
Adventures in Neurosymbolic
Machine Learning

symbols to vectors
vectors to symbols

plus other stuff

Charles Sutton
9 April 2018

bit.ly/adventures-neurosymbolicCompanion Site:

http://bit.ly/adventures-neurosymbolic

BONUS!BONUS!

[Xu, Park, Chang, Sutton, 2018]

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Interpreting Deep Classifiers by Visual Distillation of Dark Knowledge

(a) LeNet on MNIST

(b) VGG16 on Cifar10

(c) Wide-ResNet on Cifar100

Figure 5. Scatter plots generated by DarkSight for MNIST (LeNet), Cifar10 (VGG16) and Cifar100 (Wide-ResNet). For (a) and (b),
points are colored by the teacher’s predictions. Rounded points means they are correctly classified by the teacher and crossings means they
are wrongly classified by the teacher. For (c), we show the monochrome scatter plot simply because there are too many clusters which are
hard to assign colors to. Stars in all plots are µ for the Student’s t distribution. In (a), the contour is where PS(yi; ✓) equals to 0.001.

consider improving the classifier for these inputs by either
changing the architecture or collecting more examples of
this type of digit.

Finally, points appear as outliers when the classifier predicts
an uncommon vector of predictive probabilities. For exam-
ple, Case 4 shows the three digits located in the upper-right
corner of the plot. It can be seen that these digits are par-
ticularly unusual outliers. This suggests that a particularly
interesting class of anomalous data points are those that
cause a classifier to do unusual things.

5.2. VGG16 on Cifar10

Figure 5(b) shows the visualization for Cifar10. In this plot,
points are again grouped by top-predicted class, but now six
of the classes lie on a one-dimensional manifold that pro-
gresses from “truck” to “car” through to “bird” and “dog”.
Along the curves connecting clusters, we observe that the
top two probabilities in the prediction vector smoothly tran-
sition through the classes in the manifold, as we discussed
in more detail earlier (see Figure 3(c)).

5.3. Wide-ResNet on Cifar100

Finally, Figure 5(c) is the DarkSight visualization of the
Wide-ResNet trained on Cifar100 that includes all 100
classes. Even with so many classes, it is possible to vi-
sually identify clusters and outliers. Although it is difficult
to examine a display with so many clusters in print, an in-
teractive plot that allows for panning and zoom can make it
possible to explore this display thoroughly.

6. Conclusions

We present DarkSight, a new dimension reduction technique
for interpreting deep classifiers based on knowledge distil-
lation. DarkSight jointly compresses a black-box classifier
into a simpler, interpretable classifier and obtains the cor-
responding low-dimensional points for each input. With
the DarkSight visulization, one can faithfully visualize the
predictive vectors from a classifier, which is summarized
as four useful properties. We demonstrate how to use these
properties to help diagnose deep classifiers, which could
potentially enable wider use of them in industry.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Interpreting Deep Classifiers by Visual Distillation of Dark Knowledge

(a) LeNet on MNIST

(b) VGG16 on Cifar10

(c) Wide-ResNet on Cifar100

Figure 5. Scatter plots generated by DarkSight for MNIST (LeNet), Cifar10 (VGG16) and Cifar100 (Wide-ResNet). For (a) and (b),
points are colored by the teacher’s predictions. Rounded points means they are correctly classified by the teacher and crossings means they
are wrongly classified by the teacher. For (c), we show the monochrome scatter plot simply because there are too many clusters which are
hard to assign colors to. Stars in all plots are µ for the Student’s t distribution. In (a), the contour is where PS(yi; ✓) equals to 0.001.

consider improving the classifier for these inputs by either
changing the architecture or collecting more examples of
this type of digit.

Finally, points appear as outliers when the classifier predicts
an uncommon vector of predictive probabilities. For exam-
ple, Case 4 shows the three digits located in the upper-right
corner of the plot. It can be seen that these digits are par-
ticularly unusual outliers. This suggests that a particularly
interesting class of anomalous data points are those that
cause a classifier to do unusual things.

5.2. VGG16 on Cifar10

Figure 5(b) shows the visualization for Cifar10. In this plot,
points are again grouped by top-predicted class, but now six
of the classes lie on a one-dimensional manifold that pro-
gresses from “truck” to “car” through to “bird” and “dog”.
Along the curves connecting clusters, we observe that the
top two probabilities in the prediction vector smoothly tran-
sition through the classes in the manifold, as we discussed
in more detail earlier (see Figure 3(c)).

5.3. Wide-ResNet on Cifar100

Finally, Figure 5(c) is the DarkSight visualization of the
Wide-ResNet trained on Cifar100 that includes all 100
classes. Even with so many classes, it is possible to vi-
sually identify clusters and outliers. Although it is difficult
to examine a display with so many clusters in print, an in-
teractive plot that allows for panning and zoom can make it
possible to explore this display thoroughly.

6. Conclusions

We present DarkSight, a new dimension reduction technique
for interpreting deep classifiers based on knowledge distil-
lation. DarkSight jointly compresses a black-box classifier
into a simpler, interpretable classifier and obtains the cor-
responding low-dimensional points for each input. With
the DarkSight visulization, one can faithfully visualize the
predictive vectors from a classifier, which is summarized
as four useful properties. We demonstrate how to use these
properties to help diagnose deep classifiers, which could
potentially enable wider use of them in industry.

Validation set

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Interpreting Deep Classifiers by Visual Distillation of Dark Knowledge

(a) LeNet on MNIST

(b) VGG16 on Cifar10

(c) Wide-ResNet on Cifar100

Figure 5. Scatter plots generated by DarkSight for MNIST (LeNet), Cifar10 (VGG16) and Cifar100 (Wide-ResNet). For (a) and (b),
points are colored by the teacher’s predictions. Rounded points means they are correctly classified by the teacher and crossings means they
are wrongly classified by the teacher. For (c), we show the monochrome scatter plot simply because there are too many clusters which are
hard to assign colors to. Stars in all plots are µ for the Student’s t distribution. In (a), the contour is where PS(yi; ✓) equals to 0.001.

consider improving the classifier for these inputs by either
changing the architecture or collecting more examples of
this type of digit.

Finally, points appear as outliers when the classifier predicts
an uncommon vector of predictive probabilities. For exam-
ple, Case 4 shows the three digits located in the upper-right
corner of the plot. It can be seen that these digits are par-
ticularly unusual outliers. This suggests that a particularly
interesting class of anomalous data points are those that
cause a classifier to do unusual things.

5.2. VGG16 on Cifar10

Figure 5(b) shows the visualization for Cifar10. In this plot,
points are again grouped by top-predicted class, but now six
of the classes lie on a one-dimensional manifold that pro-
gresses from “truck” to “car” through to “bird” and “dog”.
Along the curves connecting clusters, we observe that the
top two probabilities in the prediction vector smoothly tran-
sition through the classes in the manifold, as we discussed
in more detail earlier (see Figure 3(c)).

5.3. Wide-ResNet on Cifar100

Finally, Figure 5(c) is the DarkSight visualization of the
Wide-ResNet trained on Cifar100 that includes all 100
classes. Even with so many classes, it is possible to vi-
sually identify clusters and outliers. Although it is difficult
to examine a display with so many clusters in print, an in-
teractive plot that allows for panning and zoom can make it
possible to explore this display thoroughly.

6. Conclusions

We present DarkSight, a new dimension reduction technique
for interpreting deep classifiers based on knowledge distil-
lation. DarkSight jointly compresses a black-box classifier
into a simpler, interpretable classifier and obtains the cor-
responding low-dimensional points for each input. With
the DarkSight visulization, one can faithfully visualize the
predictive vectors from a classifier, which is summarized
as four useful properties. We demonstrate how to use these
properties to help diagnose deep classifiers, which could
potentially enable wider use of them in industry.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Interpreting Deep Classifiers by Visual Distillation of Dark Knowledge

(a) LeNet on MNIST

(b) VGG16 on Cifar10

(c) Wide-ResNet on Cifar100

Figure 5. Scatter plots generated by DarkSight for MNIST (LeNet), Cifar10 (VGG16) and Cifar100 (Wide-ResNet). For (a) and (b),
points are colored by the teacher’s predictions. Rounded points means they are correctly classified by the teacher and crossings means they
are wrongly classified by the teacher. For (c), we show the monochrome scatter plot simply because there are too many clusters which are
hard to assign colors to. Stars in all plots are µ for the Student’s t distribution. In (a), the contour is where PS(yi; ✓) equals to 0.001.

consider improving the classifier for these inputs by either
changing the architecture or collecting more examples of
this type of digit.

Finally, points appear as outliers when the classifier predicts
an uncommon vector of predictive probabilities. For exam-
ple, Case 4 shows the three digits located in the upper-right
corner of the plot. It can be seen that these digits are par-
ticularly unusual outliers. This suggests that a particularly
interesting class of anomalous data points are those that
cause a classifier to do unusual things.

5.2. VGG16 on Cifar10

Figure 5(b) shows the visualization for Cifar10. In this plot,
points are again grouped by top-predicted class, but now six
of the classes lie on a one-dimensional manifold that pro-
gresses from “truck” to “car” through to “bird” and “dog”.
Along the curves connecting clusters, we observe that the
top two probabilities in the prediction vector smoothly tran-
sition through the classes in the manifold, as we discussed
in more detail earlier (see Figure 3(c)).

5.3. Wide-ResNet on Cifar100

Finally, Figure 5(c) is the DarkSight visualization of the
Wide-ResNet trained on Cifar100 that includes all 100
classes. Even with so many classes, it is possible to vi-
sually identify clusters and outliers. Although it is difficult
to examine a display with so many clusters in print, an in-
teractive plot that allows for panning and zoom can make it
possible to explore this display thoroughly.

6. Conclusions

We present DarkSight, a new dimension reduction technique
for interpreting deep classifiers based on knowledge distil-
lation. DarkSight jointly compresses a black-box classifier
into a simpler, interpretable classifier and obtains the cor-
responding low-dimensional points for each input. With
the DarkSight visulization, one can faithfully visualize the
predictive vectors from a classifier, which is summarized
as four useful properties. We demonstrate how to use these
properties to help diagnose deep classifiers, which could
potentially enable wider use of them in industry.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Interpreting Deep Classifiers by Visual Distillation of Dark Knowledge

(a) LeNet on MNIST

(b) VGG16 on Cifar10

(c) Wide-ResNet on Cifar100

Figure 5. Scatter plots generated by DarkSight for MNIST (LeNet), Cifar10 (VGG16) and Cifar100 (Wide-ResNet). For (a) and (b),
points are colored by the teacher’s predictions. Rounded points means they are correctly classified by the teacher and crossings means they
are wrongly classified by the teacher. For (c), we show the monochrome scatter plot simply because there are too many clusters which are
hard to assign colors to. Stars in all plots are µ for the Student’s t distribution. In (a), the contour is where PS(yi; ✓) equals to 0.001.

consider improving the classifier for these inputs by either
changing the architecture or collecting more examples of
this type of digit.

Finally, points appear as outliers when the classifier predicts
an uncommon vector of predictive probabilities. For exam-
ple, Case 4 shows the three digits located in the upper-right
corner of the plot. It can be seen that these digits are par-
ticularly unusual outliers. This suggests that a particularly
interesting class of anomalous data points are those that
cause a classifier to do unusual things.

5.2. VGG16 on Cifar10

Figure 5(b) shows the visualization for Cifar10. In this plot,
points are again grouped by top-predicted class, but now six
of the classes lie on a one-dimensional manifold that pro-
gresses from “truck” to “car” through to “bird” and “dog”.
Along the curves connecting clusters, we observe that the
top two probabilities in the prediction vector smoothly tran-
sition through the classes in the manifold, as we discussed
in more detail earlier (see Figure 3(c)).

5.3. Wide-ResNet on Cifar100

Finally, Figure 5(c) is the DarkSight visualization of the
Wide-ResNet trained on Cifar100 that includes all 100
classes. Even with so many classes, it is possible to vi-
sually identify clusters and outliers. Although it is difficult
to examine a display with so many clusters in print, an in-
teractive plot that allows for panning and zoom can make it
possible to explore this display thoroughly.

6. Conclusions

We present DarkSight, a new dimension reduction technique
for interpreting deep classifiers based on knowledge distil-
lation. DarkSight jointly compresses a black-box classifier
into a simpler, interpretable classifier and obtains the cor-
responding low-dimensional points for each input. With
the DarkSight visulization, one can faithfully visualize the
predictive vectors from a classifier, which is summarized
as four useful properties. We demonstrate how to use these
properties to help diagnose deep classifiers, which could
potentially enable wider use of them in industry.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Interpreting Deep Classifiers by Visual Distillation of Dark Knowledge

(a) LeNet on MNIST

(b) VGG16 on Cifar10

(c) Wide-ResNet on Cifar100

Figure 5. Scatter plots generated by DarkSight for MNIST (LeNet), Cifar10 (VGG16) and Cifar100 (Wide-ResNet). For (a) and (b),
points are colored by the teacher’s predictions. Rounded points means they are correctly classified by the teacher and crossings means they
are wrongly classified by the teacher. For (c), we show the monochrome scatter plot simply because there are too many clusters which are
hard to assign colors to. Stars in all plots are µ for the Student’s t distribution. In (a), the contour is where PS(yi; ✓) equals to 0.001.

consider improving the classifier for these inputs by either
changing the architecture or collecting more examples of
this type of digit.

Finally, points appear as outliers when the classifier predicts
an uncommon vector of predictive probabilities. For exam-
ple, Case 4 shows the three digits located in the upper-right
corner of the plot. It can be seen that these digits are par-
ticularly unusual outliers. This suggests that a particularly
interesting class of anomalous data points are those that
cause a classifier to do unusual things.

5.2. VGG16 on Cifar10

Figure 5(b) shows the visualization for Cifar10. In this plot,
points are again grouped by top-predicted class, but now six
of the classes lie on a one-dimensional manifold that pro-
gresses from “truck” to “car” through to “bird” and “dog”.
Along the curves connecting clusters, we observe that the
top two probabilities in the prediction vector smoothly tran-
sition through the classes in the manifold, as we discussed
in more detail earlier (see Figure 3(c)).

5.3. Wide-ResNet on Cifar100

Finally, Figure 5(c) is the DarkSight visualization of the
Wide-ResNet trained on Cifar100 that includes all 100
classes. Even with so many classes, it is possible to vi-
sually identify clusters and outliers. Although it is difficult
to examine a display with so many clusters in print, an in-
teractive plot that allows for panning and zoom can make it
possible to explore this display thoroughly.

6. Conclusions

We present DarkSight, a new dimension reduction technique
for interpreting deep classifiers based on knowledge distil-
lation. DarkSight jointly compresses a black-box classifier
into a simpler, interpretable classifier and obtains the cor-
responding low-dimensional points for each input. With
the DarkSight visulization, one can faithfully visualize the
predictive vectors from a classifier, which is summarized
as four useful properties. We demonstrate how to use these
properties to help diagnose deep classifiers, which could
potentially enable wider use of them in industry.

Trained
classifier

Prediction vectors
(class probabilities)

http://xuk.ai/darksight/

Programming is to debugging
as

Differentiable programming is to
error analysis

Debugging tools

Error Analysis via Dark Knowledge

BONUS!BONUS! [Xu, Park, Chang, Sutton, 2018]

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Interpreting Deep Classifiers by Visual Distillation of Dark Knowledge

(a) LeNet on MNIST

(b) VGG16 on Cifar10

(c) Wide-ResNet on Cifar100

Figure 5. Scatter plots generated by DarkSight for MNIST (LeNet), Cifar10 (VGG16) and Cifar100 (Wide-ResNet). For (a) and (b),
points are colored by the teacher’s predictions. Rounded points means they are correctly classified by the teacher and crossings means they
are wrongly classified by the teacher. For (c), we show the monochrome scatter plot simply because there are too many clusters which are
hard to assign colors to. Stars in all plots are µ for the Student’s t distribution. In (a), the contour is where PS(yi; ✓) equals to 0.001.

consider improving the classifier for these inputs by either
changing the architecture or collecting more examples of
this type of digit.

Finally, points appear as outliers when the classifier predicts
an uncommon vector of predictive probabilities. For exam-
ple, Case 4 shows the three digits located in the upper-right
corner of the plot. It can be seen that these digits are par-
ticularly unusual outliers. This suggests that a particularly
interesting class of anomalous data points are those that
cause a classifier to do unusual things.

5.2. VGG16 on Cifar10

Figure 5(b) shows the visualization for Cifar10. In this plot,
points are again grouped by top-predicted class, but now six
of the classes lie on a one-dimensional manifold that pro-
gresses from “truck” to “car” through to “bird” and “dog”.
Along the curves connecting clusters, we observe that the
top two probabilities in the prediction vector smoothly tran-
sition through the classes in the manifold, as we discussed
in more detail earlier (see Figure 3(c)).

5.3. Wide-ResNet on Cifar100

Finally, Figure 5(c) is the DarkSight visualization of the
Wide-ResNet trained on Cifar100 that includes all 100
classes. Even with so many classes, it is possible to vi-
sually identify clusters and outliers. Although it is difficult
to examine a display with so many clusters in print, an in-
teractive plot that allows for panning and zoom can make it
possible to explore this display thoroughly.

6. Conclusions

We present DarkSight, a new dimension reduction technique
for interpreting deep classifiers based on knowledge distil-
lation. DarkSight jointly compresses a black-box classifier
into a simpler, interpretable classifier and obtains the cor-
responding low-dimensional points for each input. With
the DarkSight visulization, one can faithfully visualize the
predictive vectors from a classifier, which is summarized
as four useful properties. We demonstrate how to use these
properties to help diagnose deep classifiers, which could
potentially enable wider use of them in industry.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Interpreting Deep Classifiers by Visual Distillation of Dark Knowledge

(a) LeNet on MNIST

(b) VGG16 on Cifar10

(c) Wide-ResNet on Cifar100

Figure 5. Scatter plots generated by DarkSight for MNIST (LeNet), Cifar10 (VGG16) and Cifar100 (Wide-ResNet). For (a) and (b),
points are colored by the teacher’s predictions. Rounded points means they are correctly classified by the teacher and crossings means they
are wrongly classified by the teacher. For (c), we show the monochrome scatter plot simply because there are too many clusters which are
hard to assign colors to. Stars in all plots are µ for the Student’s t distribution. In (a), the contour is where PS(yi; ✓) equals to 0.001.

consider improving the classifier for these inputs by either
changing the architecture or collecting more examples of
this type of digit.

Finally, points appear as outliers when the classifier predicts
an uncommon vector of predictive probabilities. For exam-
ple, Case 4 shows the three digits located in the upper-right
corner of the plot. It can be seen that these digits are par-
ticularly unusual outliers. This suggests that a particularly
interesting class of anomalous data points are those that
cause a classifier to do unusual things.

5.2. VGG16 on Cifar10

Figure 5(b) shows the visualization for Cifar10. In this plot,
points are again grouped by top-predicted class, but now six
of the classes lie on a one-dimensional manifold that pro-
gresses from “truck” to “car” through to “bird” and “dog”.
Along the curves connecting clusters, we observe that the
top two probabilities in the prediction vector smoothly tran-
sition through the classes in the manifold, as we discussed
in more detail earlier (see Figure 3(c)).

5.3. Wide-ResNet on Cifar100

Finally, Figure 5(c) is the DarkSight visualization of the
Wide-ResNet trained on Cifar100 that includes all 100
classes. Even with so many classes, it is possible to vi-
sually identify clusters and outliers. Although it is difficult
to examine a display with so many clusters in print, an in-
teractive plot that allows for panning and zoom can make it
possible to explore this display thoroughly.

6. Conclusions

We present DarkSight, a new dimension reduction technique
for interpreting deep classifiers based on knowledge distil-
lation. DarkSight jointly compresses a black-box classifier
into a simpler, interpretable classifier and obtains the cor-
responding low-dimensional points for each input. With
the DarkSight visulization, one can faithfully visualize the
predictive vectors from a classifier, which is summarized
as four useful properties. We demonstrate how to use these
properties to help diagnose deep classifiers, which could
potentially enable wider use of them in industry.

Validation set

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Interpreting Deep Classifiers by Visual Distillation of Dark Knowledge

(a) LeNet on MNIST

(b) VGG16 on Cifar10

(c) Wide-ResNet on Cifar100

Figure 5. Scatter plots generated by DarkSight for MNIST (LeNet), Cifar10 (VGG16) and Cifar100 (Wide-ResNet). For (a) and (b),
points are colored by the teacher’s predictions. Rounded points means they are correctly classified by the teacher and crossings means they
are wrongly classified by the teacher. For (c), we show the monochrome scatter plot simply because there are too many clusters which are
hard to assign colors to. Stars in all plots are µ for the Student’s t distribution. In (a), the contour is where PS(yi; ✓) equals to 0.001.

consider improving the classifier for these inputs by either
changing the architecture or collecting more examples of
this type of digit.

Finally, points appear as outliers when the classifier predicts
an uncommon vector of predictive probabilities. For exam-
ple, Case 4 shows the three digits located in the upper-right
corner of the plot. It can be seen that these digits are par-
ticularly unusual outliers. This suggests that a particularly
interesting class of anomalous data points are those that
cause a classifier to do unusual things.

5.2. VGG16 on Cifar10

Figure 5(b) shows the visualization for Cifar10. In this plot,
points are again grouped by top-predicted class, but now six
of the classes lie on a one-dimensional manifold that pro-
gresses from “truck” to “car” through to “bird” and “dog”.
Along the curves connecting clusters, we observe that the
top two probabilities in the prediction vector smoothly tran-
sition through the classes in the manifold, as we discussed
in more detail earlier (see Figure 3(c)).

5.3. Wide-ResNet on Cifar100

Finally, Figure 5(c) is the DarkSight visualization of the
Wide-ResNet trained on Cifar100 that includes all 100
classes. Even with so many classes, it is possible to vi-
sually identify clusters and outliers. Although it is difficult
to examine a display with so many clusters in print, an in-
teractive plot that allows for panning and zoom can make it
possible to explore this display thoroughly.

6. Conclusions

We present DarkSight, a new dimension reduction technique
for interpreting deep classifiers based on knowledge distil-
lation. DarkSight jointly compresses a black-box classifier
into a simpler, interpretable classifier and obtains the cor-
responding low-dimensional points for each input. With
the DarkSight visulization, one can faithfully visualize the
predictive vectors from a classifier, which is summarized
as four useful properties. We demonstrate how to use these
properties to help diagnose deep classifiers, which could
potentially enable wider use of them in industry.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Interpreting Deep Classifiers by Visual Distillation of Dark Knowledge

(a) LeNet on MNIST

(b) VGG16 on Cifar10

(c) Wide-ResNet on Cifar100

Figure 5. Scatter plots generated by DarkSight for MNIST (LeNet), Cifar10 (VGG16) and Cifar100 (Wide-ResNet). For (a) and (b),
points are colored by the teacher’s predictions. Rounded points means they are correctly classified by the teacher and crossings means they
are wrongly classified by the teacher. For (c), we show the monochrome scatter plot simply because there are too many clusters which are
hard to assign colors to. Stars in all plots are µ for the Student’s t distribution. In (a), the contour is where PS(yi; ✓) equals to 0.001.

consider improving the classifier for these inputs by either
changing the architecture or collecting more examples of
this type of digit.

Finally, points appear as outliers when the classifier predicts
an uncommon vector of predictive probabilities. For exam-
ple, Case 4 shows the three digits located in the upper-right
corner of the plot. It can be seen that these digits are par-
ticularly unusual outliers. This suggests that a particularly
interesting class of anomalous data points are those that
cause a classifier to do unusual things.

5.2. VGG16 on Cifar10

Figure 5(b) shows the visualization for Cifar10. In this plot,
points are again grouped by top-predicted class, but now six
of the classes lie on a one-dimensional manifold that pro-
gresses from “truck” to “car” through to “bird” and “dog”.
Along the curves connecting clusters, we observe that the
top two probabilities in the prediction vector smoothly tran-
sition through the classes in the manifold, as we discussed
in more detail earlier (see Figure 3(c)).

5.3. Wide-ResNet on Cifar100

Finally, Figure 5(c) is the DarkSight visualization of the
Wide-ResNet trained on Cifar100 that includes all 100
classes. Even with so many classes, it is possible to vi-
sually identify clusters and outliers. Although it is difficult
to examine a display with so many clusters in print, an in-
teractive plot that allows for panning and zoom can make it
possible to explore this display thoroughly.

6. Conclusions

We present DarkSight, a new dimension reduction technique
for interpreting deep classifiers based on knowledge distil-
lation. DarkSight jointly compresses a black-box classifier
into a simpler, interpretable classifier and obtains the cor-
responding low-dimensional points for each input. With
the DarkSight visulization, one can faithfully visualize the
predictive vectors from a classifier, which is summarized
as four useful properties. We demonstrate how to use these
properties to help diagnose deep classifiers, which could
potentially enable wider use of them in industry.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Interpreting Deep Classifiers by Visual Distillation of Dark Knowledge

(a) LeNet on MNIST

(b) VGG16 on Cifar10

(c) Wide-ResNet on Cifar100

Figure 5. Scatter plots generated by DarkSight for MNIST (LeNet), Cifar10 (VGG16) and Cifar100 (Wide-ResNet). For (a) and (b),
points are colored by the teacher’s predictions. Rounded points means they are correctly classified by the teacher and crossings means they
are wrongly classified by the teacher. For (c), we show the monochrome scatter plot simply because there are too many clusters which are
hard to assign colors to. Stars in all plots are µ for the Student’s t distribution. In (a), the contour is where PS(yi; ✓) equals to 0.001.

consider improving the classifier for these inputs by either
changing the architecture or collecting more examples of
this type of digit.

Finally, points appear as outliers when the classifier predicts
an uncommon vector of predictive probabilities. For exam-
ple, Case 4 shows the three digits located in the upper-right
corner of the plot. It can be seen that these digits are par-
ticularly unusual outliers. This suggests that a particularly
interesting class of anomalous data points are those that
cause a classifier to do unusual things.

5.2. VGG16 on Cifar10

Figure 5(b) shows the visualization for Cifar10. In this plot,
points are again grouped by top-predicted class, but now six
of the classes lie on a one-dimensional manifold that pro-
gresses from “truck” to “car” through to “bird” and “dog”.
Along the curves connecting clusters, we observe that the
top two probabilities in the prediction vector smoothly tran-
sition through the classes in the manifold, as we discussed
in more detail earlier (see Figure 3(c)).

5.3. Wide-ResNet on Cifar100

Finally, Figure 5(c) is the DarkSight visualization of the
Wide-ResNet trained on Cifar100 that includes all 100
classes. Even with so many classes, it is possible to vi-
sually identify clusters and outliers. Although it is difficult
to examine a display with so many clusters in print, an in-
teractive plot that allows for panning and zoom can make it
possible to explore this display thoroughly.

6. Conclusions

We present DarkSight, a new dimension reduction technique
for interpreting deep classifiers based on knowledge distil-
lation. DarkSight jointly compresses a black-box classifier
into a simpler, interpretable classifier and obtains the cor-
responding low-dimensional points for each input. With
the DarkSight visulization, one can faithfully visualize the
predictive vectors from a classifier, which is summarized
as four useful properties. We demonstrate how to use these
properties to help diagnose deep classifiers, which could
potentially enable wider use of them in industry.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Interpreting Deep Classifiers by Visual Distillation of Dark Knowledge

(a) LeNet on MNIST

(b) VGG16 on Cifar10

(c) Wide-ResNet on Cifar100

Figure 5. Scatter plots generated by DarkSight for MNIST (LeNet), Cifar10 (VGG16) and Cifar100 (Wide-ResNet). For (a) and (b),
points are colored by the teacher’s predictions. Rounded points means they are correctly classified by the teacher and crossings means they
are wrongly classified by the teacher. For (c), we show the monochrome scatter plot simply because there are too many clusters which are
hard to assign colors to. Stars in all plots are µ for the Student’s t distribution. In (a), the contour is where PS(yi; ✓) equals to 0.001.

consider improving the classifier for these inputs by either
changing the architecture or collecting more examples of
this type of digit.

Finally, points appear as outliers when the classifier predicts
an uncommon vector of predictive probabilities. For exam-
ple, Case 4 shows the three digits located in the upper-right
corner of the plot. It can be seen that these digits are par-
ticularly unusual outliers. This suggests that a particularly
interesting class of anomalous data points are those that
cause a classifier to do unusual things.

5.2. VGG16 on Cifar10

Figure 5(b) shows the visualization for Cifar10. In this plot,
points are again grouped by top-predicted class, but now six
of the classes lie on a one-dimensional manifold that pro-
gresses from “truck” to “car” through to “bird” and “dog”.
Along the curves connecting clusters, we observe that the
top two probabilities in the prediction vector smoothly tran-
sition through the classes in the manifold, as we discussed
in more detail earlier (see Figure 3(c)).

5.3. Wide-ResNet on Cifar100

Finally, Figure 5(c) is the DarkSight visualization of the
Wide-ResNet trained on Cifar100 that includes all 100
classes. Even with so many classes, it is possible to vi-
sually identify clusters and outliers. Although it is difficult
to examine a display with so many clusters in print, an in-
teractive plot that allows for panning and zoom can make it
possible to explore this display thoroughly.

6. Conclusions

We present DarkSight, a new dimension reduction technique
for interpreting deep classifiers based on knowledge distil-
lation. DarkSight jointly compresses a black-box classifier
into a simpler, interpretable classifier and obtains the cor-
responding low-dimensional points for each input. With
the DarkSight visulization, one can faithfully visualize the
predictive vectors from a classifier, which is summarized
as four useful properties. We demonstrate how to use these
properties to help diagnose deep classifiers, which could
potentially enable wider use of them in industry.

Trained
classifier

Prediction vectors
(class probabilities)

Interpret via visualization
Visualize via dimension

reduction
Dimension reduction via

dark knowledge

Why dark knowledge?
airplane 0.95 0.95

bird 0.04 0

motorcycle 0 0

truck 0 0

frog 0 0.05

Maybe something’s wrong

Error Analysis via Dark Knowledge

BONUS!BONUS! [Xu, Park, Chang, Sutton, 2018]

Validation Image

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Interpreting Deep Classifiers by Visual Distillation of Dark Knowledge

(a) LeNet on MNIST

(b) VGG16 on Cifar10

(c) Wide-ResNet on Cifar100

Figure 5. Scatter plots generated by DarkSight for MNIST (LeNet), Cifar10 (VGG16) and Cifar100 (Wide-ResNet). For (a) and (b),
points are colored by the teacher’s predictions. Rounded points means they are correctly classified by the teacher and crossings means they
are wrongly classified by the teacher. For (c), we show the monochrome scatter plot simply because there are too many clusters which are
hard to assign colors to. Stars in all plots are µ for the Student’s t distribution. In (a), the contour is where PS(yi; ✓) equals to 0.001.

consider improving the classifier for these inputs by either
changing the architecture or collecting more examples of
this type of digit.

Finally, points appear as outliers when the classifier predicts
an uncommon vector of predictive probabilities. For exam-
ple, Case 4 shows the three digits located in the upper-right
corner of the plot. It can be seen that these digits are par-
ticularly unusual outliers. This suggests that a particularly
interesting class of anomalous data points are those that
cause a classifier to do unusual things.

5.2. VGG16 on Cifar10

Figure 5(b) shows the visualization for Cifar10. In this plot,
points are again grouped by top-predicted class, but now six
of the classes lie on a one-dimensional manifold that pro-
gresses from “truck” to “car” through to “bird” and “dog”.
Along the curves connecting clusters, we observe that the
top two probabilities in the prediction vector smoothly tran-
sition through the classes in the manifold, as we discussed
in more detail earlier (see Figure 3(c)).

5.3. Wide-ResNet on Cifar100

Finally, Figure 5(c) is the DarkSight visualization of the
Wide-ResNet trained on Cifar100 that includes all 100
classes. Even with so many classes, it is possible to vi-
sually identify clusters and outliers. Although it is difficult
to examine a display with so many clusters in print, an in-
teractive plot that allows for panning and zoom can make it
possible to explore this display thoroughly.

6. Conclusions

We present DarkSight, a new dimension reduction technique
for interpreting deep classifiers based on knowledge distil-
lation. DarkSight jointly compresses a black-box classifier
into a simpler, interpretable classifier and obtains the cor-
responding low-dimensional points for each input. With
the DarkSight visulization, one can faithfully visualize the
predictive vectors from a classifier, which is summarized
as four useful properties. We demonstrate how to use these
properties to help diagnose deep classifiers, which could
potentially enable wider use of them in industry.

Trained
classifier

Class-
conditional
Gaussian

http://xuk.ai/darksight/

model compression and
dimension reduction in

one objective

[1.5, 0.03]
2-D representation

minimize KL

BONUS!BONUS!

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Interpreting Deep Classifiers by Visual Distillation of Dark Knowledge

(a) LeNet on MNIST

(b) VGG16 on Cifar10

(c) Wide-ResNet on Cifar100

Figure 5. Scatter plots generated by DarkSight for MNIST (LeNet), Cifar10 (VGG16) and Cifar100 (Wide-ResNet). For (a) and (b),
points are colored by the teacher’s predictions. Rounded points means they are correctly classified by the teacher and crossings means they
are wrongly classified by the teacher. For (c), we show the monochrome scatter plot simply because there are too many clusters which are
hard to assign colors to. Stars in all plots are µ for the Student’s t distribution. In (a), the contour is where PS(yi; ✓) equals to 0.001.

consider improving the classifier for these inputs by either
changing the architecture or collecting more examples of
this type of digit.

Finally, points appear as outliers when the classifier predicts
an uncommon vector of predictive probabilities. For exam-
ple, Case 4 shows the three digits located in the upper-right
corner of the plot. It can be seen that these digits are par-
ticularly unusual outliers. This suggests that a particularly
interesting class of anomalous data points are those that
cause a classifier to do unusual things.

5.2. VGG16 on Cifar10

Figure 5(b) shows the visualization for Cifar10. In this plot,
points are again grouped by top-predicted class, but now six
of the classes lie on a one-dimensional manifold that pro-
gresses from “truck” to “car” through to “bird” and “dog”.
Along the curves connecting clusters, we observe that the
top two probabilities in the prediction vector smoothly tran-
sition through the classes in the manifold, as we discussed
in more detail earlier (see Figure 3(c)).

5.3. Wide-ResNet on Cifar100

Finally, Figure 5(c) is the DarkSight visualization of the
Wide-ResNet trained on Cifar100 that includes all 100
classes. Even with so many classes, it is possible to vi-
sually identify clusters and outliers. Although it is difficult
to examine a display with so many clusters in print, an in-
teractive plot that allows for panning and zoom can make it
possible to explore this display thoroughly.

6. Conclusions

We present DarkSight, a new dimension reduction technique
for interpreting deep classifiers based on knowledge distil-
lation. DarkSight jointly compresses a black-box classifier
into a simpler, interpretable classifier and obtains the cor-
responding low-dimensional points for each input. With
the DarkSight visulization, one can faithfully visualize the
predictive vectors from a classifier, which is summarized
as four useful properties. We demonstrate how to use these
properties to help diagnose deep classifiers, which could
potentially enable wider use of them in industry.

http://xuk.ai/darksight/

Each data item gets
2-D location

such that

Gaussian classifier 2-D
matches

original deep classifier
on original data

Subsymbolic
son of a …

Unify *this*!!!

� Professor
Symbolic AI

Mr Continuous
Representation

Great for perceptual data

Efficient reasoning

Abstracts over lots of
perceptual states

Logical and algorithmic
reasoning

� Professor
Symbolic AI

Mr Continuous
Representation

Great for perceptual data

Efficient reasoning

Only doing local search

Requires lots of data for
learning

Abstracts over lots of perceptual
states

Search has “non-local” effects
small change makes big
difference
useful for transfer learning

Impedance mismatch with
perception (percepts —> symbol
problem)

Search intractable

Why combine?

❌

❌

❌

❌

Why not to combine?

Aristotle

Over 2000 years of
overpromising and
underdelivering

How to combine

4

2

5

3

1

COMBINE

COMBINE

Symbols describe structure
 Use gradient to learn parameters

SemVecs
Representing symbolic

expressions by vectors

Houdini
Representing differentiable functions

by functional combinators

feedforward_nn_1 (map (convnet_42, split (input)))

Candidate differentiable programs
Synthesizer

!"

Gradient descent

there are two “8”s

Training and validation data
Language
Operators
Library functions

Continuous Representations
of Symbolic Expressions

[Allamanis, Chanthirasegaran, Kohli, and Sutton, ICML 2017]bit.ly/adventures-neurosymbolic

http://bit.ly/adventures-neurosymbolic

Can vectors help symbols?

semVecs

How much symbolic semantics (semantic equivalence)
 can we compress into continuous vector?
In this work: semantics = equivalence

Want similar continuous vectors —> logically equivalent

Potential Uses

Theorem Proving

Program Synthesis

Transfer Learning

Inductive Logic Programming

a _ (b =) c)

a _ ¬b _ c

Logical expressions Continuous vectors (semVecs)

Symbolic reasoning: search pattern recognition

[DeepMath: Irving et al, 2016] [Zaremba et al, 2014]

[Rocktaschel and Riedel, 2016] [Rocktaschel and Riedel, arXiv 1705.11040 2017]

[Gulwani et al, CACM 2015]

Desiderata

(a+b) * (a*a - b*b) (a+b) * ((a + b) * (a - b))

(a+b) (a*a - b*b) (a+b) (a + b) * (a - b)

Syntax directed: Semantics is compositional

Not too much: Small syntax change —> big semantics
“man bites dog” problem

a _ (b =) c) Architecture

“equivalence
class 33”

Training

Testing

Partition training expressions into equivalence classes

semVec
Linear +
Softmax

Use a supervised max-margin loss

a _ (b =) c)

a _ ¬b _ c

Computing semVecs

Use a semVec similarity only. Allows zero-shot learning on equiv classes.

Allows zero-shot learning on equivalence classes.

distance yes,
equivalent

Recursive NN (TreeNN)

[Socher et al, 2011, 2013]

4

2

5

3

1

COMBINE

COMBINE

Syntax tree Network architecture

Problem: Representations mostly syntactic. Too much syntax!

EqNet

4

2

5

3

1

COMBINE

COMBINE

Start with TreeNNs

Add:

Moar! Layers!

COMBINE

Normalization Subexpression AE

k·k2

Layers and Normalization

COMBINE

For one syntactic parent-child

Parent semVec

Child semVecs

skip connection

Combine (rc0 , . . . , rck , ⌧p)

l̄0 [rc0 , . . . , rck]
l̄1 �

�
Wi,⌧p · l̄0

�

l̄out Wo0,⌧p · l̄0 +Wo1,⌧p · l̄1
return l̄out/

��l̄out
��
2

Big impact.
(Turns out you need both residual and normalisation together)

SubexprAE: Motivation

Semantic information is bidirectional
Not only do children provide info re parents

But parents provide info re children

uncle(?B,?A) :- parent(?Z,?A), brother(?Z,?B).

Unification propagates this info automatically
How to map to continuous space?

SubexprAE Motivation

(a+b) * (a*a - b*b) (a+b) * ((a + b) * (a - b))

(a+b) (a*a - b*b) (a+b) (a + b) * (a - b)

ensure this prediction problem is “easy”
semantic classes will be clustered together

Subexpression Autoencoder

Denoising autoencoder
plus bottleneck on
(parent, child1, child2)
semVecs

For every node in syntax tree, add regularisation

Bottleneck Abstraction
Denoising Reversibility

Intention is

Evaluation

Training / Test Split

Eq Class 1

Eq Class 4

Eq Class 3

Eq Class 2

Eq Class 6

Eq Class 7

Eq Class 8

Eq Class 5

UnseenEqClass Testset

20%

20%

SeenEqClass Testset

Evaluation Metric

Precision
and recall

Ranked list

query point

k-nearest
neighbors

semantic space

Same equivalence class to query
Different equivalence class to query

(by distance to query)

Seen equivalence classes
Equivalent expressions to the queries were in training set

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

tf-idf
GRU
StackRNN

TreeNN-1Layer
TreeNN-2Layer
EqNet

Unseen equivalence classes
Zero shot learning. No training examples of equivalent expressions.

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

tf-idf
GRU
StackRNN

TreeNN-1Layer
TreeNN-2Layer
EqNet

EqNet performance on seen and unseen is similar!

Learned compositionality?
SeenEqClass Testset UnseenEqClass Testset

Test on deeper trees
than in training

e.g. train depth <= 5
 test depth <= 8

Visualizing polynomials
multivariatePolynomial2vec?

PCA visualization of semVecs

Visualizing boolean expression
booleanExpression2vec?

PCA visualization of semVecs

a ^ (b _ c)

¬(a ^ c)

a _ (b ^ c)

¬(a ^ (b ^ c))

¬(a _ b)

a _ c

ba ^ b

¬(a ^ (b _ c))

¬(a _ c)

a _ (b _ c)

c

a ^ c

¬(b ^ c)

¬(a _ (b _ c))

¬(a ^ b)

¬a

¬(b _ c)
¬(a _ (b ^ c))

¬b

¬c

b ^ c

a

a _ b

a ^ (b ^ c)

b _ c

Synthesis of Differentiable
Functional Programs for

Lifelong Learning

[Valkov, Chaudhari, Srivastava, Sutton, and Chaudhuri,
2018]bit.ly/adventures-neurosymbolic

feedforward_nn_1 (map (convnet_42, split (input)))

Candidate differentiable programs
Synthesizer

!"

Gradient descent

there are two “8”s

Training and validation data
Language
Operators
Library functions

http://bit.ly/adventures-neurosymbolic

The Problem with Learning

For image sources, see: http://bit.ly/adventures-neurosymbolic

Training size

Pe
rfo

rm
an

ce

Lifelong learning
On series of tasks, accelerate learning by re-using learned structure

[Thrun & Mitchell, 1995; Carlson et al, 2010]

Task 1
Recognition

All learning curves stop.
Why “data hungriness”?
Learning systems never get better at
learning itself

Task 2
Counting

Task 3
Arithmetic

that’s a “one” I count two “8’s” The sum is 23

Neural libraries
[Gaunt, Brockschmidt, Kushman, Tarlow ICML 2017]

Digit
Recognizer
(ConvNet)

Toy
Recognizer
(ConvNet)

Street Sign
Recognizer
(ConvNet)

Differentiable Programs with Neural Libraries

+

+

8

10

117
++

(a)

145

AA

A 3

A 144
3?
2?

(b)

= 2

(c)

= 11

Figure 2: Overview of tasks in the (a) ADD2X2, (b) APPLY2X2 and (c) MATH scenarios. ‘A’ denotes the APPLY operator which
replaces the ? tiles with the selected operators and executes the sum. We show two MATH examples of different length.

tion is declared using @Learn([d1, . . . , dD], dout,
hid sizes=[`1, . . . , `L]), where the first component
specifies the dimensions (resp. ranges) d1, . . . , dD of the
input tensors (resp. integers) and the second specifies the
dimension of the output. NTPT compiles such functions
into a fully-connected feed-forward neural network whose
layout is controlled by the hid sizes component (speci-
fying the number neurons in each layer). The inputs of the
function are simply concatenated. Tensor output is gener-
ated by learning a mapping from the last hidden layer, and
finite integer output is generated by a softmax layer produc-
ing a distribution over integers up to the declared bound.
Learnable parameters for the generated network are shared
across every use of the function in the NTPT program, and
as they naturally fit into the computation graph for the re-
maining TERPRET program, the whole system is trained
end-to-end. We illustrate an example NTPT program for
learning navigation tasks in a maze of street signs (Stal-
lkamp et al., 2011) in Fig. 1.

3. A Lifetime of PPBE Tasks

Motivated by the hypothesis that the modularity of the
source code representation benefits knowledge transfer, we
devise a sequence of PPBE tasks to be solved by sharing
knowledge between tasks. Our tasks are based on algorith-
mic manipulation of handwritten digits and mathematical
operators.

In early tasks the model learns to navigate simple 2⇥2 grids
of images, and to become familiar with the concepts of dig-
its and operators from a variety of weak supervision. De-
spite their simplicity, these challenges already pose prob-
lems for purely neural lifelong learning systems.

The final task in the learning lifetime is more complex
and designed to test generalization properties: the system
must learn to compute the results of variable-length mathe-
matical expressions expressed using handwritten symbols.
The algorithmic component of this task is similar to arith-
metic tasks presented to contemporary Neural GPU mod-
els (Kaiser & Sutskever, 2016; Price et al., 2016). The com-

plete set of tasks is illustrated in Fig. 2 and described in
detail below.

ADD2X2 scenario: The first scenario in Fig. 2(a) uses of
a 2⇥ 2 grid of MNIST digits. We set 4 tasks based on this
grid: compute the sum of the digits in the (1) top row, (2)
left column, (3) bottom row, (4) right column. All tasks
require classification of MNIST digits, but need different
programs to compute the result. As training examples, we
supply only a grid and the resulting sum. Thus, we never

directly label an MNIST digit with its class.

APPLY2X2 scenario: The second scenario in Fig. 2(b)
presents a 2 ⇥ 2 grid of of handwritten arithmetic opera-
tors. Providing three auxiliary random integers d1, d2, d3,
we again set 4 tasks based on this grid, namely to evaluate
the expression1 d1 op1 d2 op2 d3 where (op1, op2)
are the operators represented in the (1) top row, (2) left
column, (3) bottom row, (4) right column. In comparison
to the first scenario, the dataset of operators is relatively
small and consistent2, making the perceptual task of classi-
fying operators considerably easier. However, the algorith-
mic part is more difficult, requiring non-linear operations
on the supplied integers.

MATH scenario: The final task in Fig. 2(c) requires com-
bination of the knowledge gained from the weakly labeled
data in the first two scenarios to execute a handwritten
arithmetic expression.

4. Models

We study two kinds of NTPT model. First, for navigating
the introductory 2 ⇥ 2 grid scenarios, we create a model

1Note that for simplicity, our toy system ignores operator
precedence and executes operations from left to right - i.e. the
sequence in the text is executed as ((d1 op1 d2) op2 d3).

2200 handwritten examples of each operator were collected
from a single author to produce a training set of 600 symbols and
a test set of 200 symbols from which to construct random 2 ⇥ 2
grids.

New task
8
10
11
7

Networks from old tasks

Differentiable Programs with Neural Libraries

(a)
initialization:
R0 = READ
program:
R1 = MOVE EAST
R2 = MOVE SOUTH
R3 = SUM(R0, R1)
R4 = NOOP
return R3

(b)
initialization:
R0 = InputInt[0]
R1 = InputInt[1]
R2 = InputInt[2]
R3 = READ
program:
R4 = MOVE EAST
R5 = MOVE SOUTH
R6 = APPLY(R0, R1, R4)
R7 = APPLY(R6, R2, R5)
return R7

Figure 3: Example solutions for the tasks on the right columns
of the (a) ADD2X2 and (b) APPLY2X2 scenarios. The read
head is initialized READing the top left cell and any auxiliary
InputInts are loaded into memory. Instructions and arguments
shown in black must be learned.

which learns to write simple straight-line code. Second,
for the MATH scenario we ask the system to use a more
complex language which supports loopy control flow (note
that the baselines will also be specialized between the 2⇥2
scenarios and the MATH scenario). Knowledge transfer is
achieved by defining a library of 2 neural network functions
shared across all tasks and scenarios. Training on each task
should produce a task-specific source code solution (from
scratch) and improve the overall usefulness of the shared
networks. Below we outline further details of the models.

4.1. Shared components

We refer to the 2 networks in the shared library as net 0
and net 1. Both networks have similar architectures: they
take a 28 ⇥ 28 monochrome image as input and pass this
sequentially through two fully connected layers each with
256 neurons and ReLU activations. The last hidden vector
is passed through a fully connected layer and a softmax to
produce a 10 dimensional output (net 0) or 4 dimensional
output (net 1) to feed to the differentiable interpreter (the
output sizes are chosen to match the number of classes of
MNIST digits and arithmetic operators respectively).

One restriction that we impose is that when a new task is
presented, no more than one new untrained network can
be introduced into the library (i.e. in our experiments the
very first task has access to only net 0, and all other tasks
have access to both nets). This restriction is imposed be-
cause if a differentiable program tries to make a call to one
of N untrained networks based on an unknown parameter
net choice = Param(N), then the system effectively
sees the N nets together with the net choice parameter
as one large untrained network, which cannot usefully be
split apart into the N components after training.

4.2. 2⇥ 2 model

For the 2⇥2 scenarios we build a model capable of writing
short straight line algorithms with up to 4 instructions. The
model consists of a read head containing net 0 and net 1

which are connected to a set of registers each capable of
holding integers in the range 0, . . . ,M , where M = 18.
The head is initialized reading the top left cell of the 2⇥ 2
grid. At each step in the program, one instruction can be
executed, and lines of code are constructed by choosing an
instruction and addresses of arguments for that instruction.
We follow (Feser et al., 2016) and allow each line to store
its result in a separate immutable register. For the ADD2X2
scenario the instruction set is:

• NOOP: a trivial no-operation instruction.

• MOVE NORTH, MOVE EAST, MOVE SOUTH,
MOVE WEST: translate the head (if possible) and
return the result of applying the neural network
chosen by net choice to the image in the new cell.

• ADD(·, ·): accepts two register addresses and returns
the sum of their contents.

The parameter net choice is to be learned and decides
which of net 0 and net 1 to apply. In the APPLY2X2
scenario we extend the ADD instruction to APPLY(a, b,
op) which interprets the integer stored at op as an arith-
metic operator and computes3 a op b. In addition, for
the APPLY2X2 scenario we initialize three registers with
the auxiliary integers supplied with each 2 ⇥ 2 operator
grid [see Fig. 2(b)]. In total, this model exposes a program
space of up to ⇠ 1012 syntactically distinct programs.

4.3. MATH model

The final task investigates the synthesis of more complex,
loopy control flow. A natural solution to execute the ex-
pression on the tape is to build a loop with a body that
alternates between moving the head and applying the op-
erators [see Fig. 4(b)]. This loopy solution has the advan-
tage that it generalizes to handle arbitrary length arithmetic
expressions.

Fig. 4(a) shows the basic architecture of the interpreter used
in this scenario. We provide a set of blocks each containing
the instruction MOVE or APPLY, an address, a register and
a net choice. A MOVE instruction increments the posi-
tion of the head and loads the new symbol into a block’s
register using either net 0 or net 1 as determined by the
block’s net choice. After executing the instruction, the
interpreter executes a GOTO IF statement which checks
whether the head is over the end of the tape and if not then it
passes control to the block specified by goto addr, other-
wise control passes to a halt block which returns a chosen
register value and exits the program. This model describes
a space of ⇠ 106 syntactically distinct programs.

3All operations are performed modulo (M + 1) and division
by zero returns M .

Controller in
differentiable PL Learn programs plus

perceptual networks

Differentiable
interpreter

end-to-end
gradient descent

High level transfer

there are two “8”s there is one “toy airplane”

(and why don’t I have two?)

Task 1
Count digits

Task 2
Count toys

Digit
Recognizer
(ConvNet)

Digit
Recognizer
(ConvNet)

Digit
Recognizer
(ConvNet)

Counter (RNN)

Toy
Recognizer
(ConvNet)

Toy
Recognizer
(ConvNet)

Toy
Recognizer
(ConvNet)

Counter (RNN)

Reusing early layers not sufficient!
[Hinton & Salakhutdinov, 2006; Rusu et al 2016]

High-level neural libraries
Differentiable Programs with Neural Libraries

+

+

8

10

117
++

(a)

145

AA

A 3

A 144
3?
2?

(b)

= 2

(c)

= 11

Figure 2: Overview of tasks in the (a) ADD2X2, (b) APPLY2X2 and (c) MATH scenarios. ‘A’ denotes the APPLY operator which
replaces the ? tiles with the selected operators and executes the sum. We show two MATH examples of different length.

tion is declared using @Learn([d1, . . . , dD], dout,
hid sizes=[`1, . . . , `L]), where the first component
specifies the dimensions (resp. ranges) d1, . . . , dD of the
input tensors (resp. integers) and the second specifies the
dimension of the output. NTPT compiles such functions
into a fully-connected feed-forward neural network whose
layout is controlled by the hid sizes component (speci-
fying the number neurons in each layer). The inputs of the
function are simply concatenated. Tensor output is gener-
ated by learning a mapping from the last hidden layer, and
finite integer output is generated by a softmax layer produc-
ing a distribution over integers up to the declared bound.
Learnable parameters for the generated network are shared
across every use of the function in the NTPT program, and
as they naturally fit into the computation graph for the re-
maining TERPRET program, the whole system is trained
end-to-end. We illustrate an example NTPT program for
learning navigation tasks in a maze of street signs (Stal-
lkamp et al., 2011) in Fig. 1.

3. A Lifetime of PPBE Tasks

Motivated by the hypothesis that the modularity of the
source code representation benefits knowledge transfer, we
devise a sequence of PPBE tasks to be solved by sharing
knowledge between tasks. Our tasks are based on algorith-
mic manipulation of handwritten digits and mathematical
operators.

In early tasks the model learns to navigate simple 2⇥2 grids
of images, and to become familiar with the concepts of dig-
its and operators from a variety of weak supervision. De-
spite their simplicity, these challenges already pose prob-
lems for purely neural lifelong learning systems.

The final task in the learning lifetime is more complex
and designed to test generalization properties: the system
must learn to compute the results of variable-length mathe-
matical expressions expressed using handwritten symbols.
The algorithmic component of this task is similar to arith-
metic tasks presented to contemporary Neural GPU mod-
els (Kaiser & Sutskever, 2016; Price et al., 2016). The com-

plete set of tasks is illustrated in Fig. 2 and described in
detail below.

ADD2X2 scenario: The first scenario in Fig. 2(a) uses of
a 2⇥ 2 grid of MNIST digits. We set 4 tasks based on this
grid: compute the sum of the digits in the (1) top row, (2)
left column, (3) bottom row, (4) right column. All tasks
require classification of MNIST digits, but need different
programs to compute the result. As training examples, we
supply only a grid and the resulting sum. Thus, we never

directly label an MNIST digit with its class.

APPLY2X2 scenario: The second scenario in Fig. 2(b)
presents a 2 ⇥ 2 grid of of handwritten arithmetic opera-
tors. Providing three auxiliary random integers d1, d2, d3,
we again set 4 tasks based on this grid, namely to evaluate
the expression1 d1 op1 d2 op2 d3 where (op1, op2)
are the operators represented in the (1) top row, (2) left
column, (3) bottom row, (4) right column. In comparison
to the first scenario, the dataset of operators is relatively
small and consistent2, making the perceptual task of classi-
fying operators considerably easier. However, the algorith-
mic part is more difficult, requiring non-linear operations
on the supplied integers.

MATH scenario: The final task in Fig. 2(c) requires com-
bination of the knowledge gained from the weakly labeled
data in the first two scenarios to execute a handwritten
arithmetic expression.

4. Models

We study two kinds of NTPT model. First, for navigating
the introductory 2 ⇥ 2 grid scenarios, we create a model

1Note that for simplicity, our toy system ignores operator
precedence and executes operations from left to right - i.e. the
sequence in the text is executed as ((d1 op1 d2) op2 d3).

2200 handwritten examples of each operator were collected
from a single author to produce a training set of 600 symbols and
a test set of 200 symbols from which to construct random 2 ⇥ 2
grids.

New task
8
10
11
7

Networks from old tasks

Differentiable Programs with Neural Libraries

(a)
initialization:
R0 = READ
program:
R1 = MOVE EAST
R2 = MOVE SOUTH
R3 = SUM(R0, R1)
R4 = NOOP
return R3

(b)
initialization:
R0 = InputInt[0]
R1 = InputInt[1]
R2 = InputInt[2]
R3 = READ
program:
R4 = MOVE EAST
R5 = MOVE SOUTH
R6 = APPLY(R0, R1, R4)
R7 = APPLY(R6, R2, R5)
return R7

Figure 3: Example solutions for the tasks on the right columns
of the (a) ADD2X2 and (b) APPLY2X2 scenarios. The read
head is initialized READing the top left cell and any auxiliary
InputInts are loaded into memory. Instructions and arguments
shown in black must be learned.

which learns to write simple straight-line code. Second,
for the MATH scenario we ask the system to use a more
complex language which supports loopy control flow (note
that the baselines will also be specialized between the 2⇥2
scenarios and the MATH scenario). Knowledge transfer is
achieved by defining a library of 2 neural network functions
shared across all tasks and scenarios. Training on each task
should produce a task-specific source code solution (from
scratch) and improve the overall usefulness of the shared
networks. Below we outline further details of the models.

4.1. Shared components

We refer to the 2 networks in the shared library as net 0
and net 1. Both networks have similar architectures: they
take a 28 ⇥ 28 monochrome image as input and pass this
sequentially through two fully connected layers each with
256 neurons and ReLU activations. The last hidden vector
is passed through a fully connected layer and a softmax to
produce a 10 dimensional output (net 0) or 4 dimensional
output (net 1) to feed to the differentiable interpreter (the
output sizes are chosen to match the number of classes of
MNIST digits and arithmetic operators respectively).

One restriction that we impose is that when a new task is
presented, no more than one new untrained network can
be introduced into the library (i.e. in our experiments the
very first task has access to only net 0, and all other tasks
have access to both nets). This restriction is imposed be-
cause if a differentiable program tries to make a call to one
of N untrained networks based on an unknown parameter
net choice = Param(N), then the system effectively
sees the N nets together with the net choice parameter
as one large untrained network, which cannot usefully be
split apart into the N components after training.

4.2. 2⇥ 2 model

For the 2⇥2 scenarios we build a model capable of writing
short straight line algorithms with up to 4 instructions. The
model consists of a read head containing net 0 and net 1

which are connected to a set of registers each capable of
holding integers in the range 0, . . . ,M , where M = 18.
The head is initialized reading the top left cell of the 2⇥ 2
grid. At each step in the program, one instruction can be
executed, and lines of code are constructed by choosing an
instruction and addresses of arguments for that instruction.
We follow (Feser et al., 2016) and allow each line to store
its result in a separate immutable register. For the ADD2X2
scenario the instruction set is:

• NOOP: a trivial no-operation instruction.

• MOVE NORTH, MOVE EAST, MOVE SOUTH,
MOVE WEST: translate the head (if possible) and
return the result of applying the neural network
chosen by net choice to the image in the new cell.

• ADD(·, ·): accepts two register addresses and returns
the sum of their contents.

The parameter net choice is to be learned and decides
which of net 0 and net 1 to apply. In the APPLY2X2
scenario we extend the ADD instruction to APPLY(a, b,
op) which interprets the integer stored at op as an arith-
metic operator and computes3 a op b. In addition, for
the APPLY2X2 scenario we initialize three registers with
the auxiliary integers supplied with each 2 ⇥ 2 operator
grid [see Fig. 2(b)]. In total, this model exposes a program
space of up to ⇠ 1012 syntactically distinct programs.

4.3. MATH model

The final task investigates the synthesis of more complex,
loopy control flow. A natural solution to execute the ex-
pression on the tape is to build a loop with a body that
alternates between moving the head and applying the op-
erators [see Fig. 4(b)]. This loopy solution has the advan-
tage that it generalizes to handle arbitrary length arithmetic
expressions.

Fig. 4(a) shows the basic architecture of the interpreter used
in this scenario. We provide a set of blocks each containing
the instruction MOVE or APPLY, an address, a register and
a net choice. A MOVE instruction increments the posi-
tion of the head and loads the new symbol into a block’s
register using either net 0 or net 1 as determined by the
block’s net choice. After executing the instruction, the
interpreter executes a GOTO IF statement which checks
whether the head is over the end of the tape and if not then it
passes control to the block specified by goto addr, other-
wise control passes to a halt block which returns a chosen
register value and exits the program. This model describes
a space of ⇠ 106 syntactically distinct programs.

3All operations are performed modulo (M + 1) and division
by zero returns M .

Controller in
differentiable PL Learn programs plus

perceptual networks

Differentiable
interpreter

end-to-end
gradient descent

“High-level modules”
Other networks as input

Problem: How to combine?

Digit
Recognizer
(ConvNet)

Toy
Recognizer
(ConvNet)

Street Sign
Recognizer
(ConvNet)

Counter (RNN)

Summing (RNN)

List reversal module

100 neural architectures, 1 weird trick
Functional programming

Olah: http://colah.github.io/posts/2015-09-NN-Types-FP/

Recurrent neural network

h

x

fold (rnn_1step)

conv (nn_kernel_0) o conv (nn_kernel_1) o … o conv (nn_kernel_D)

1-layer ConvNet

x

y
y

multiple filters? change this

map (nn_kernel)

o zipWithSelf

Deep ConvNet

conv (nn_kernel_0)

Attention mechanism

Graph convolutions

softmax o map(attn_network) o fold(rnn_1step)

gconv (nn_kernel_0)

Combinators preserve
differentiability

Often point-free
[Backus, 1978]

Deep feedforward net relu o W_n o relu o … o relu o W_1

http://colah.github.io/posts/2015-09-NN-Types-FP/

Main ideas

• Neural libraries for high level transfer
• Functional programs represent deep architecture
• Symbolic program synthesis to choose:

• Which neural library functions for re-use
• Architecture that puts them together

Houdini🎩🐇

Houdini

HOUDINI: Heuristic Optimization for the Ultimate Development of Integrated Neurosymbolic Intelligence

feedforward_nn_1 (map (convnet_42, split (input)))

Candidate differentiable programs
Synthesizer

Synthesis of Differentiable Functional Programs
🎩🐇

Gradient descent

there are two “8”s

Training and validation data
Language
Operators
Library functions

Language
Types110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Synthesis of Differentiable Functional Programs for Lifelong Learning

Types ⌧ :

⌧ ::= Atom | ADT | F
Atom ::= bool | real
TT ::= Atom | TensorhAtomi[m1][m2] . . . [mk]

ADT ::= TT | ↵hTT i
F ::= ADT | F1 ! F2.

Programs e:

e ::= hh⌧ii | �w | e0 � e1 | map↵ e | fold↵ e | conv↵ e.

Figure 1. Syntax of types ⌧ and partial programs e in HOUDINI.
Here, ↵ is the name of an ADT, for example list or graph;
m1, . . . ,mk � 1 define the shape of a tensor; F1 ! F2 is the
type of a function from F1 to F2. In the definition of e, hh⌧ii is a
hole, �w is a neural library function parameterized by weights w;
� is the composition operator; and map, fold, and conv denote
map, fold, and convolution over a data type ↵.

Tensors over these types are also permitted. We have a dis-
tinct type Tensorh⌧i[m1][m2] . . . [mk] for tensors of shape
m1 ⇥ · · ·⇥mk whose elements have atomic type ⌧ . (The
dimensions m1, . . . ,mk, as well as k itself, are bounded to
keep the number of types finite.)

The language allows abstract data types (ADTs) ↵h⌧i pa-
rameterized by a tensor or atomic type ⌧ . The current im-
plementation of HOUDINI supports two families of such
types: listh⌧i, lists with elements of type ⌧ , and graphh⌧i,
graphs whose nodes contain values of type ⌧ . However, this
set can be augmented in principle. Finally, the language
allows functions whose inputs and outputs can be of the
aforementioned types, or other functions.

Programs. The fundamental operation in HOUDINI is
function composition. Such composition can involve two
classes of functions: differentiable library functions �w,
that are parameterized by weights w and implemented by
neural networks, and symbolic higher-order combinators
that implement the control flow into which these neural
functions are embedded.

We allow the following three families of combinators. The
first two are standard constructs for functional languages,
whereas the third is introduced specifically for deep models.

• Map combinators map↵h⌧i, for ADTs of the form ↵h⌧i.
Suppose e is a function. The expression maplisth⌧i e
is a function that, given a list [a1, . . . , ak], returns the
list [e(a1), . . . , e(ak)]. The expression mapgraph⌧

e is a
function that, given a graph G whose i-th node is labeled
with a value ai, returns a graph that is identical to G, but
whose i-th node is labeled by e(ai).

• Left-fold combinators fold↵h⌧i. For a function e,
foldlisth⌧i e is the function that, given a list [a1, . . . , ak],
returns the value (e (e . . . (e (e a1 a2) a3) . . .) ak). To

define fold over a graph, we assume a linear order on
the graph’s nodes. Given G, the function foldgraphh⌧i e
returns the fold over the list [a1, . . . , ak], where ai is the
value at the i-th node in this order.

• Convolution combinators conv↵h⌧i. Let p > 0 be a fixed
constant. For a function e, convlisth⌧i e is the function
that, given a list [a1, . . . , ak], returns the list [a01, . . . , a0k],
where a0i = foldlisth⌧i e [ai�p, . . . , ai, . . . , ai+p]. (We
define aj = a1 if j < 1, and aj = ak if j > k.) Given G,
the function convgraphh⌧i e returns the graph G0 whose
node u contains the value foldlisth⌧i e [ai1 , . . . , aim],
where aij is the value stored in the j-th neighbor of u
(according to the linear order on graph nodes).

The notation hh⌧ii represents a hole of type ⌧ . A program
with holes (a partial program) has no operational meaning,
and is only an intermediate structure used during synthesis.

Every neural library function is assumed to be annotated
with a type. HOUDINI checks whether a partial program
uses types in a consistent way, using the following rules:

• The type of a hole hh⌧ii is, axiomatically, ⌧ . The type of a
library function �w is, axiomatically, the type that it is
annotated with.

• e = e0 � e00 is assigned a type iff e0 has type ⌧ ! ⌧ 0 and
e00 has type ⌧ 0 ! ⌧ 00. In this case, e has type ⌧ ! ⌧ 00.

• e = map↵h⌧i e
0 is assigned a type iff e0 has the type

⌧ ! ⌧ 0. In this case, the type of e is ↵h⌧i ! ↵h⌧ 0i.
• e = fold↵h⌧i e0 is assigned a type iff e0 has the type

⌧ 0 ! (⌧ ! ⌧ 0). In this case, e has type ↵h⌧i ! ⌧ 0.
• e = conv↵h⌧i e

0 is assigned a type iff e0 has the type
⌧ 0 ! (⌧ ! ⌧ 0). In this case, e has type ↵h⌧i ! ↵h⌧ 0i.

If it is not possible to assign a type to the partial program e,
then it is invalid.

Note that complete HOUDINI programs do not have vari-
ables. Programs are based almost entirely on function com-
position; only higher-order combinators are ever directly
applied. Thus, the language follows the point-free style
of functional programming (Backus, 1978). This stylized
representation of programs is highly expressive, but is also
succinct and reduces the amount of enumeration needed
during synthesis.

HOUDINI for deep learning. The language has several
properties that are useful for specifying deep models. First,
one can inductively show that HOUDINI programs are dif-
ferentiable, that is, any complete program e in our language
is differentiable in the parameters w of the neural library
functions used in e.

Second, common deep architectures can be compactly rep-
resented in our language. For example, deep feedforward
networks can be represented by �1 � . . .�k, where each �i

guides the search space

defines the search space

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Synthesis of Differentiable Functional Programs for Lifelong Learning

Types ⌧ :

⌧ ::= Atom | ADT | F
Atom ::= bool | real
TT ::= Atom | TensorhAtomi[m1][m2] . . . [mk]

ADT ::= TT | ↵hTT i
F ::= ADT | F1 ! F2.

Programs e:

e ::= hh⌧ii | �w | e0 � e1 | map↵ e | fold↵ e | conv↵ e.

Figure 1. Syntax of types ⌧ and partial programs e in HOUDINI.
Here, ↵ is the name of an ADT, for example list or graph;
m1, . . . ,mk � 1 define the shape of a tensor; F1 ! F2 is the
type of a function from F1 to F2. In the definition of e, hh⌧ii is a
hole, �w is a neural library function parameterized by weights w;
� is the composition operator; and map, fold, and conv denote
map, fold, and convolution over a data type ↵.

Tensors over these types are also permitted. We have a dis-
tinct type Tensorh⌧i[m1][m2] . . . [mk] for tensors of shape
m1 ⇥ · · ·⇥mk whose elements have atomic type ⌧ . (The
dimensions m1, . . . ,mk, as well as k itself, are bounded to
keep the number of types finite.)

The language allows abstract data types (ADTs) ↵h⌧i pa-
rameterized by a tensor or atomic type ⌧ . The current im-
plementation of HOUDINI supports two families of such
types: listh⌧i, lists with elements of type ⌧ , and graphh⌧i,
graphs whose nodes contain values of type ⌧ . However, this
set can be augmented in principle. Finally, the language
allows functions whose inputs and outputs can be of the
aforementioned types, or other functions.

Programs. The fundamental operation in HOUDINI is
function composition. Such composition can involve two
classes of functions: differentiable library functions �w,
that are parameterized by weights w and implemented by
neural networks, and symbolic higher-order combinators
that implement the control flow into which these neural
functions are embedded.

We allow the following three families of combinators. The
first two are standard constructs for functional languages,
whereas the third is introduced specifically for deep models.

• Map combinators map↵h⌧i, for ADTs of the form ↵h⌧i.
Suppose e is a function. The expression maplisth⌧i e
is a function that, given a list [a1, . . . , ak], returns the
list [e(a1), . . . , e(ak)]. The expression mapgraph⌧

e is a
function that, given a graph G whose i-th node is labeled
with a value ai, returns a graph that is identical to G, but
whose i-th node is labeled by e(ai).

• Left-fold combinators fold↵h⌧i. For a function e,
foldlisth⌧i e is the function that, given a list [a1, . . . , ak],
returns the value (e (e . . . (e (e a1 a2) a3) . . .) ak). To

define fold over a graph, we assume a linear order on
the graph’s nodes. Given G, the function foldgraphh⌧i e
returns the fold over the list [a1, . . . , ak], where ai is the
value at the i-th node in this order.

• Convolution combinators conv↵h⌧i. Let p > 0 be a fixed
constant. For a function e, convlisth⌧i e is the function
that, given a list [a1, . . . , ak], returns the list [a01, . . . , a0k],
where a0i = foldlisth⌧i e [ai�p, . . . , ai, . . . , ai+p]. (We
define aj = a1 if j < 1, and aj = ak if j > k.) Given G,
the function convgraphh⌧i e returns the graph G0 whose
node u contains the value foldlisth⌧i e [ai1 , . . . , aim],
where aij is the value stored in the j-th neighbor of u
(according to the linear order on graph nodes).

The notation hh⌧ii represents a hole of type ⌧ . A program
with holes (a partial program) has no operational meaning,
and is only an intermediate structure used during synthesis.

Every neural library function is assumed to be annotated
with a type. HOUDINI checks whether a partial program
uses types in a consistent way, using the following rules:

• The type of a hole hh⌧ii is, axiomatically, ⌧ . The type of a
library function �w is, axiomatically, the type that it is
annotated with.

• e = e0 � e00 is assigned a type iff e0 has type ⌧ ! ⌧ 0 and
e00 has type ⌧ 0 ! ⌧ 00. In this case, e has type ⌧ ! ⌧ 00.

• e = map↵h⌧i e
0 is assigned a type iff e0 has the type

⌧ ! ⌧ 0. In this case, the type of e is ↵h⌧i ! ↵h⌧ 0i.
• e = fold↵h⌧i e0 is assigned a type iff e0 has the type

⌧ 0 ! (⌧ ! ⌧ 0). In this case, e has type ↵h⌧i ! ⌧ 0.
• e = conv↵h⌧i e

0 is assigned a type iff e0 has the type
⌧ 0 ! (⌧ ! ⌧ 0). In this case, e has type ↵h⌧i ! ↵h⌧ 0i.

If it is not possible to assign a type to the partial program e,
then it is invalid.

Note that complete HOUDINI programs do not have vari-
ables. Programs are based almost entirely on function com-
position; only higher-order combinators are ever directly
applied. Thus, the language follows the point-free style
of functional programming (Backus, 1978). This stylized
representation of programs is highly expressive, but is also
succinct and reduces the amount of enumeration needed
during synthesis.

HOUDINI for deep learning. The language has several
properties that are useful for specifying deep models. First,
one can inductively show that HOUDINI programs are dif-
ferentiable, that is, any complete program e in our language
is differentiable in the parameters w of the neural library
functions used in e.

Second, common deep architectures can be compactly rep-
resented in our language. For example, deep feedforward
networks can be represented by �1 � . . .�k, where each �i

Programs

“neural functions”, e.g., two-layer ff network
list and graph versions

Search
Enumeration of programs in language

Shortest to longest
Types reduce search space

2

<< Tensor[28,148] —> real >>

Training set

Search
Expand using grammar

Partial program with type
map ❌

fold[list] << Tensor[28,148] —> list[T] >>

Limit number of trainable functions per candidate

Synthesis for Lifelong Learning

feedforward_nn_1 (map (convnet_42, split (input)))

Candidate differentiable programs
Synthesizer

!"

Gradient descent

there are two “8”s

Training and validation data
Language
Operators
Library functions Best program

Digit
Recognizer
(ConvNet)

Toy
Recognizer
(ConvNet)

Street Sign
Recognizer
(ConvNet)

Counter (RNN)

Summing (RNN)

List reversal module

Library

fold(conv (nn_kernel_2)
 o conv (nn_kernel_1)
 o conv (nn_kernel_0))

nn_kernel_2

nn_kernel_1

nn_kernel_0

Freeze parameters

Experiments

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Synthesis of Differentiable Functional Programs for Lifelong Learning

Figure 2. A grid of 32x32x3 images selected from the German
Traffic Sign Recognition Benchmark dataset (Stallkamp et al.,
2012). The least-cost path from the top left to the bottom right
node is marked.

is a neural function. Following Olah (2015), recurrent neu-
ral nets can be naturally expressed as foldlisth↵i �, where
� is a neural function. Graph convolutional networks can be
expressed using terms of form convgraphh↵i �. Going even
further, straightforward extensions of our language are pos-
sible to handle bidirectional recurrent networks, attention
mechanisms, and so on, which we leave to future work.

Example: Shortest path in a grid of images. Now we
show how HOUDINI can model tasks that mix perception
and procedural reasoning, using an example that generalizes
the navigation task of Gaunt et al. (2017). Suppose we
are given a grid of images (for example, Figure 2), where
elements represent speed limits on various streets and are
connected horizontally and vertically, but not diagonally.
Passing through each node induces a penalty, which depends
on the node’s speed limit, with lower (stricter) speed limit
having a higher penalty. The task is to predict the minimum
cost d(u) incurred while traveling from a fixed starting point
init (the top left element) to each of the remaining nodes u.

One way to compute these costs is to use the Bellman-Ford
shortest-path algorithm (Bellman, 1958). This algorithm
is an iterative, dynamic-programming computation whose
i-th iteration computes an estimated minimum cost di(u)
of travel to each node u in the graph. The cost estimates
for the (i+ 1)-th iteration are given by applying a so-called
relaxation operation:

di+1(u) := min(di(u), min
v2Adj (u)

di(v) + w(v))

where w(u) is the penalty for u and Adj (u) is the set of
neighbors of u.

Because the update to di(u) only depends on values stored
at u and its neighbors, the relaxation step can be represented
as a convolution. This convolution applies to a graph whose
nodes contain costs, and this graph is obtained by applying
a map to the original graph of images. The Bellman-Ford al-
gorithm amounts to repeated application, until convergence,

of this convolution step.

For any function e, let ei represent the composition of e
with itself, i times. The HOUDINI program that models the
shortest-path task is

(convi
graphhTensor[2]i nn relax)

�(mapgraphhTensor[32][32][3]i perceive).
Here, the function perceive processes the images of speed
limits and generates a tensor of type Tensor[2] (the
elements of the tensor store the penalty for the node and
the current estimate of the cost of travel to the node). The
nn relax is a neural network that models that relaxation

operation. As described in Section 4, HOUDINI is able to
discover an approximation of this program purely from
data.

3. Program Synthesis
Our program synthesis problem is as follows. For a (com-
plete) HOUDINI program ew parameterized by a vector w,
let e[w 7! v] be the function for the specific parameter
vector v, i.e. by substituting w by v in e. Suppose we are
given a library L of neural functions, as well as a training
set D that describes the function that we want to learn. As
usual, we assume that D consists of i.i.d. samples from
a distribution pdata . We assume that D is properly typed,
i.e., every training instance (xi, yi) 2 D has the same type,
which is known. We note that this means that we also know
the type ⌧ of our target function.

The learning problem can then be expressed as a problem in
program synthesis. The goal is to discover a program e⇤w of
type ⌧ , and values v for w such that

e⇤w[w 7! v] = argmine2Progs,w2Rn(Ex⇠pdata [l(e,D, x)]),

where Progs(L) is the universe of all complete programs
over the library L, and l is an appropriate loss function.

Our algorithm for this task (called SYNTH in this section)
consists of a higher-level, symbolic program enumeration
module called GENERATE and a lower-level gradient learn-
ing module called LEARN. The former module repeatedly
generates complete, parameterized programs that are sent
to the latter module. For each such program, LEARN dis-
covers optimal parameter values, and updates an estimate
of the globally minimal loss. This process continues until a
function with sufficiently low loss is identified.

We skip a detailed discussion of LEARN as it is uses stan-
dard gradient descent. The symbolic module GENERATE
follows a strategy of heuristically-guided top-down itera-

tive refinement similar to the �2 program synthesizer (Feser
et al., 2015). We now describe this module in more detail.

The initial input to GENERATE is the type ⌧ of the function

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Synthesis of Differentiable Functional Programs for Lifelong Learning

Figure 2. A grid of 32x32x3 images selected from the German
Traffic Sign Recognition Benchmark dataset (Stallkamp et al.,
2012). The least-cost path from the top left to the bottom right
node is marked.

ral nets can be naturally expressed as foldlisth↵i �, where
� is a neural function. Graph convolutional networks can be
expressed using terms of form convgraphh↵i �. Going even
further, straightforward extensions of our language are pos-
sible to handle bidirectional recurrent networks, attention
mechanisms, and so on, which we leave to future work.

Example: Shortest path in a grid of images. Now we
show how HOUDINI can model tasks that mix perception
and procedural reasoning, using an example that generalizes
the navigation task of Gaunt et al. (2017). Suppose we
are given a grid of images (for example, Figure 2), where
elements represent speed limits on various streets and are
connected horizontally and vertically, but not diagonally.
Passing through each node induces a penalty, which depends
on the node’s speed limit, with lower (stricter) speed limit
having a higher penalty. The task is to predict the minimum
cost d(u) incurred while traveling from a fixed starting point
init (the top left element) to each of the remaining nodes u.

One way to compute these costs is to use the Bellman-Ford
shortest-path algorithm (Bellman, 1958). This algorithm
is an iterative, dynamic-programming computation whose
i-th iteration computes an estimated minimum cost di(u)
of travel to each node u in the graph. The cost estimates
for the (i+ 1)-th iteration are given by applying a so-called
relaxation operation:

di+1(u) := min(di(u), min
v2Adj (u)

di(v) + w(v))

where w(u) is the penalty and Adj (u) the neighbors of u.

Because the update to di(u) only depends on values stored
at u and its neighbors, the relaxation step can be represented
as a convolution. This convolution applies to a graph whose
nodes contain costs, and this graph is obtained by applying
a map to the original graph of images. The Bellman-Ford al-
gorithm amounts to repeated application, until convergence,
of this convolution step.

For any function e, let ei represent the composition of e

with itself, i times. The HOUDINI program that models the
shortest-path task is

(convi
graphhTensor[2]i nn relax)

� (mapgraphhTensor[32][32][3]i perceive).

Here, the function perceive processes the images of speed
limits and generates a tensor of type Tensor[2] (the ele-
ments of the tensor store the penalty for the node and the
current estimate of the cost of travel to the node). The
nn relax is a neural network that models that relaxation

operation. As described in Section 4, HOUDINI is able to
discover an approximation of this program purely from data.

3. Program Synthesis
Our program synthesis problem is as follows. For a (com-
plete) HOUDINI program ew parameterized by a vector w,
let e[w 7! v] be the function for the specific parameter
vector v, i.e. by substituting w by v in e. Suppose we are
given a library L of neural functions, as well as a training
set D that describes the function that we want to learn. As
usual, we assume that D consists of i.i.d. samples from
a distribution pdata . We assume that D is properly typed,
i.e., every training instance (xi, yi) 2 D has the same type,
which is known. We note that this means that we also know
the type ⌧ of our target function.

The learning problem can then be expressed as a problem in
program synthesis. The goal is to discover a program e⇤w of
type ⌧ , and values v for w such that

e⇤w[w 7! v] = argmine2Progs,w2Rn(Ex⇠pdata [l(e,D, x)]),

where Progs(L) is the universe of all complete programs
over the library L, and l is an appropriate loss function.

Our algorithm for this task (called SYNTH in this section)
consists of a higher-level, symbolic program enumeration
module called GENERATE and a lower-level gradient learn-
ing module called LEARN. The former module repeatedly
generates complete, parameterized programs that are sent
to the latter module. For each such program, LEARN dis-
covers optimal parameter values, and updates an estimate
of the globally minimal loss. This process continues until a
function with sufficiently low loss is identified.

We skip a detailed discussion of LEARN as it is uses stan-
dard gradient descent. The symbolic module GENERATE
follows a strategy of heuristically-guided top-down itera-

tive refinement similar to the �2 program synthesizer (Feser
et al., 2015). We now describe this module in more detail.

The initial input to GENERATE is the type ⌧ of the function
we want to learn. The procedure proceeds iteratively, main-
taining a priority queue Q of synthesis subtasks of the form
(e, f), where e is a type-safe partial or complete program

All-pairs shortest path

Counting

Summing

MNIST digits:
 Recognize(5); Recognize(8); Count(8)

MNIST/NORB:
 Recognize(5), count(5), count(toy airplane), recognize(toy airplane)

MNIST digits:
 Recognize(5), Count(5); Count(8); Recognize(5)

 Classify(1…10), Sum(sequence)

Classify(sign), Shortest_path(sign)
Classify(mnist), Shortest_path(mnist), Shortest_path(mnist)

1
Results: Learning to Count

Recognise digit d1
(binary classification)

Recognise digit d2
(binary classification)

2

43

Count digits d1 Count digits d2

1

Results: Counting Toys

Recognise digit d1 Count digit d1

43

Count toys t1 Recognise toy t1

2

Results: Shortest path

Image —> Node cost
(RMSE)

Shortest path length
(RMSE)

Vanilla
CNN—>LSTM 0.37 5.97

Houdini 0.38 1.53

Training: Grids of size 2x2, 3x3, 4x4
Testing: Grids of size 5x5

Street sign imagesStreet sign images

Results: Shortest path (transfer)

Image —> Node cost
(RMSE)

Shortest path
length

(RMSE)

Shortest path
length

(RMSE)

Vanilla
CNN—>LSTM 1.21 5.33 6.16

Houdini 1.29 1.62 4.98

Training: Grids of size 2x2, 3x3, 4x4
Testing: Grids of size 5x5

MNIST images Street sign imagesMNIST images

Impact of type system

Program depth 4 5 6

No type system 15633 247589 3449845

Type system 25 155 444

Types of transfer

• Low-level transfer
• Reuse perceptual network across high-level tasks

• High-level transfer
• “Infilling”

• Learn perceptual concepts given only supervision at high level

• Selective transfer
• Synthesis algorithm decides whether and when to re-use

Adventures in Neurosymbolic Learning
Charles Sutton

Subsymbolic
son of a …

Unify *this*!!!

� Professor
Symbolic AI

Mr Continuous
Representation

Great for perceptual data

Efficient reasoning

Abstract reasoning —
powerful transfer of
knowledge

bit.ly/adventures-neurosymbolic

feedforward_nn_1 (map (convnet_42, split (input)))

Candidate differentiable programs
Synthesizer

!"

Gradient descent

there are two “8”s

Training and validation data
Language
Operators
Library functions

Thanks!
Miltos Allamanis
Pushmeet Kohli
Pankajan Chanthirasegaran
Kai Xu
Lazar Valkov
Dipak Chaudhari
Akash Srivastava
Swarat Chaudhuri

http://bit.ly/adventures-neurosymbolic

