateby a sparse distributiog, which we write as a mixture of
Kronecker delta functions:

= Z qiéi(x)a (5)
icl
wherel = {iy,...,4x} is the set of indicessuch thay(z = 7) is non-zero, and;(z) = 1

if z = 1. We refer to the sef asthe beam.

In this section, we consider the problem of finding the distiiong(z) of smallest weight

such that Kl(q||p) < e. First, suppose the sét= {iy,...,i.} is fixed in advance, and
we wish to choose the probabilitiesto minimize KL(¢||p). Then the optimal choice is
simply ¢; = pi/ >, pi» @ result which can be verified using Lagrange multipliershan

normalization constraint af.

Second, suppose we wish to determine the set of indioésa fixed sizek which minimize
KL (¢g||p)- Then the optimal choice is when= {i1, ..., } consists of the indices of the
largestk values of the discrete distributign First, define

n=>p (6)
iel
Then the optimal approximating distribution is:

arg m|nKL (q|lp) = arg mln{arg {ml}nz q; log —} @)
el ¢
_argmm{z Pi pl/Z()} (8)
el Pi
= arg rr}a>{ log Z(I)} 9)

That is, the optimal choice of indices is the one that retainst probability mass.



This means that it is straightforward to find the discretéerithistion ¢ of minimal weight
such that L(q||p) < e. We can sort the elements of the probability vegidruncate after
the total mass exceedsand renormalize to obtain

3.2 Structured Distributions: Sparse Belief Propagation

In this section, we extend the ideas of the previous seatigmaphically-structured distri-
butions, yielding the sparse BP algorithm.

For a structured distribution of many random variableshsag a linear chain, the naive
procedure of enumerating all configurations and sortindeiarty impractical. Therefore,
rather than compressing the entire distribution, we irsteampress the marginal beliefs
after every message pass

Thus, we defingparse belief propagation as follows. Perform BP using a standard sched-
ule for message-passing in a tree. For each message froni tiodedej, do:

1. Pass the message in the standard way:

mij(x;) < Y (iz)  [[ mwg(e) (10)
z; keN(j)\i
2. Compute the new dense belbeds
b(a;) o p(xs) [ mijle)) (11)
1EN(J)

3. Compress into a sparse beligfr; ), maintaining KL(b'||b) < e. Call the resulting
beami;.

4. Compressn;;(z;) to respect the new beaf.

Note that in every compression operation, the bdais recomputed from scratch; there-
fore, variable configurations can both leave and enter taentiiring a message pass.

Also, because the graph has no loops, it is easy to see hyitatibatthat each message
m;;(z;) is the sum of the mass of all configurations of upstream naaesthatX; = z;.
In particular, after all messages have been sent, for ang hed have

Zi() = w(:) [[ mila;) (12)
T; iEN(J)

is the total mass of the beamin the global distribution (analogously, in fact, to startia

BP).

But this means, by the argument about unstructured disimitsi in the last section, that
Z(I) is the KL divergence Kip||q) between the global distributiongz) andg(z). A
consequence of this is that each message-pass/comprepsi@tion maintains the global
invariant that the global divergence Ktl|¢) is no more thare, or equivalently, that the
total mass of all the paths in the beam is at least

Finally, we discuss a few practical considerations. We Hauad improved results by
adding a minimum belief size constraifit which prevents a belief statéz ;) from being
compressed below non-zero entries. Also, in linear chains, we have found spatse
BP usually finds a good beam after a single forward pass. $lissirable because would
like to minimize the number of iterations, especially in aetr If finding a good beam
requires many forward and backward iterations, then aftehiée one may as well do
exact forward-backward.

Sparse beliefs can be applied in the same manner to loopypsoduct and max-product
updates, but we leave theoretical and practical analystsavfpproach for future work.
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Figure 1: Comparison of Beam Search Methods over Different Threshold: Sparse BP
achieves top accuracy with a much smaller average beamhsinghie beam search meth-
ods.

Beam / Constraint Size
2 3 4 5 6 12
Accuracy| 82.7] 88.3] 90.4] 91.2] 91.4] 91.6

Table 1: Comparing recognition accuracy on the NetTalk datausing a CRF with a
Viterbi accuracy of 91.6%.

4 Resultsand Analysis

In this section we evaluate sparse BP for both max-produtsam-product inference in
HMMs and CRFs and the real-world NetTalk dataset [6].

4.1 Experimentswith Max-Product Decoding

First, we evaluate whether in the max-product setting, fieeed improvement of sparse
BP versus exact max-product, and how sparse BP compareaditianal beam search
methods. In our first set of experiments, we generate syiotbata from an HMM of
length75. Transition matrix entries are sampled from a Dirichletwit= .1 and emission
matrices are generated from a mixture of a low entropy, spaosditional distribution with
10 non-zero elements and a high entropy Dirichlet with= 10, with priors of.75 and
.25 respectively. The goal is to simulate a regime where mostste highly informative
about their destination, but a few are less informative.

Beam / Constraint Size

3 5 10 15 20

Std. N-best| 57.8| 72.4] 82.3| 85.4] 86.2
KL<.5 |797]|805] 832|858/ 86.3
KL<.15 | 872]87.2|869|87.1] 871
Average Beam Size
KL<J5 49 ] 6.2 | 10.2] 15.0] 20.0
KL <.15 | 223]|22.6] 24.0| 25.9] 28.3

Table 2: Comparing CRF recognition accuracy on synthetidvHdata for Viterbi Beam
Search, our constrained max field algorithm in a CRF. Exaetrbi decoding had an accu-
racy of87.3%.



In Figure 1, we compare sparse BP to traditional beam sedgonthms. We compare to

two common approaches: a fixed beam size, and an adaptivevbleara message entries
are retained if their log score is within a fixed thresholdha best so far. For each algo-
rithm, we report the average beam size, using the minimuestiuid needed to find the
exact Viterbi solution. Sparse BP, using thd. < 0.001 compression and an additional
|I;] > 4 constraint, achieves the exact solution with an average®élstates per variable.

On the other hand, the fixed beam requires betweand 25 states, and the threshold
adaptive beam requirg$.4 states per variable to achieve the same accuracy.

Second, we also present max-product results for linearauaditional random fields on
both synthetic and real-world data. We generate synthetia ftom an HMM with100
hidden states anth0 possible observations. We constrain the HMM to be sparsénta
at most5 transitions per state arn@demission values per states. We us@dsequences
of length 75 for optimizing the model and0 examples for testing the model. We train a
linear-chain CRF using standard exact training, and compparse BP with other beam
search methods on the testing data.

Using exact Viterbi decoding, the CRF had a recognition eemuof87.3% on the syn-
thetic test data. Table 2 compares exact decoding with thmbesults based on thresh-
olds.

Finally, we report decoding results for a real-world CRFtea on the NetTalk data set [6].
The CRF we constructed had states, and was trained using 19075 examples (pronunci-
ations of single words) and tested using 934 examples. Stdndterbi decoding using
the CRF produced an accuracy®if.6%. Table 1 summarizes accuracy results for fixed
beam sizes. Our other experiments found that bothiflie< ¢ method and the threshold
methods produced the exact Viterbi accuracy when the ageragber of states explored
was14.

4.2 Learning Experiments

In this section, we present results showing that sum-priosharse BP can be embedded
within CRF training, yielding significant speedups in tiagntime with no loss in testing
performance.

First, we train CRFs using synthetic data generated frarfiastate HMM generated in
the same manner as in the previous section. Again, wéusequences for training and
50 sequences for testing. In all cases we use exact Viterbidilegdo compute testing
accuracy. Figure 2 illustrates learning curves companiegse BP withi L < 0.5, |I;| >
30 to exact forward-backward optimization. Sparse BP usedoueh of the time of exact
training with no loss in accuracy.

Also, we examine how important is it for the beam to be adaptout also comparing to
with an fixed beam with an average size the same as the avenag®en of states used by
sparse BP. Sparse BP and the fixed beam converge to samersol\ki find that sparse BP
and the fixed beam converge to the same solution, but spar§iaiBifies faster, indicating
that the adaptive beam does help training time. Most of tinefiteoccurs later in training,
as the model becomes farther from uniform.

The right-hand graph in Figure 2 shows the same learningesuon a different scale,
adding several other methods for discarding probabilitgsna fixed beam of the minimum
beam size for thé& L beam and a threshold based beam which explores on averaggyrou
the same number of states as thid. beam. In the case of the smaller, fixed beam of
size N, our L-BFGS optimizer terminated with an error as a resulthef noisy gradient
computation. In the case of the threshold beam, the grad@fnihe optimization were
erratic, but L-BFGS did terminate normally. However theagition accuracy of the final
model was low, a67.1%.

Finally, we present results training on the real-world NéitTdata set. In Figure 3 we
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Figure 2: Comparison of beam search methods for CRF trammrgynthetic data. At left,
comparison to exact training. Sparse BP has the same ag@asa&xact training with less
than a quarter of the training time. At right, a rescaled prafithe same experiment, with
several heuristic beam search techniques added. Thesdetlrestics either slower or less
robust than sparse BP.
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Figure 3: Learning curves of beam search algorithms for CRiRihg on the NetTalk data
set. Sparse BP (final test performader) performs equivalently to exact training1(6)
using only a quarter of the training time. A fixed-size beaelds unstable results (final
testing accuracg5.7).

present run time, model likelihood and accuracy resultsHe2 state CRF trained using
the NetTalk data with training and testing partitions ascdbed in Section 4.1. We ini-
tialize the CRF parameters using a sul$¥t of the data, before training on the full data
until convergence. We used the beam methods during the etengbtimization run and
during this initialization period. During these subsetializations, our experiments with a
threshold beam set such that it explored an averagé sfates produced initial parameter
estimates which had a test set accuracg@h. Our K L method, a fixed size beam of
averageK L size and exact forward backward all had accuraciegl&f. Further, during
the complete run, the threshold beam gradient estimates seenoisy that our L-BFGS
optimizer was unable to take a complete step. In the expetswd Figure 3¢ = .005 and

N = 10. Exact forward backward training produced a test set acgwi91.6%. In these
experiments fixed beam optimization using the average dineioKL beam (V = 20)
terminated normally but very noisy intermediate gradiemse found in the terminating
iteration. The result was a much lower accuracy8®f7%. In contrast, our’ L beam
achieved an accuracy 61.7% in a less thar25% of the time it took to exactly train the
CRF using forward backward.



5 Reated Work

Beam search is a standard method, that is used especiajiyefidly in the speech commu-
nity. In the graphical models community, there is some oldkwan zero-compression in
clique trees, due to Jensen and Andetsdrheir technique considered every potential in
a clique tree, and set the smallest potential values to nétlothe constraint that the total
mass of the potential does not fall below some fixed valu€his is clearly related to our
technique, but there is an important differences: They @duhe potentials of the model
once before performing inference, whereas we dynamicallgethe beliefs during infer-
ence, and indeed the beam can change during inference asfoemation arrives from
other parts of the model. Also, Jordan et al. [3], in their kvon hidden Markov decision
trees, introduce a variational algorithm that uses a deita single best state sequence, but
they provide no experimental evaluation of this technique.

6 Conclusions

We have presented a principled method for significantly dipepup decoding and learning
tasks in HMMs and CRFs. We also have presented experimeotkilustrating the utility
of our approach. As future work, we believe a promising aeeoiuexploration would be
to explore adaptive strategies involving interaction of aeBFGS optimizer, detecting
excessively noisy gradients and automatically settinglues. While the results we have
presented here were applied to experiments with HMMs anthdteuctured CRFs, we
believe this approach should be more generally applicable.
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