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Not all comments are the same…

ICSE’18, May-June 2018, Gothenburg, Sweden

Listing 1: Amethod and comment from the liferay-plugins
project. This comment simply restates the method name.

1 /* Returns the projects entry persistence.
2 @return the projects entry persistence */
3 public ProjectsEntryPersistence

getProjectsEntryPersistence() {
4 return projectsEntryPersistence;
5 }

Listing 2: A method and comment from the
aws-sdk-for-android project. This comment provides
explanatory text about how the method should be used.

1 /* Returns the minimum part size for upload parts.
Decreasing the minimum part size

2 causes multipart uploads to be split into a larger number
of smaller parts. Setting

3 this value too low has a negative effect on transfer
speeds, causing extra latency

4 and network communication for each part.
5 @return The minimum part size for upload parts. */
6 public long getMinimumUploadPartSize() {
7 return minimumUploadPartSize;
8 }

method assigns high probability to your comment, then your com-
ment might not be very good, because even a neural network, with
no deep background knowledge or semantic understanding, can
predict what you have written. More speci�cally, we introduce a
new research problem which we call comment entailment, named
after the well-studied problem of textual entailment [13] in the
NLP literature. The comment entailment problem is to determine
which sentences in a comment logically follow from the informa-
tion in the code. Not all entailed comments are poor comments, but
methods for the comment entailment problem can still be applied
to the problem of �nding uninformative comments, because we
expect that the class of entailed comments that will be easiest to
detect automatically are those that are uninformative comments
that restate the code.

We present a �rst approach to the comment entailment problem
based on applying sequence to sequence learning from the deep
learning literature [8, 43], which has seen dramatic recent success
in machine translation. Our sequence-to-sequence model uses a
particular kind of recurrent neural network called a long short-term
memory (LSTM) network to predict each sentence of a method-
level comment from the source code of the method. The comment
sentences that have highest average probability conditioned on
the code are the ones that C���� returns as low quality, under the
rationale that, because they are so readily predictable, they are most
likely to be simply restating the code. The developer may choose
to revise these low quality comments to include more information,
or alternately use C���� to remove them altogether.

Our main contributions are:
• We introduce the comment entailment problem with the goal of
supporting developers in writing good comments (Section 3).

• We develop language models based on LSTMs for modelling
comments (Section 4), showing that comment text is much more

predictable than the newswire text used as benchmark corpora
for NLP (Section 6.3).

• We demonstrate that sequence-to-sequence learning yields an
e�ective method for the comment entailment problem, namely,
that they are capable of using code to improve comment predic-
tion (Section 6.3).

• We present evidence that C���� e�ectively identi�es uninforma-
tive comment sentences, matching human judgement. We �nd
that the comments predicted as most and least entailed by our
model have an accuracy of 81% when compared to the entailment
decisions that humans make on the same examples. (Section 6.4)

• Finally, in Java, we speci�cally analyse Javadoc comments, to test
the hypothesis that there exists a prevalent class of Javadoc state-
ments, such as in Listing 1, that are uninformative. We �nd that
the predictability of common Javadoc comments �elds is as much
as three times higher than non-Javadoc sentences. (Section 7)

Our data, trained models and software are available at [link removed
for blind submission].

2 RELATEDWORK
Software is bimodal: it combines an algorithmic channel, that tar-
gets devices, and a natural language channel, comprising comments
and identi�ers, aimed at developers. With the early and notable
exception of literate programming [27], most research has focused
on one of the two channels in isolation. As Section 3 makes clear,
C���� targets the bimodal problem of deciding whether a method
entails a comment.

Our survey of relevant work in the software engineering commu-
nity begins by discussing related work focused solely on software’s
natural language channel, then moves to more closely related bi-
modal work. Bimodal analysis is also motivated by a growing line
of work that applies data mining and ML techniques to software
repositories, especially work on language models for code, which
we review in more detail.

NLchannel (unimodal): Researchers have developed unimodal
methods to study both comments and names in the NL channel
of software. For example, Binkley and colleagues have measured
the comprehensibility of identi�er names [10]. Researchers have
customised part of speech tagging for tokenised identi�er names
and have mined semantically related word pairs, by mapping the
main action verb of a function’s header comment to the main action
verb in its signature [20]. C���� seeks to identify bad comments
for removal to improve the readability of a codebase.

NL+code channels (bimodal): There has been some work on
developing bimodal methods for the NL and code channels of
software. Ibrahim et al. [24] studied comments, identifying code
changes that trigger comment changes [24]. Fluri et al. used lexical
similarity and heuristics to connect comments to code [15]. CloCom
extracts commented code from a codebase, then �nds uncommented
clones using detection as a black box [47].

Tan and coauthors have presentedmethods for automatically pro-
ducing code annotations from comments [44, 45]. iComment [44]
looks at comments to extract expected code patterns and then
veri�es whether the code accompanying the comment obeys the
inferred patterns. aComment extracts assertion macros from code
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Let’s discourage 
repetitive comments!



Shouldn’t comments repeat the code?

“Avoid comments that just 
repeat what the code does.”

“Good comments don't repeat the 
code or explain it. They clarify its 
intent. Comments should explain, at 
a higher level of abstraction than 
the code, what you're trying to do.”

— Google Testing Blog

— Steve McConnell, Code Complete



Comments a waste of time?
Downsides of comments
• Bad comments cause bloat 
• Good comments take time 
• Comments go stale 

Advice: “Rewrite code instead”
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Comment entailment problem
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changes that trigger comment changes [24]. Fluri et al. used lexical
similarity and heuristics to connect comments to code [15]. CloCom
extracts commented code from a codebase, then �nds uncommented
clones using detection as a black box [47].

Tan and coauthors have presentedmethods for automatically pro-
ducing code annotations from comments [44, 45]. iComment [44]
looks at comments to extract expected code patterns and then
veri�es whether the code accompanying the comment obeys the
inferred patterns. aComment extracts assertion macros from code

Inspired by textual entailment

Code logically entails comment?
Code provides enough information to 
judge that comment sentence is true.

Comment sentence

Code

[Dagan et al, 2013]
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Listing 3: This listing from the android project contains
three code-comment pairs: the �rst sentence is completely
entailed, the second is not, since it depends on the semantics
of getString, while the third is partially entailed.

1 /**

2 * Return the current registration id.

3 * If result is empty, the registration has failed.

4 * @return registration id, or empty string if the

registration is not complete.

5 */

6 public static String getRegistrationId(Context context) {

7 final SharedPreferences prefs =

context.getSharedPreferences(PREFERENCE,

Context.MODE_PRIVATE);

8 String registrationId =

prefs.getString(��dm_registration��,��);

9 return registrationId;

10 }

many examples, such as Listing 3, where a longer comment will
contain both some sentences that are entailed and some that are
not. Therefore, a sentence-level notion seems more useful.

The comment sentenceC is entailed by the code snippetM , which
we denoteM ) C , if the content of the text C can be semantically
inferred by a reader solely from information internal to M . Here
“semantically inferred” means that a developer can verify that the
sentence C is true, based solely on the methodM . This de�nition
depends on what information is known by the reader, for example,
an expert programmer may understand many details about the
project, the language, the standard library, and so on, that allow her
to verify comment sentences that a novice programmer cannot. This
dependence cannot be fully removed, because whether a piece of
writing is clear always depends on its audience. However, we claim
that there is a core knowledge shared by professional programmers
of a language that allows them to consistent judgement whether a
comment correctly describes a method. We provide evidence for
this claim by measuring interannotator agreement in 6.5.

Listing 3 shows an example taken from the android project that
has a comment containing three sentences: on line 2 (Sentence C1),
line 3 (C2), and line 4 (C3). By de�nition, this example contains three
code-comment pairs. Each pair represents a di�erent entailment
relation. Sentence C1 is completely entailed by the method, as it is
simply a restatement of the method name. C2, on the other hand,
depends on the semantics of the prefs.getString method and
hence not is directly entailed byM . Finally, C3 is partially entailed:
the empty result assertion is not immediate.

Instead of logical yes/no de�nition of entailment, we suggest
a more �exible notion of an entailment score S(M ) C), which
is a real number that measures the degree of entailment. We will
take the convention that lower scores indicate a higher degree of
entailment. This allows us to produce a ranked list of comment
sentences as more or less entailed.

It is important to clarify the implications of comment entailment.
We are not claiming that entailed comments are bad, nor are we
claiming that non-entailed comments are good. To the contrary,
both of these incorrect statements have clear counterexamples. A
summary comment that brie�y explains the algorithm in a large

method is an entailed comment that is often considered good [35].
Conversely, a completely unrelated comment, such as a comment
from the Linux kernel pasted above the function in Listing 3 is
a non-entailed comment which is clearly bad. Instead, we make
two claims. The �rst is that entailed versus non-entailment is a
conceptually useful distinction. For example, good entailed com-
ments (among other roles) describe the code at a higher level of
abstraction, as recommended by McConnell [35], and good non-
entailed comments (among other roles) can explain rationale, as
recommended by Raskin [43]. Secondly, entailed comments that
are too easily inferred are not useful, and should be discouraged.
At the very least, if all comments in a �le are easily inferred, then
the comments are likely to be missing important information such
as design rationales.

4 DEEP LEARNING COMMENT ENTAILMENT
One approach to comment entailment would be to use supervised
learning, such as text classi�cation, in which we train a machine
learning model to predict a binary variable indicating the presence
of entailment directly from a code-comment pair. But such an ap-
proach requires large amounts of labelled training data, in which
programmers have annotated code-comment pairs as to whether
an entailment exists, which is time-consuming and expensive to
produce. Instead, we avoid this problem by applying machine learn-
ing in an indirect way, which does not require explicitly labeled
examples of whether an entailment relationship exists for training.3

Our approach is based on language modelling. An overview of
our approach can be seen in Figure 1. It consists of two stages. First,
we train recurrent neural network language models to generate
comments based on code (Section 4.1), by which we mean that they
de�ne a probability distribution P(C |M) over comment sentences
given code. We use deep learning methods because they are cur-
rently the most e�ective language models for natural language text
like comments. Second, once we have such a model, we can use the
probability values to measure the predictability of the comment
sentence. Comments that are too easy to predict by the model (con-
ditioned on the code) are likely to be easily inferred by developers as
well, and hence less informative. We use the probability P(C |M) to
de�ne a numerical score called perplexity (Section 4.2). Comment
sentences with low perplexity are most easily predictable. Note
that for this approach, we only need a collection of code snippets
paired with comments written for them, which is readily available
from open source code bases, without requiring us to collect large
amounts of explicit annotations of entailment decisions. We will
show that despite this lack of explicit supervision, these scores
correlate with human judgements (Section 6.5).

4.1 Deep Sequence-to-Sequence Learning
Now we describe the sequence-to- sequence learning framework
that underlies our method. First, a language model is a probability
distribution over strings. Using the chain rule of probability, we

3We will still require a small amount of labelled data to evaluate the model, but this is
much less of a concern, as long experience in the machine learning community has
shown that the amount of data required to evaluate the model can be several orders of
magnitude smaller than the amount of data required for training.

ENTAILED
NOT ENTAILED

PARTIAL



Entailment is good? Bad?
Academic: Entailment is good because the 
point of comments is to explain the code, right?

Industry: Entailment is bad because you’re 
bloating the code with maintenance burden

We say: Both right! Both wrong!

Entailed Non-entailed

Often Good! High-level summaries Design rationale

Probably Bad Restate the method 
signature Copy-paste mistakes



Seq2seq for entailment

Key idea: If my deep network can predict your comment,
it wasn’t a good comment!

Returns the minimum part

public long get minimum part

…

…

Yes! Deep language 
model of code —> 
comments

Returns the minimum part size
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other hyperparameters, these values were also chosen based on
performance on the validation set.

6.3 Validation via Predictive Performance
In this section, we are evaluate whether our language models over
comments are e�ective at predicting text. In later sections, we evalu-
ate whether the resulting perplexity scores are e�ective for predict-
ing entailment. We evaluate two models. One is a LSTM language
model trained only on comment text. Next we examine whether
sequence-to-sequencemodels are e�ective at leveraging themethod
code to improve their capability to predict comments. In these s2s
models, we experiment with the three method summarization tech-
niques from Section 6.1. Clearly, if the sequence-to-sequence model
does not display better predictive performance, then it is not using
information from the code e�ectively. To compare comment corpus
to a general English language corpus, we also consider a state-of-
the-art LSTM language model built for English newswire text [36].
It was trained and tested on partitions of the Penn Treebank [34], a
corpus containing Wall Street Journal news articles.

Language models are typically evaluated using their perplexity
on a test set, which is a collection of texts unseen by the models
during training. This is standard methodology in natural language
processing for measuring the quality of a language model. Lower
perplexities are better and a language model with the lowest per-
plexity on a test set is best at predicting strings from the language.
Previous studies of language models for code have also reported
cross-entropy, xe(T ) = n�1 log2 P(w1 . . .wn ). The relationship is
therefore simply pp(T ) = 2�xe(T ). Perplexity has an intuitive inter-
pretation. The perplexity of a uniform distribution over V words is
exactly V , so perplexity can be viewed as an “e�ective vocabulary
size” of the model, or how many guesses the model would need on
average to predict every word in the text. The units of measure for
perplexity can be intuitively understood as “number of vocabulary
entries”. Both a general language model, and sequence learning
models can be evaluated using perplexity.

Table 2 shows the perplexities of our models on the training,
validation and test sets. We see that indeed our language models
are dramatically better at predicting comment text than state-of-
the-art models are at predicting newswire text. The perplexity of
58 for newswire text compared to those on the order of 10 and 5
for comments. We hypothesize that comments are easier to predict
compared to natural language news, because comments belong to
a narrower domain in terms of both vocabulary and the productive
nature of sentences.

For the sequence-to-sequence models, we compare all three code
representation methods from 6.1, namely (a) the signature-based
representation (s2s-signature in Table 2), (b) begin-end representa-
tion (s2s-begin-end), and (c) the identi�er-based representation (s2s-
identi�er). The perplexity of the best sequence-to-sequence model
is about half the number from the language model. Hence simply
capturing the most frequent comment tokens, while informative,
does not perform as well as the entailment models which use the
method to make the predictions. In terms of which method repre-
sentation is most useful, we �nd that there is an improvement upon
using the method body in some compressed form (either as sampled

Perplexities
Model Train Valid Test
LM 7.80 10.34 9.87
s2s-signature 5.70 6.90 8.26
s2s-begin-end 3.44 4.18 5.31
s2s-identi�er 4.50 5.34 6.00
LM English newswire 58

Table 2: Performance of deep models based on their ability
to predict comments. Lower perplexities are better.

tokens in the begin-end case or using identi�er sequences) com-
pared to signature only. Overall, this evaluation indicates that the
sequence to sequence models are e�ective at predicting comments
conditioned on the code, thereby providing a proxy for entailment.

Since s2s-begin-end and the identi�er compression perform sim-
ilarly, we use the simpler begin-end model as our best model for the
rest of the analysis in this paper.

In Table 3, we also show qualitative examples for the highly en-
tailed (low quality) and low entailment comments according to our
best model. We do not show the methods due to space constraints,
but the comments themselves are often enough to understand the
distinction we are trying to convey between redundant examples
and those which would be di�cult to predict from the code.

6.4 Comparision to Comment Categories
Prior work on comments, Pascarella and Bacchelli [42] has clas-
si�ed comments discounting their usefulness. We examined how
our model predicts comment sentences which were involved in
their manual comment classi�cation work. This analysis identi-
�es categories from the manual classi�cation which are deemed
redundant or non-redundant by our model. In this way, we gain
intuition into the predictions of our model. We hypothesize that
some categories of comments are more likely to be entailed than
others. For example, comments that are categorized as explaining
functionality are likely to be more easily inferred than comments
that explain the deeper rationale of the code.

Pascarella and Bacchelli [42]’s corpus contains 11,226 annotated
comments. The comments were annotated into 6 major categories:
Purpose (explain the functionality of the code), Notice (warnings,
alerts, and information about usage), Under development (todo and
incomplete comments), Style and IDE (IDE directives and formatting
text), Metadata (license, ownership etc), and Discarded (noisy com-
ments). Each category is further divided into �ner sub-categories.

To compare with our work, we identi�ed method-level com-
ments and their code span from their corpus. We were able to
obtain the code spans for 837 method comments successfully. For
these comment-code pairs, we grouped the comments using the tax-
onomy adopted in Pascarella and Bacchelli [42]. Then, we studied
how the categorisation rings with the predictions of our model.

Table 4 shows the categorisation of the 837 comments using
the Pascarella and Bacchelli [42] taxonomy. Most of the method
comments belong to either Purpose or Notice types. This is ex-
pected as License, Todo or Metadata comments are less unlikely to
be method-level comments. Within Purpose and Notice categories,
most comments are in the Purpose-summary (comments on what
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software development. Our interface presented a method and an
associated comment sentence. The annotators read them both and
decided on one among �ve entailment options:
• entails: the comment sentence is logically entailed by the method
• does not entail: the comment sentence is not entailed by the
method

• partly entails: option to be used for long comment sentences
where some portion of the comment sentence is entailed though
not the full sentence.

• cannot decide: option allows annotators to refrain from making a
decision when they do not understand the method or comment
either due to high context dependence or low quality comments.

• un-related: when the annotators understood the comment and
the method, but were unable to see how they go together.
We also tracked two properties of the comments which we

thought can be used to analyze annotator decisions based on intrin-
sic comment properties. Annotators could mark individual com-
ments as incoherent when the comment is low quality or too short
to understand. Another option allowed annotators to mark o� com-
ments which are part of javadoc. These markings were in addition
to the entailment choice.

We did not ask the annotators to judge whether the comment
sentence was useful, but only whether the comment was entailed
by the code, which we argue is a more objective notion.

Every annotator marked each of the 500 examples, but each
annotator saw the examples in a di�erent random order. On average,
an annotator took 8 hours to complete the task.

6.5.2 Annotator agreement. We removed one annotator who
had substantial disagreement with the rest of the annotators (mea-
sured by pairwise Cohen’s Kappa score for rater agreement). The
remaining annotators had a fair level of agreement. The majority of
the confusion was between entail and partly entail categories. The
pairwise Cohen’s Kappa for the remaining four annotators ranges
from 0.1 to 0.29 indicating fair agreement. We noticed that there
were two subgroups within our annotators, where two of them
overwhelmingly picked ‘entails’ for ambiguous examples and two
picked ‘partly entailed’ or ‘not entailed’. The �rst pair of annotators
have an agreement of 0.19 and the second 0.29.

On one-�fth of our examples (95 out of 500), all four annotators
picked the same entailment decision (out of �ve possible) indicating
that this task is meaningful to the annotators. A majority decision
was possible on 292 examples i.e. three or all of the four annotators
picked the same choice on these examples. These numbers indicate
that close to 60% of the examples could be annotated reliably.

For our class of interest, the redundant comments, 85 samples
were marked by all four annotators as “entailed”. We will examine
our model’s predictions on this subset in the next section.

Below we provide some examples of annotator decisions.
M1,C1 is a pair where all four annotators agreed that the com-

ment is not entailed by the method.

1 (M1,C1)

2 /* This method should be called before the superclass

implementation.*/

3 public void dispatchDestroy() {

4 }

category count avg stdev median
entails 237 9.50 33.23 2.30
partly entailed 12 14.77 17.00 7.35
not entailed 39 115.73 266.65 13.35
unrelated 4 1069.73 676.71 1206.36

Table 6: Perplexities of our best model on 292 human anno-
tated samples with a majority agreement

In M2,C2 all four annotators agree that the comment is entailed
or partly entailed by the method.

1 (M2,C2)

2 /* @throws IOexception thrown on errors while reading

the matrix */

3 public void load(String filename) throws IOException {

4 DataInputStream dis = new DataInputStream(new

FileInputStream(filename));

5 this.in(dis);

6 }

M3,C3 is a pair where annotators disagreed.

1 (M3,C3)

2 /*The keyword used to specify a nullable column.*/

3 public String getNullColumnString() {

4 return � with null�;

5 }

Here, two annotators picked entailed/partly entailed and two
chose the non-entailed. It is likely that the information about the
columns being “nullable” is not fully inferrable from the code (as
opposed to columns containing null values already). Similarly, the
return value being a keyword is not directly inferrable from the
code. These points may trigger a “not entailed” decision. At the
same time, the return type being a string may have been considered
by the two other annotators as su�cient to entail/partly entail.

Other comments where annotators disagreed included comments
which were not �uent or were context-dependent. In fact, out of
the 84 examples where no majority decision was reached, 30 were
marked by annotators as incoherent. Note that incoherent comment
sentences also result from errors in the sentence segmentation
performed on the comment text.

6.5.3 Comparison between model and human judgements. Since
our annotators could reliably annotate and agree on the examples,
we now examine whether the entailment predictions from C����
match human judgements.

For this analysis, we use the 292 examples where a majority deci-
sion was reached by the annotators. Table 6 shows the perplexities
of our best model (s2s-begin-end) on these examples split by the
majority category from the annotation. We see that the entailed
examples have lowest average and median perplexities compared
to those partly entailed, which in turn are lower than the non-
entailed examples. This �nding shows that our model predictions
correspond well with manual annotations by software developers.

Beyond agreement, it is also of interest to explore illustrative
examples of when the model predictions are incorrect. For the



VEEGAN: Reducing Mode 
Collapse in Generative 
Adversarial Learning

[Srivastava, Valkov, Russell, Gutmann, Sutton, NIPS 2017]

VEEGAN: Reducing Mode Collapse
in GANs using Implicit Variational Learning

akash.srivastava@ed.ac.uk
University of Edinburgh

Akash Srivastava
L.Valkov@sms.ed.ac.uk
University of Edinburgh

Lazar Valkov

SETUP

RECONSTRUCTION CAN HELP BUT...

Code

crussell@turing.ac.uk
Alan Turing Institute

Chris Russell
Michael.Gutmann@ed.ac.uk
University of Edinburgh

Michael U. Gutmann
csutton@ed.ac.uk

University of Edinburgh
Alan Turing Institute

Charles Sutton

SOLUTION: VEEGAN TRAINING

RESULTS

L



Generative Adversarial Networks

p✓(x)

1

0.00003

Input Explicit model Density value

Classical probabilistic modelling

Implicit probabilistic modelling

Gaussian ImageRepresentation Generator 
network

p�(x)

xp(z) z

Sampling procedure for

G�(z)

[Goodfellow et al, 2014]

VEEGAN: Reducing Mode Collapse
in GANs using Implicit Variational Learning

akash.srivastava@ed.ac.uk
University of Edinburgh

Akash Srivastava
L.Valkov@sms.ed.ac.uk
University of Edinburgh

Lazar Valkov

SETUP

RECONSTRUCTION CAN HELP BUT...

Code

crussell@turing.ac.uk
Alan Turing Institute

Chris Russell
Michael.Gutmann@ed.ac.uk
University of Edinburgh

Michael U. Gutmann
csutton@ed.ac.uk

University of Edinburgh
Alan Turing Institute

Charles Sutton

SOLUTION: VEEGAN TRAINING

RESULTS

L

VEEGAN: Reducing Mode Collapse
in GANs using Implicit Variational Learning

akash.srivastava@ed.ac.uk
University of Edinburgh

Akash Srivastava
L.Valkov@sms.ed.ac.uk
University of Edinburgh

Lazar Valkov

SETUP

RECONSTRUCTION CAN HELP BUT...

Code

crussell@turing.ac.uk
Alan Turing Institute

Chris Russell
Michael.Gutmann@ed.ac.uk
University of Edinburgh

Michael U. Gutmann
csutton@ed.ac.uk

University of Edinburgh
Alan Turing Institute

Charles Sutton

SOLUTION: VEEGAN TRAINING

RESULTS

L

VEEGAN: Reducing Mode Collapse
in GANs using Implicit Variational Learning

akash.srivastava@ed.ac.uk
University of Edinburgh

Akash Srivastava
L.Valkov@sms.ed.ac.uk
University of Edinburgh

Lazar Valkov

SETUP

RECONSTRUCTION CAN HELP BUT...

Code

crussell@turing.ac.uk
Alan Turing Institute

Chris Russell
Michael.Gutmann@ed.ac.uk
University of Edinburgh

Michael U. Gutmann
csutton@ed.ac.uk

University of Edinburgh
Alan Turing Institute

Charles Sutton

SOLUTION: VEEGAN TRAINING

RESULTS

L

Generator
G�(z)



How to train?
Can’t use maximum likelihood. There is no likelihood!

Generator
G�(z) Discriminator

D�(x)

Instead define a game

1 if x came from generator 
0 if x came from data 

max
�

min
�

Ogan(�, �) := Ez [log D�(G�(z))] + Ex [log (1 � D�(x))]

Optimize

VEEGAN: Reducing Mode Collapse
in GANs using Implicit Variational Learning

akash.srivastava@ed.ac.uk
University of Edinburgh

Akash Srivastava
L.Valkov@sms.ed.ac.uk
University of Edinburgh

Lazar Valkov

SETUP

RECONSTRUCTION CAN HELP BUT...

Code

crussell@turing.ac.uk
Alan Turing Institute

Chris Russell
Michael.Gutmann@ed.ac.uk
University of Edinburgh

Michael U. Gutmann
csutton@ed.ac.uk

University of Edinburgh
Alan Turing Institute

Charles Sutton

SOLUTION: VEEGAN TRAINING

RESULTS

L

VEEGAN: Reducing Mode Collapse
in GANs using Implicit Variational Learning

akash.srivastava@ed.ac.uk
University of Edinburgh

Akash Srivastava
L.Valkov@sms.ed.ac.uk
University of Edinburgh

Lazar Valkov

SETUP

RECONSTRUCTION CAN HELP BUT...

Code

crussell@turing.ac.uk
Alan Turing Institute

Chris Russell
Michael.Gutmann@ed.ac.uk
University of Edinburgh

Michael U. Gutmann
csutton@ed.ac.uk

University of Edinburgh
Alan Turing Institute

Charles Sutton

SOLUTION: VEEGAN TRAINING

RESULTS

L

VEEGAN: Reducing Mode Collapse
in GANs using Implicit Variational Learning

akash.srivastava@ed.ac.uk
University of Edinburgh

Akash Srivastava
L.Valkov@sms.ed.ac.uk
University of Edinburgh

Lazar Valkov

SETUP

RECONSTRUCTION CAN HELP BUT...

Code

crussell@turing.ac.uk
Alan Turing Institute

Chris Russell
Michael.Gutmann@ed.ac.uk
University of Edinburgh

Michael U. Gutmann
csutton@ed.ac.uk

University of Edinburgh
Alan Turing Institute

Charles Sutton

SOLUTION: VEEGAN TRAINING

RESULTS

L

Gaussian noise



Mode Collapse

plausible images. Across the methods, we see in Figure 3 that VEEGAN captures small details, such272

as the face of the poodle, that other methods miss.273

Figure 2: Density plots of the true data and generator distributions from different GAN methods
trained on mixtures of Gaussians arrange in a ring (top) or a grid (bottom).

(a) True Data (b) GAN (c) ALI (d) Unrolled (e) VEEGAN

(f) True Data (g) GAN (h) ALI (i) Unrolled (j) VEEGAN

Figure 3: Sample images from GANs trained on CIFAR-10. Best viewed magnified on screen.]

(a) Nearest generated samples to real images from CIFAR 10. In
each of the two panels, the first column are real images, followed
by the nearest images from DCGAN, ALI, Unrolled and VEEGAN
respectively.

(b) Random samples from generator of
VEEGAN trained on CIFAR-10.

6 Conclusion274

We have presented VEEGAN, a new training principle for GANs that combines a KL divergence in275

the joint space of representation and data points with an autoencoder over the representation space,276

motivated by a variational argument. Experimental results on synthetic data and real images show277

that our approach is much more effective than several state-of-the art GAN methods at avoiding mode278
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as the face of the poodle, that other methods miss.273

Figure 2: Density plots of the true data and generator distributions from different GAN methods
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Figure 3: Sample images from GANs trained on CIFAR-10. Best viewed magnified on screen.]

(a) Nearest generated samples to real images from CIFAR 10. In
each of the two panels, the first column are real images, followed
by the nearest images from DCGAN, ALI, Unrolled and VEEGAN
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(b) Random samples from generator of
VEEGAN trained on CIFAR-10.

6 Conclusion274

We have presented VEEGAN, a new training principle for GANs that combines a KL divergence in275

the joint space of representation and data points with an autoencoder over the representation space,276

motivated by a variational argument. Experimental results on synthetic data and real images show277

that our approach is much more effective than several state-of-the art GAN methods at avoiding mode278

collapse while still generating good quality samples.279

References280

[1] Che, Tong, Li, Yanran, Jacob, Athul Paul, Bengio, Yoshua, and Li, Wenjie. Mode regularized281

generative adversarial networks. In International Conference on Learning Representations282

8



VEEGAN: Detecting collapse

Generator input

VEEGAN: Reducing Mode Collapse
in GANs using Implicit Variational Learning

akash.srivastava@ed.ac.uk
University of Edinburgh

Akash Srivastava
L.Valkov@sms.ed.ac.uk
University of Edinburgh

Lazar Valkov

SETUP

RECONSTRUCTION CAN HELP BUT...

Code

crussell@turing.ac.uk
Alan Turing Institute

Chris Russell
Michael.Gutmann@ed.ac.uk
University of Edinburgh

Michael U. Gutmann
csutton@ed.ac.uk

University of Edinburgh
Alan Turing Institute

Charles Sutton

SOLUTION: VEEGAN TRAINING

RESULTS

L

True data distribution

Output of reconstructor

Train to: 1. map true data to Gaussian F✓

Then it can help detect mode collapse:

VEEGAN: A Variational Encoder Enhancement to Generative Adversarial Nets

2. approximately invert the generator



VEEGAN: Autoencoding NoiseVEEGAN: Reducing Mode Collapse
in GANs using Implicit Variational Learning

akash.srivastava@ed.ac.uk
University of Edinburgh

Akash Srivastava
L.Valkov@sms.ed.ac.uk
University of Edinburgh

Lazar Valkov

SETUP

RECONSTRUCTION CAN HELP BUT...

Code

crussell@turing.ac.uk
Alan Turing Institute

Chris Russell
Michael.Gutmann@ed.ac.uk
University of Edinburgh

Michael U. Gutmann
csutton@ed.ac.uk

University of Edinburgh
Alan Turing Institute

Charles Sutton

SOLUTION: VEEGAN TRAINING

RESULTS

L

Alternate:

VEEGAN: Reducing Mode Collapse
in GANs using Implicit Variational Learning

akash.srivastava@ed.ac.uk
University of Edinburgh

Akash Srivastava
L.Valkov@sms.ed.ac.uk
University of Edinburgh

Lazar Valkov

SETUP

RECONSTRUCTION CAN HELP BUT...

Code

crussell@turing.ac.uk
Alan Turing Institute

Chris Russell
Michael.Gutmann@ed.ac.uk
University of Edinburgh

Michael U. Gutmann
csutton@ed.ac.uk

University of Edinburgh
Alan Turing Institute

Charles Sutton

SOLUTION: VEEGAN TRAINING

RESULTS

L

Train discriminator

Train generator and reconstructor

where all expectations are taken with respect to the joint distribution p0(z)q�(x|z). The function d114

denotes a loss function in representation space RK , such as `2 loss. The third term in (3) is then an115

autoencoder in representation space. To make this link explicit, we expand the expectation, assuming116

that we choose d to be `2 loss. This yields E [d(z, F✓(x))] =
R
p0(z)kz � F✓(G�(z))k2 dz. We117

can therefore interpret the third term of (3) as a regularization term that attempts to minimize the118

reconstruction error of an autoencoder on z. Unlike a standard autoencoder, however, rather than119

taking a data item as input and attempting to reconstruct it, we autoencode a representation vector.120

This makes a substantial difference in the interpretation and performance of the method, as we discuss121

in Section 4. For example, notice that we do not include a regularization weight on the autoencoder122

term in (3), because Proposition 1 below says that this is not needed to recover the data distribution123

without one. We thus did not include a regularization weight in our experiments.124

Rather than minimizing the intractable cross entropy H(Z,F✓(X)), our goal in VEEGAN is to125

minimize the upper bound O with respect to � and ✓. Indeed, if the networks F✓ and G� are126

sufficiently powerful, then if we succeed in globally minimizing O, we can guarantee that q� recovers127

the true data distribution. This statement is formalized in the following proposition.128

Proposition 1. Suppose that there exist parameters ✓
⇤
, �

⇤
such that O(�⇤

, ✓
⇤) = H[p0], where H129

denotes Shannon entropy. Then (�⇤
, ✓

⇤) minimizes O, and further130

p✓⇤(z) :=

Z
p✓⇤(z|x)p(x) dx = p0(z), and q�⇤(x) :=

Z
q�⇤(x|z)p0(z) dz = p(x).

Because neural networks are universal approximators, the conditions in the proposition can be131

achieved when the networks G and F are sufficiently powerful.132

3.2 Learning with Implicit Probability Distributions133

This subsection describes how to approximate O when we have implicit representations for q� and p✓134

rather than explicit densities. In this case, we cannot optimize O directly, because the KL divergence135

in (3) depends on a density ratio which is unknown, both because q� is implicit and also because p(x)136

is unknown. Following [4, 5], we estimate this ratio using a discriminator network D!(x, z) which137

we will train to encourage138

D!(z, x) = log
q�(x|z)p0(z)

p✓(z|x)p(x)
. (4)

For clarity, we suppress the dependency of D! on ✓ and � in the notation, although we always take139

this dependency into account in the algorithm. This will allow us to estimate O as140

Ô(!, �, ✓) =
1

N

NX

i=1

D!(z
i
, x

i
g) +

1

N

NX

i=1

d(zi, xi
g), (5)

where (zi, xi
g) ⇠ p0(z)q�(x|z). We use an auxiliary objective function to estimate !. In principle,141

any method for density ratio estimation could be used here, for example, see [8, 20]. In this work, we142

will use the logistic regression loss, much as in other methods for deep adversarial training, such as143

GANs [6] and noise contrastive estimation [7]. We will train D! to distinguish samples from the144

joint distribution q�(x|z)p0(z) from p✓(z|x)p(x). The objective function for this is145

OLR(!, �, ✓) = �E� [log (� (D!(z, x)))]� E✓ [log (1� � (D!(z, x)))] , (6)
where E� denotes expectation with respect to the joint distribution q�(x|z)p0(x) and E✓ with146

respect to p✓(z|x)p(x). We write ÔLR to indicate the Monte Carlo estimate of OLR. Our learning147

algorithm optimizes this pair of equations with respect to �,!, ✓ using stochastic gradient descent.148

In particular, we simultaneously minimize min! ÔLR(!, �, ✓) and min✓,� Ô(!, �, ✓). This training149

procedure is described in Algorithm 1. When this procedure converges, we will have that !⇤ =150

argmin! OLR(!, �⇤
, ✓

⇤), which means that D!⇤ has converged to the likelihood ratio (4). Therefore151

(�⇤
, ✓

⇤) have also converged to a minimum of O.152

4 Relationships to Other Methods153

An enormous amount of attention has been devoted recently to improved methods for GAN training,154

and we compare ourselves to the most closely related work in detail.155

4

Much less susceptible to 
mode collapse than other 
competing methods
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Celebrity faces



Examples of generated images

plausible images. Across the methods, we see in Figure 3 that VEEGAN captures small details, such272

as the face of the poodle, that other methods miss.273

Figure 2: Density plots of the true data and generator distributions from different GAN methods
trained on mixtures of Gaussians arrange in a ring (top) or a grid (bottom).

(a) True Data (b) GAN (c) ALI (d) Unrolled (e) VEEGAN

(f) True Data (g) GAN (h) ALI (i) Unrolled (j) VEEGAN

Figure 3: Sample images from GANs trained on CIFAR-10. Best viewed magnified on screen.]

(a) Nearest generated samples to real images from CIFAR 10. In
each of the two panels, the first column are real images, followed
by the nearest images from DCGAN, ALI, Unrolled and VEEGAN
respectively.

(b) Random samples from generator of
VEEGAN trained on CIFAR-10.

6 Conclusion274

We have presented VEEGAN, a new training principle for GANs that combines a KL divergence in275

the joint space of representation and data points with an autoencoder over the representation space,276

motivated by a variational argument. Experimental results on synthetic data and real images show277

that our approach is much more effective than several state-of-the art GAN methods at avoiding mode278

collapse while still generating good quality samples.279
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Continuous Representations 
of Symbolic Expressions

[Allamanis, Chanthirasegaran, Kohli, and Sutton, ICML 2017]http://bit.ly/sutton-dllc



Can vectors help symbols?

semVecs

How much symbolic semantics (semantic equivalence) 
  can we compress into continuous vector?
In this work: semantics = equivalence 

Want similar continuous vectors —> logically equivalent



Potential Uses

Theorem Proving

Program Synthesis

Transfer Learning

Inductive Logic Programming

a _ (b =) c)

a _ ¬b _ c

Logical expressions Continuous vectors (semVecs)

Symbolic reasoning: search pattern recognition

[DeepMath: Irving et al, 2016] [Zaremba et al, 2014]

[Rocktaschel and Riedel, 2016] [Rocktaschel and Riedel, arXiv 1705.11040 2017]

[Gulwani et al, CACM 2015]



Desiderata

(a+b) * (a*a - b*b) (a+b) * ( (a + b) * (a - b) )

(a+b) (a*a - b*b) (a+b) (a + b) * (a - b)

Syntax directed: Semantics is compositional 

Not too much: Small syntax change —> big semantics
“man bites dog” problem



a _ (b =) c) Architecture

“equivalence 
class 33”

Training

Testing

Partition training expressions into equivalence classes

semVec
Linear + 
Softmax

Use a supervised max-margin loss

a _ (b =) c)

a _ ¬b _ c

Computing semVecs

Use a semVec similarity only. Allows zero-shot learning on equiv classes.

Allows zero-shot learning on equivalence classes.

distance yes, 
equivalent



Recursive NN (TreeNN)

[Socher et al, 2011, 2013]

4

2

5

3

1

COMBINE

COMBINE

Syntax tree Network architecture

Problem: Representations mostly syntactic. Too much syntax!



EqNet

4

2

5

3

1

COMBINE

COMBINE

Start with TreeNNs

Add:

Moar! Layers!

COMBINE

Normalization Subexpression AE

k·k2



Layers and Normalization

COMBINE

For one syntactic parent-child 

Parent semVec

Child semVecs

skip connection

Combine (rc0 , . . . , rck , ⌧p)

l̄0  [rc0 , . . . , rck ]
l̄1  �

�
Wi,⌧p · l̄0

�

l̄out  Wo0,⌧p · l̄0 +Wo1,⌧p · l̄1
return l̄out/

��l̄out
��
2

Big impact.
(Turns out you need both residual and normalisation together) 



SubexprAE: Motivation

Semantic information is bidirectional
Not only do children provide info re parents 

But parents provide info re children 

uncle(?B,?A) :- parent(?Z,?A), brother(?Z,?B). 

Unification propagates this info automatically
How to map to continuous space?



SubexprAE Motivation

(a+b) * (a*a - b*b) (a+b) * ( (a + b) * (a - b) )

(a+b) (a*a - b*b) (a+b) (a + b) * (a - b)

ensure this prediction problem is “easy”
semantic classes will be clustered together



Subexpression Autoencoder

Denoising autoencoder 
plus bottleneck on 
(parent, child1, child2) 
semVecs

For every node in syntax tree, add regularisation

Bottleneck Abstraction
Denoising Reversibility

Intention is



Evaluation



Training / Test Split

Eq Class 1

Eq Class 4

Eq Class 3

Eq Class 2

Eq Class 6

Eq Class 7

Eq Class 8

Eq Class 5

UnseenEqClass Testset

20%

20%

SeenEqClass Testset



Evaluation Metric

Precision 
and recall

Ranked list

query point

k-nearest 
neighbors

semantic space

Same equivalence class to query 
Different equivalence class to query

(by distance to query)



Seen equivalence classes
Equivalent expressions to the queries were in training set

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

tf-idf
GRU
StackRNN

TreeNN-1Layer
TreeNN-2Layer
EqNet



Unseen equivalence classes
Zero shot learning. No training examples of equivalent expressions.

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

tf-idf
GRU
StackRNN

TreeNN-1Layer
TreeNN-2Layer
EqNet

EqNet performance on seen and unseen is similar!



Learned compositionality?
SeenEqClass Testset UnseenEqClass Testset

Test on deeper trees 
than in training

e.g. train depth <= 5 
       test depth <= 8



Visualizing polynomials
multivariatePolynomial2vec?

PCA visualization of semVecs



Visualizing boolean expression
booleanExpression2vec?

PCA visualization of semVecs

a ^ (b _ c)

¬(a ^ c)

a _ (b ^ c)

¬(a ^ (b ^ c))

¬(a _ b)

a _ c

ba ^ b

¬(a ^ (b _ c))

¬(a _ c)

a _ (b _ c)

c

a ^ c

¬(b ^ c)

¬(a _ (b _ c))

¬(a ^ b)

¬a

¬(b _ c)
¬(a _ (b ^ c))

¬b

¬c

b ^ c

a

a _ b

a ^ (b ^ c)

b _ c



Synthesis of Differentiable 
Functional Programs for 

Lifelong Learning

[Valkov, Chaudhari, Srivastava, Sutton, and Chaudhuri, 
arXiv 2018]

feedforward_nn_1 (map (convnet_42, split (input)))

Candidate differentiable programs
Synthesizer

!"

Gradient descent

there are two “8”s

Training and validation data
Language 
Operators 
Library functions

http://bit.ly/sutton-dllc



High level transfer

there are two “8”s there is one “toy airplane”

(and why don’t I have two?) 

Task 1 
Count digits

Task 2 
Count toys

Digit 
Recognizer 
(ConvNet)

Digit 
Recognizer 
(ConvNet)

Digit 
Recognizer 
(ConvNet)

Counter (RNN)

Toy 
Recognizer 
(ConvNet)

Toy 
Recognizer 
(ConvNet)

Toy 
Recognizer 
(ConvNet)

Counter (RNN)

Reusing early layers not sufficient!
[Hinton & Salakhutdinov, 2006; Rusu et al 2016]



100 neural architectures, 1 weird trick
Functional programming

Olah: http://colah.github.io/posts/2015-09-NN-Types-FP/

Recurrent neural network

h

x

fold (rnn_1step)

conv (nn_kernel_0) o conv (nn_kernel_1) o … o conv (nn_kernel_D) 

1-layer ConvNet

x

y
y

multiple filters? change this

map (nn_kernel)

o zipWithSelf

Deep ConvNet

conv (nn_kernel_0) 

Attention mechanism

Graph convolutions

softmax o map(attn_network) o fold(rnn_1step)

gconv (nn_kernel_0) 

Combinators preserve 
differentiability

Often point-free 
[Backus, 1978]

Deep feedforward net relu o W_n o relu o … o relu o W_1

http://colah.github.io/posts/2015-09-NN-Types-FP/


Houdini

HOUDINI: Heuristic Optimization for the Ultimate Development of Integrated Neurosymbolic Intelligence

feedforward_nn_1 (map (convnet_42, split (input)))

Candidate differentiable programs
Synthesizer

Synthesis of Differentiable Functional Programs
🎩🐇

Gradient descent

there are two “8”s

Training and validation data
Language 
Operators 
Library functions



Synthesis for Lifelong Learning

feedforward_nn_1 (map (convnet_42, split (input)))

Candidate differentiable programs
Synthesizer

!"

Gradient descent

there are two “8”s

Training and validation data
Language 
Operators 
Library functions Best program

Digit 
Recognizer 
(ConvNet)

Toy 
Recognizer 
(ConvNet)

Street Sign 
Recognizer 
(ConvNet)

Counter (RNN)

Summing (RNN)

List reversal module 

Library

fold(conv (nn_kernel_2) 
      o conv (nn_kernel_1) 
      o conv (nn_kernel_0)) 

nn_kernel_2

nn_kernel_1

nn_kernel_0

Freeze parameters

Learning to count with 10% of the data by high-level transfer 
from another image domain
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