Learning Program Representations: Symbols to Vectors to Semantics

Charles Sutton University of Edinburgh & The Alan Turing Institute

10 December 2016

http://edin.ac/2ggR9uK

The Alan Turing Institute

Source code is a means of human communication

try{
 Node \$name=\$methodInvoc();
 \$BODY\$
}finally{
 \$(Transaction).finish();
}

ConfigurationBuilder.<init> ConfigurationBuilder.setOAuthConsumerKey ConfigurationBuilder.setOAuthConsumerSecret ConfigurationBuilder.build TwitterFactory.<init> TwitterFactory.getInstance

```
try{
   Node $name=$methodInvoc();
   $BODY$
}finally{
   $(Transaction).finish();
}
```


Nonparametric Bayes grammars [FSE 2014] Probabilistic pattern mining [KDD 2016; FSE 2016]

Learning coding conventions [FSE 2014, 2015]

• • • • • • • • • • • • • • • • • • • •					
Further ahead					
 Defining requirements 					
 Architecting 					
 Navigation 					
 Maintenance 					
Optimising performance					
 Testing, verification 					
Refactoring					
Porting					
 Debugging 					

Neural networks that capture program semantics

Why not solved?

- 1. Domain connections
- 2. Typical programs

Learning to Name

```
if (DEBUG) assert n >= 0;
int r = 0;
while (n >= MIN_MERGE) {
    r |= (n & 1);
    n >>= 1;
}
return n + r;
```

[Allamanis, Peng, and Sutton ICML 2016]

```
http://edin.ac/2ggR9uK
```

Predicting Names of Methods

RNN for generating summary

convolutional attention mechanism

[Allamanis, Peng, and Sutton ICML 2016]

Three Attention Mechanisms

- α : Distribution over input locations
 - Weights for averaging input embeddings
- κ : Distribution over input locations
- Weights for copying tokens from input to output (even OOV)
 - Related to pointer networks [Vinyals et al, 2015]
- λ: Scalar [0, 1]
 - weight to decide two mechanisms

	F1 (%)		Exact M	Exact Match (%)	
	Rank 1	Rank 5	Rank 1	Rank 5	
tf-idf	40.0	52.1	24.3	29.3	
Standard Attention	33.6	45.2	17.4	24.9	
conv_attention	43.6	57.7	20.6	29.8	
copy_attention	44.7	59.6	23.5	33.7	

Standard attention: [Bahdanau, Cho, and Bengio, 2015]

Continuous Semantics for Symbolic Expressions

[Allamanis, Chanthirasegaran Kohli, and Sutton, 2017]

Hothimuchksymbolicticematicities (atomentic equivalence) Assume compressint actinuous vector?

Symbolic reasoning: search pattern recognition

Recursive NN (TreeNN)

[Socher et al, 2011, 2013]

Problem: Separating out syntax

semantically equivalent, different vectors!

Result: nearest neighbours mostly reflect syntax

EqNet

Motivation via Unification

Semantic information is bidirectional

Not only do children provide info re parents

But parents provide info re children

uncle(?A,?B) :- parent(?A,?Z), brother(?Z,?B)

Unification propagates this info automatically

How to map to continuous space?

Subexpression Forcing

ensure this prediction problem is "easy" semantic classes will be clustered together

Subexpression Forcing

Denoising autoencoder plus bottleneck on (parent, child1, child2) representations (Additional regulariser)

Visualizing polynomials

Evaluation

Dataset	# Vars	# Equiv Classes	# Exprs	Η
SIMPBOOL8	3	120	39,048	5.6
$SIMPBOOL10^{S}$	3	191	26,304	7.2
BOOL5	3	95	1,239	5.6
BOOL8	3	232	257,784	6.2
$BOOL10^S$	10	256	51,299	8.0
SIMPBOOLL5	10	1,342	10,050	9.9
BOOLL5	10	7,312	36,050	11.8
SIMPPOLY5	3	47	237	5.0
SIMPPOLY8	3	104	3,477	5.8
SIMPPOLY10	3	195	57,909	6.3
ONEV-POLY10	1	83	1,291	5.4
ONEV-POLY13	1	677	107,725	7.1
POLY5	3	150	516	6.7
POLY8	3	1,102	11,451	9.0

Training / Test Split

Evaluation Metric

$$score_k(q) = \frac{|\mathbb{N}_k(q) \cap c|}{\min(k, |c|)}$$

Results

Evaluating compositionality

http://edin.ac/2ggR9uK

EqNet

Learning Program Representations: Symbols to Vectors to Semantics Charles Sutton, University of Edinburgh

Microsoft^{*}

Research

Equivalence networks for continuous semantics

Thanks!

- Miltiadis Allamanis
- Hao Peng
- Pushmeet Kohli
- Pankajan Chantirasagaran

Naming methods convolutional attention