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Abstract

Even in trees, exact probabilistic inference can be expensive when the
cardinality of the variables is large. This is especially troublesome for
learning, because many standard estimation techniques, such as EM and
conditional maximum likelihood, require calling an inference algorithm
many times. In max-product inference, a standard heuristicfor control-
ling this complexity in linear chains is beam search, that is, to ignore
variable configurations during inference once their estimated probabil-
ity becomes sufficiently low. Although quite effective for max-product,
during sum-product inference beam search discards probability mass in
a way that makes learning unstable. In this paper, we introduce a varia-
tional perspective on beam search that uses a approximatingmixture of
Kronecker delta functions. This motivates a novel variational approxima-
tion for arbitrary tree-structured models, which maintains an adaptively-
sized sparse belief state—thus extending beam search from max-product
to sum-product, and from linear chains to arbitrary trees. We report effi-
ciency improvements for max-product inference over other beam search
techniques. Also, unlike heuristic methods for discardingprobability
mass, our method can be used effectively for conditional maximum like-
lihood training. On both synthetic and real-world problems, we report
four-fold increases in learning speed with no loss in accuracy.

1 Introduction

A standard technique for fast max-product inference with large discrete variables isbeam
search, that is, ignoring variable configurations whose estimatedmax-marginal is suffi-
ciently low. Beam search is often quite effective, and is widely used in applications such as
speech recognition and natural-language parsing. In speech recognition, for example, beam
search is a critically important component of large-scale hidden Markov model (HMM)-
based systems [2, 5, 9].

But large variable spaces are problematic for parameter estimation, because standard es-
timation techniques, such as expectation maximization andconditional maximum likeli-
hood, require many calls to inference. Furthermore, whereas beam search is quite effective
in max-product inference, many learning techniques call for sum-product inference, and
discarding probability mass during sum-product inferenceoften makes learning unstable.



Inspired by beam search, in this paper we introducesparse belief propagation, that is, a
variational procedure that approximates a distribution with large variable state space by a
mixture of Kronecker delta functions that cover a much smaller portion of the state space.
This motivates a novel message-passing algorithm in which after each message pass, the
belief is compressed while maintaining the approximating global distribution within a fixed
KL-divergence of the true distribution. Essentially, thisextends beam search from max-
product inference to sum-product, and from linear-chain models to arbitrary trees.

For max-product, we show experimentally that this KL-divergence criterion is more robust
and efficient than simpler beam search methods. For sum-product inference, we present
results using sparse BP to compute marginals for approximate training of conditional ran-
dom fields. Training using sparse BP can require less than one-fourth of the time of exact
training with no loss in accuracy, whereas more naive methods for discarding probability
mass yield unstable training methods. On one real-world task, the NetTalk text-to-speech
data set [6], we can now train a CRF in about 6 hours for which previously training required
over a day, with no loss in accuracy.

The rest of the paper is structured as follows. First, we briefly review HMMs and CRFs
and discuss current methods for learning CRFs. We then present our variational view of
beam search, and show how it leads to natural extensions to sum-product inference and
arbitrary graphs. Finally, we present experimental results for max-product inference, and
sum-product embedded within CRF training.

2 Notation and Background

In this section, we present our notation for chain-structured models, on which we focus in
this paper. We also briefly review current techniques for CRFparameter estimation.

HMMs are a classical type of generative sequence model. Define an observation sequence
of discrete random variables asx = x1, . . . , xn and a sequence of discrete random variables
for the state (label) variables asy = y1, . . . , yn. Then an HMM defines the sequence
probability as

p(y,x) =

n
∏

i=1

p(xi|yi)p(yi|yi−1) (1)

where for simplicity we definep(y1|y0) = p(y1). For inference and estimation we are
often interested in computing posterior marginal distributions over hidden labels. For many
decoding applications, we are interested in quickly computing the most probabley.

A conditional random field (CRF) represents a conditional probability distribution using
a set of features. LetQ be a set of cliques in a undirected graph containing the random
variables inx andy. A CRF represents the conditional probability of the label variablesy
given observationsx as

p(y|x) =
1

Z(x)

∏

q∈Q

Ψq(yq, xq), (2)

whereZ(x) =
∑

y∈y

∏

q∈Q Ψq(yq, xq) is a normalizing factor over all output configura-
tions. A CRF is usually parameterized using feature functions functions{fk} for eachq
such that

Ψq(yq, xq) = exp

(

∑

k

λkfk(yq, xq)

)

, (3)

whereλk are the parameters or feature weights for the model.

Parameter estimation in a CRF is typically accomplished by maximizing the log-likelihood
of fully-observed training dataD = {x̃i, ỹi}

N
i=1. If we defineλ as a parameter vector,F



as a feature function andF(y,x) =
∑

q F (yq, xq) as theglobal feature function, then the
gradient of the log-likelihoodL with respect to the model parameters is given by

∇λL = ∇λ

(

∑

i

log p(ỹi|x̃i,λ)

)

=
∑

i

(

F(ỹi, x̃i)− Ep

〈

F(yi, x̃i)
〉

)

, (4)

whereEp〈·〉 denotes the expectation under the distributionp = p(yi|x̃i, λ̃). It is important
to observe that this requires performing inference once foreach sequence, per iteration
of the optimizer. For data sets with large state spaces, thisprocedure can require days of
computation.

Following previous work [7], we optimize the parameters using limited-memory BFGS
[4], a quasi-Newton gradient based optimizer. This has implications for inference algo-
rithms that computeEp〈·〉 approximately. Inaccurate marginals lead to inaccurate gradi-
ents, which will severely hurt the convergence of any gradient-based optimizer, as observed
in negative results with early stopping of loopy BP [8].

3 Sparse Belief Propagation

Beam search can be viewed as maintaining a sparse distribution that is as close as possi-
ble to a large distribution. In this section, we formalize this intuition using a variational
argument, which motivates several new beam-search-like approximation algorithms.

3.1 Unstructured Discrete Distributions

Consider a discrete distributionp(x), wherex is assumed to have very many possible con-
figurations. We approximatep by a sparse distributionq, which we write as a mixture of
Kronecker delta functions:

q(x) =
∑

i∈I

qiδi(x), (5)

whereI = {i1, . . . , ik} is the set of indicesi such thatq(x = i) is non-zero, andδi(x) = 1
if x = i. We refer to the setI asthe beam.

In this section, we consider the problem of finding the distributionq(x) of smallest weight
such that KL(q‖p) ≤ ǫ. First, suppose the setI = {i1, . . . , ik} is fixed in advance, and
we wish to choose the probabilitiesqi to minimize KL(q‖p). Then the optimal choice is
simply qi = pi/

∑

i∈I pi, a result which can be verified using Lagrange multipliers onthe
normalization constraint ofq.

Second, suppose we wish to determine the set of indicesI of a fixed sizek which minimize
KL(q‖p). Then the optimal choice is whenI = {i1, . . . , ik} consists of the indices of the
largestk values of the discrete distributionp. First, define

Z(I) =
∑

i∈I

pi (6)

Then the optimal approximating distribution is:

arg min
q

KL(q‖p) = arg min
I

{

arg min
{qi}

∑

i∈I

qi log
qi
pi

}

(7)

= arg min
I

{

∑

i∈I

pi

Z(I)
log

pi/Z(I)

pi

}

(8)

= arg max
I

{

logZ(I)
}

(9)

That is, the optimal choice of indices is the one that retainsmost probability mass.



This means that it is straightforward to find the discrete distribution q of minimal weight
such thatKL(q||p) ≤ ǫ. We can sort the elements of the probability vectorp, truncate after
the total mass exceedsǫ, and renormalize to obtainq.

3.2 Structured Distributions: Sparse Belief Propagation

In this section, we extend the ideas of the previous section to graphically-structured distri-
butions, yielding the sparse BP algorithm.

For a structured distribution of many random variables, such as a linear chain, the naive
procedure of enumerating all configurations and sorting is clearly impractical. Therefore,
rather than compressing the entire distribution, we instead compress the marginal beliefs
after every message pass

Thus, we definesparse belief propagation as follows. Perform BP using a standard sched-
ule for message-passing in a tree. For each message from nodei to nodej, do:

1. Pass the message in the standard way:

mij(xj)←
∑

xi

ψ(xi, xj)
∏

k∈N(j)\i

mkj(xi) (10)

2. Compute the new dense beliefb as

b(xj) ∝ ψ(xj)
∏

i∈N(j)

mij(xj) (11)

3. Compress into a sparse beliefb′(xj), maintaining KL(b′‖b) ≤ ǫ. Call the resulting
beamIj .

4. Compressmij(xj) to respect the new beamIj .

Note that in every compression operation, the beamIs is recomputed from scratch; there-
fore, variable configurations can both leave and enter the beam during a message pass.

Also, because the graph has no loops, it is easy to see by substitution that each message
mij(xj) is the sum of the mass of all configurations of upstream nodes such thatXj = xj .
In particular, after all messages have been sent, for any node i we have

Zi(I) =
∑

xi

ψ(xi)
∏

i∈N(j)

mij(xj) (12)

is the total mass of the beamI in the global distribution (analogously, in fact, to standard
BP).

But this means, by the argument about unstructured distributions in the last section, that
Z(I) is the KL divergence KL(p‖q) between the global distributionsp(x) andq(x). A
consequence of this is that each message-pass/compressionoperation maintains the global
invariant that the global divergence KL(p‖q) is no more thanǫ, or equivalently, that the
total mass of all the paths in the beam is at leastǫ.

Finally, we discuss a few practical considerations. We havefound improved results by
adding a minimum belief size constraintK, which prevents a belief stateq(xs) from being
compressed belowK non-zero entries. Also, in linear chains, we have found thatsparse
BP usually finds a good beam after a single forward pass. This is desirable because would
like to minimize the number of iterations, especially in a tree: If finding a good beam
requires many forward and backward iterations, then after awhile one may as well do
exact forward-backward.

Sparse beliefs can be applied in the same manner to loopy sum-product and max-product
updates, but we leave theoretical and practical analysis ofthat approach for future work.
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Figure 1: Comparison of Beam Search Methods over Different Threshold: Sparse BP
achieves top accuracy with a much smaller average beam size than the beam search meth-
ods.

Beam / Constraint Size
2 3 4 5 6 12

Accuracy 82.7 88.3 90.4 91.2 91.4 91.6

Table 1: Comparing recognition accuracy on the NetTalk dataset using a CRF with a
Viterbi accuracy of 91.6%.

4 Results and Analysis

In this section we evaluate sparse BP for both max-product and sum-product inference in
HMMs and CRFs and the real-world NetTalk dataset [6].

4.1 Experiments with Max-Product Decoding

First, we evaluate whether in the max-product setting, the speed improvement of sparse
BP versus exact max-product, and how sparse BP compares to traditional beam search
methods. In our first set of experiments, we generate synthetic data from an HMM of
length75. Transition matrix entries are sampled from a Dirichlet withα = .1 and emission
matrices are generated from a mixture of a low entropy, sparse conditional distribution with
10 non-zero elements and a high entropy Dirichlet withα = 104, with priors of .75 and
.25 respectively. The goal is to simulate a regime where most states are highly informative
about their destination, but a few are less informative.

Beam / Constraint Size
3 5 10 15 20

Std. N-best 57.8 72.4 82.3 85.4 86.2
KL ≤ .5 79.7 80.5 83.2 85.8 86.3
KL ≤ .15 87.2 87.2 86.9 87.1 87.1

Average Beam Size
KL ≤ .5 4.9 6.2 10.2 15.0 20.0
KL ≤ .15 22.3 22.6 24.0 25.9 28.3

Table 2: Comparing CRF recognition accuracy on synthetic HMM data for Viterbi Beam
Search, our constrained max field algorithm in a CRF. Exact Viterbi decoding had an accu-
racy of87.3%.



In Figure 1, we compare sparse BP to traditional beam search algorithms. We compare to
two common approaches: a fixed beam size, and an adaptive beamwhere message entries
are retained if their log score is within a fixed threshold of the best so far. For each algo-
rithm, we report the average beam size, using the minimum threshold needed to find the
exact Viterbi solution. Sparse BP, using theKL ≤ 0.001 compression and an additional
|Ii| ≥ 4 constraint, achieves the exact solution with an average only 9.6 states per variable.
On the other hand, the fixed beam requires between20 and25 states, and the threshold
adaptive beam requires30.4 states per variable to achieve the same accuracy.

Second, we also present max-product results for linear-chain conditional random fields on
both synthetic and real-world data. We generate synthetic data from an HMM with100
hidden states and100 possible observations. We constrain the HMM to be sparse, having
at most5 transitions per state and5 emission values per states. We used50 sequences
of length75 for optimizing the model and50 examples for testing the model. We train a
linear-chain CRF using standard exact training, and compare sparse BP with other beam
search methods on the testing data.

Using exact Viterbi decoding, the CRF had a recognition accuracy of87.3% on the syn-
thetic test data. Table 2 compares exact decoding with the beam results based on thresh-
olds.

Finally, we report decoding results for a real-world CRF trained on the NetTalk data set [6].
The CRF we constructed had52 states, and was trained using 19075 examples (pronunci-
ations of single words) and tested using 934 examples. Standard Viterbi decoding using
the CRF produced an accuracy of91.6%. Table 1 summarizes accuracy results for fixed
beam sizes. Our other experiments found that both theKL ≤ ǫ method and the threshold
methods produced the exact Viterbi accuracy when the average number of states explored
was14.

4.2 Learning Experiments

In this section, we present results showing that sum-product sparse BP can be embedded
within CRF training, yielding significant speedups in training time with no loss in testing
performance.

First, we train CRFs using synthetic data generated from a100 state HMM generated in
the same manner as in the previous section. Again, we use50 sequences for training and
50 sequences for testing. In all cases we use exact Viterbi decoding to compute testing
accuracy. Figure 2 illustrates learning curves comparing sparse BP withKL ≤ 0.5, |Ii| ≥
30 to exact forward-backward optimization. Sparse BP uses one-fourth of the time of exact
training with no loss in accuracy.

Also, we examine how important is it for the beam to be adaptive, but also comparing to
with an fixed beam with an average size the same as the average number of states used by
sparse BP. Sparse BP and the fixed beam converge to same solution, We find that sparse BP
and the fixed beam converge to the same solution, but sparse BPfinishes faster, indicating
that the adaptive beam does help training time. Most of the benefit occurs later in training,
as the model becomes farther from uniform.

The right-hand graph in Figure 2 shows the same learning curves on a different scale,
adding several other methods for discarding probability mass: a fixed beam of the minimum
beam size for theKL beam and a threshold based beam which explores on average roughly
the same number of states as theKL beam. In the case of the smaller, fixed beam of
sizeN , our L-BFGS optimizer terminated with an error as a result ofthe noisy gradient
computation. In the case of the threshold beam, the gradients of the optimization were
erratic, but L-BFGS did terminate normally. However the recognition accuracy of the final
model was low, at67.1%.

Finally, we present results training on the real-world NetTalk data set. In Figure 3 we
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Figure 2: Comparison of beam search methods for CRF trainingon synthetic data. At left,
comparison to exact training. Sparse BP has the same accuracy as exact training with less
than a quarter of the training time. At right, a rescaled graph of the same experiment, with
several heuristic beam search techniques added. These other heuristics either slower or less
robust than sparse BP.

1 2 3 4 5 6 7 8

x 10
4

−44

−42

−40

−38

−36

−34

−32

−30

−28

Computation Time (seconds)

Lo
g 

Li
ke

lih
oo

d 
× 

10
3

Computation Time vs. Likelihood

Fixed Beam of Avg. KL size

KL ≤ ε & |I
j
| ≥ N

Exact Forward Backward

Figure 3: Learning curves of beam search algorithms for CRF training on the NetTalk data
set. Sparse BP (final test performance91.7) performs equivalently to exact training (91.6)
using only a quarter of the training time. A fixed-size beam yields unstable results (final
testing accuracy85.7).

present run time, model likelihood and accuracy results forthe52 state CRF trained using
the NetTalk data with training and testing partitions as described in Section 4.1. We ini-
tialize the CRF parameters using a subset12% of the data, before training on the full data
until convergence. We used the beam methods during the complete optimization run and
during this initialization period. During these subset initializations, our experiments with a
threshold beam set such that it explored an average of36 states produced initial parameter
estimates which had a test set accuracy of67%. OurKL method, a fixed size beam of
averageKL size and exact forward backward all had accuracies of74%. Further, during
the complete run, the threshold beam gradient estimates were so noisy that our L-BFGS
optimizer was unable to take a complete step. In the experiments of Figure 3,ǫ = .005 and
N = 10. Exact forward backward training produced a test set accuracy of 91.6%. In these
experiments fixed beam optimization using the average size of our KL beam (N = 20)
terminated normally but very noisy intermediate gradientswere found in the terminating
iteration. The result was a much lower accuracy of85.7%. In contrast, ourKL beam
achieved an accuracy of91.7% in a less than25% of the time it took to exactly train the
CRF using forward backward.



5 Related Work

Beam search is a standard method, that is used especially frequently in the speech commu-
nity. In the graphical models community, there is some old work on zero-compression in
clique trees, due to Jensen and Anderson1. Their technique considered every potential in
a clique tree, and set the smallest potential values to zero,with the constraint that the total
mass of the potential does not fall below some fixed valueδ. This is clearly related to our
technique, but there is an important differences: They pruned the potentials of the model
once before performing inference, whereas we dynamically prune the beliefs during infer-
ence, and indeed the beam can change during inference as new information arrives from
other parts of the model. Also, Jordan et al. [3], in their work on hidden Markov decision
trees, introduce a variational algorithm that uses a delta on a single best state sequence, but
they provide no experimental evaluation of this technique.

6 Conclusions

We have presented a principled method for significantly speeding up decoding and learning
tasks in HMMs and CRFs. We also have presented experimental work illustrating the utility
of our approach. As future work, we believe a promising avenue of exploration would be
to explore adaptive strategies involving interaction of our L-BFGS optimizer, detecting
excessively noisy gradients and automatically settingǫ values. While the results we have
presented here were applied to experiments with HMMs and chain structured CRFs, we
believe this approach should be more generally applicable.
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