Adventures in Neurosymbolic Machine Learning

symbols to vectors vectors to symbols plus other stuff

> Charles Sutton 9 April 2018

Companion Site: **bit.ly/adventures-neurosymbolic**

The

nstitute

BUNUS! Debugging tools

Prediction vectors (class probabilities)

Trained classifier

Validation set

Programming is to debugging as Differentiable programming is to error analysis

http://xuk.ai/darksight/

Error Analysis via Dark Knowledge

Prediction vectors (class probabilities) Interpret via visualization Visualize via dimension reduction

Dimension reduction via dark knowledge

Trained classifier

Why dark knowledge?

airplane	0.95	0.95
bird	0.04	0
motorcycle	0	0
truck	0	0
frog	0	0.05

Validation set

[Xu, Park, Chang, Sutton, 2018]

Maybe something's wrong

Error Analysis via Dark Knowledge

http://xuk.ai/darksight/

Each data item gets 2-D location such that Gaussian classifier 2-D matches original deep classifier on original data

http://xuk.ai/darksight/

Great for perceptual data

Efficient reasoning

Abstracts over lots of perceptual states

Logical and algorithmic reasoning

Why combine?

Mr Continuous Representation

Great for perceptual data

Efficient reasoning

- X Only doing local search
- ✗ Requires lots of data for learning

ProfessorSymbolic Al

Abstracts over lots of perceptual states

- Search has "non-local" effects small change makes big difference useful for transfer learning
- Impedance mismatch with perception (percepts —> symbol problem)

Why not to combine?

Over 2000 years of overpromising and underdelivering

Aristotle

How to combine

Symbols describe structure Use gradient to learn parameters

SemVecs

Representing symbolic expressions by vectors

Houdini

Representing differentiable functions by functional combinators

Continuous Representations of Symbolic Expressions

bit.ly/adventures-neurosymbolic

[Allamanis, Chanthirasegaran, Kohli, and Sutton, ICML 2017]

Can vectors help symbols?

Hothistworksyseboliotisemaedjois/demoentic equivalence) can we compress into continuous vector? Want similar continuous vectors —> logically equivalent

Potential Uses

Theorem Proving

[DeepMath: Irving et al, 2016]

[Zaremba et al, 2014]

Program Synthesis

[Gulwani et al, CACM 2015]

Inductive Logic Programming

[Rocktaschel and Riedel, 2016] [Rocktaschel and Riedel, arXiv 1705.11040 2017]

Transfer Learning

Desiderata

Syntax directed: Semantics is compositional Not too much: Small syntax change —> big semantics "man bites dog" problem

Allows zero-shot learning on equivalence classes.

Recursive NN (TreeNN)

Syntax tree

Network architecture

Problem: Representations mostly syntactic. Too much syntax!

[Socher et al, 2011, 2013]

EqNet

Start with TreeNNs

 $(a \lor c) \land a$

Add:

 $\|\cdot\|_2$

Subexpression AE

Moar! Layers!

Normalization

Layers and Normalization

For one syntactic parent-child

COMBINE
$$(\mathbf{r}_{c_0}, \dots, \mathbf{r}_{c_k}, \tau_p)$$

 $\overline{l}_0 \leftarrow [\mathbf{r}_{c_0}, \dots, \mathbf{r}_{c_k}]$
 $\overline{l}_1 \leftarrow \sigma \left(W_{i,\tau_p} \cdot \overline{l}_0 \right)$
 $\overline{l}_{out} \leftarrow W_{o0,\tau_p} \cdot \overline{l}_0 + W_{o1,\tau_p} \cdot \overline{l}_1$
return $\overline{l}_{out} / \|\overline{l}_{out}\|_2$

Big impact.

(Turns out you need both residual and normalisation together)

SubexprAE: Motivation

Semantic information is bidirectional

Not only do children provide info re parents

But parents provide info re children

uncle(?B,?A) :- parent(?Z,?A), brother(?Z,?B).

Unification propagates this info automatically

How to map to continuous space?

SubexprAE Motivation

ensure this prediction problem is "easy" semantic classes will be clustered together

Subexpression Autoencoder

For every node in syntax tree, add regularisation

Denoising autoencoder plus bottleneck on (parent, child1, child2) semVecs

Intention is

Bottleneck \longrightarrow Abstraction Denoising \longrightarrow Reversibility

Evaluation

Dataset	# Vars	# Equiv Classes	# Exprs	Η
SIMPBOOL8	3	120	39,048	5.6
$SIMPBOOL10^{S}$	3	191	26,304	7.2
BOOL5	3	95	1,239	5.6
BOOL8	3	232	257,784	6.2
$BOOL10^S$	10	256	51,299	8.0
SIMPBOOLL5	10	1,342	10,050	9.9
BOOLL5	10	7,312	36,050	11.8
SIMPPOLY5	3	47	237	5.0
SIMPPOLY8	3	104	3,477	5.8
SIMPPOLY10	3	195	57,909	6.3
ONEV-POLY10	1	83	1,291	5.4
ONEV-POLY13	1	677	107,725	7.1
POLY5	3	150	516	6.7
POLY8	3	1,102	11,451	9.0

Training / Test Split

Evaluation Metric

Seen equivalence classes

Equivalent expressions to the queries were in training set

Unseen equivalence classes

Zero shot learning. No training examples of equivalent expressions.

EqNet performance on seen and unseen is similar!

Learned compositionality?

tf-idf 🔺 🔺 GRU 🔻 🔻

Test on deeper trees than in training

e.g. train depth <= 5 test depth <= 8

EqNet

StackRNN - TreeNN-1Layer - TreeNN-2Layer **

Visualizing polynomials

multivariatePolynomial2vec?

PCA visualization of semVecs

Visualizing boolean expression

booleanExpression2vec?

PCA visualization of semVecs

Synthesis of Differentiable Functional Programs for Lifelong Learning

bit.ly/adventures-neurosymbolic

[Valkov, Chaudhari, Srivastava, Sutton, and Chaudhuri, 2018]

The Problem with Learning

All learning curves stop.

Why "data hungriness"?

Learning systems never get better at learning itself

Lifelong learning [Thrun & Mitchell, 1995; Carlson et al, 2010]

On series of tasks, accelerate learning by re-using learned structure

that's a "one"

Task 2 Counting

Neural libraries

Networks from old tasks

Controller in differentiable PL

Differentiable interpreter

[Gaunt, Brockschmidt, Kushman, Tarlow ICML 2017]

New task

Learn programs plus perceptual networks

initialization: # = READ R0 program: R1 MOVE_EAST =MOVE_SOUTH R2 SUM(R0, R1)**R**3 \equiv = NOOP R4 return R3

end-to-end gradient descent

High level transfer

there are two "8"s

there is one "toy airplane"
(and why don't I have two?)

Reusing early layers not sufficient!

[Hinton & Salakhutdinov, 2006; Rusu et al 2016]

High-level neural libraries

Now tack

2

"High-level modules" Other networks as input

Controller in differentiable PL

Differentiable interpreter

Learn programs plus perceptual networks

```
# initialization:
R0 = READ
# program:
R1 = MOVE_EAST
R2 = MOVE_SOUTH
R3 = SUM(R0, R1)
R4 = NOOP
return R3
```

end-to-end gradient descent

7

100 neural architectures, 1 weird trick

Functional programming

Olah: http://colah.github.io/posts/2015-09-NN-Types-FP/

Main ideas

- Neural libraries for high level transfer
- Functional programs represent deep architecture
- Symbolic program synthesis to choose:
 - Which neural library functions for re-use
 - Architecture that puts them together

Synthesis of Differentiable Functional Programs

HOUDINI: Heuristic Optimization for the Ultimate Development of Integrated Neurosymbolic Intelligence

Language

Types

guides the search space

au	::=	Atom	$ADT \mid$	F

Atom ::= bool | real

- TT ::= $Atom \mid \text{Tensor}\langle Atom \rangle [m_1][m_2] \dots [m_k]$
- $ADT ::= TT \mid \alpha \langle TT \rangle$

$$F \qquad ::= ADT \mid F_1 \to F_2.$$

Search

Enumeration of programs in language

- Shortest to longest
- Types reduce search space
- Limit number of trainable functions per candidate

Training set

Search

Synthesis for Lifelong Learning

Experiments

Counting

MNIST digits: Recognize(5); Recognize(8); Count(8)

MNIST digits:

Recognize(5), Count(5); Count(8); Recognize(5)

MNIST/NORB:

Recognize(5), count(5), count(toy airplane), recognize(toy airplane)

Summing

Classify(1...10), Sum(sequence)

All-pairs shortest path

 $\begin{array}{c} (\mathbf{conv}^i_{\texttt{graph}\langle\texttt{Tensor}[2]\rangle} \ nn_relax) \\ \circ (\mathbf{map}_{\texttt{graph}\langle\texttt{Tensor}[32][32][3]\rangle} \ perceive) \end{array}$

Classify(sign), Shortest_path(sign) Classify(mnist), Shortest_path(mnist), Shortest_path(mnist)

Results: Learning to Count

Results: Counting Toys

Results: Shortest path

Training: Grids of size 2x2, 3x3, 4x4 Testing: Grids of size 5x5

	Image —> Node cost (RMSE)	Shortest path length (RMSE)
Vanilla CNN—>LSTM	0.37	5.97
Houdini	0.38	1.53
	Street sign images	Street sign images

Results: Shortest path (transfer)

Training: Grids of size 2x2, 3x3, 4x4 Testing: Grids of size 5x5

	Image —> Node cost (RMSE)	Shortest path length (RMSE)	Shortest path length (RMSE)
Vanilla CNN—>LSTM	1.21	5.33	6.16
Houdini	1.29	1.62	4.98
	MNIST images	MNIST images	Street sign images

Impact of type system

Program depth	4	5	6
No type system	15633	247589	3449845
Type system	25	155	444

Types of transfer

- Low-level transfer
 - Reuse perceptual network across high-level tasks
- High-level transfer
- "Infilling"
 - Learn perceptual concepts given only supervision at high level
- Selective transfer
 - Synthesis algorithm decides whether and when to re-use

Adventures in Neurosymbolic Learning Charles Sutton

bit.ly/adventures-neurosymbolic

