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Why write programs?
• Want to know if your idea actually works!  

• Typical case rather than worst case 

• Especially true for “hard fields” 

• Artificial intelligence:  All interesting 
problems 

• Compilers / Program analysis: Most 
problems Turing-complete 

• Machine learning: No free lunch theorem 

• You don’t really understand an algorithm 
unless you can code it 

• Feedback from error analysis drives new ideas



Theorists should program, too

Implementing your own algorithm is a good 
way of checking your work. If you aren't 
implementing your algorithm, arguably you're 
skipping a key step in checking your results.  

--Michael Mitzenmacher 
http://mybiasedcoin.blogspot.com/2008/11/bugs.html

But don’t listen to me (I’m not a theorist):

Also, avoid attempting to prove false 
statements!

http://mybiasedcoin.blogspot.com/2008/11/bugs.html


Software Engineering

• Software engineering is a rich area of 
research 

• Commercial software development is 

• Expensive 

• Error-prone 

• Unpredictable 

• Incredibly important 

• Many high-profile software failures, often 
caused by small looking bugs



Methodology
• Much (not all) SE research focuses on 

methodology 

• Requirements 

• Architecture 

• Design 

• Code 

• The first three all have a documents attached. 
The code is expected to be heavily 
documented.



Why all this work?
• Customers do not know requirements initially 

• Requirements change rapidly 

• It is essential but often very hard to 
understand the domain 

• Teams contain dozens or hundreds of 
developers, worldwide, over many years 

• High turnover of software developers 

• Documentation needed to avoid argument. 

• Most of the cost is in maintenance

[adapted from Perdita Stevens]



Extreme Programming

• A reaction to the high overhead, bureaucracy 
of traditional approach (all those documents) 

•  Idea is to be agile 

• Do the simplest thing that will work 

• Test-driven development 

• Unit tests 

• Pair programming 

• Focus on refactoring 

• Emphasis on quickly getting running code



Extreme Programming

• However, researchers lack the resources to do this all 
the way   

• Some ideas useful to pull out (unit tests definitely, 
refactoring sometimes) 

More info:

http://xprogramming.com/

Books by Kent Beck, Martin Fowler 

http://xprogramming.com


These measures try to ensure product quality.
When you are a researcher, it is different:

The software is not your product

Your product is knowledge
• New algorithms 
• New theorems 
• New empirical characterization 

of existing algorithms



4 Principles of Research Code

1.Your code is a means to an end.

Don’t really throw it away. 
Disk is cheap; save everything.

Once the paper is done, you will throw it away.



4 Principles of Research Code

2. Unless you succeed. 
Then everyone will want to try out your stuff.

Success is a pain in the a@#!

If you are lucky, 
you will start getting emails from  
(PhD students of) famous professors. 



4 Principles of Research Code

3. You need to be able to trust your results. 

You do not want to find a bug in your 
baselines after you publish!



4 Principles of Research Code

4. You need a bespoke set of tools.

Invent as little as possible (but no less!)

This is true both in your code and in your 
intellectual work.

N.B. All of these principles contradict each other. 
Welcome to the real world!



Corollaries

• These principles should guide you in writing 
code for your research 

• Except that they contradict each other 

• So let’s see how the principles are reflected in 
real-world practice



Code is a means to an end
• Optimize for your time 

• Except when your research requires your 
code to be efficient (this happens) 

• Efficient code can be competitive advantage 

• Think of documentation as notes to yourself 

• Push as much as documentation as 
possible into identifier names 

• Always ask why you are writing the code... 
How will this fit into the eventual paper



Code is a means to an end
• Do not think that you know now where you will 

end up 

• Optimize also for flexibility 

• The only design pattern that I like is the 
strategy pattern 

• Wherever possible, think about where you 
might want to be clever later 

• Design for your later cleverness 

• You care about bugs that affect your 
experimental results, not really about other 
bugs



Unless you succeed

• Commit to reproduceable research 

• Bench scientists have a lab notebook 

• You need the equivalent 

• You must use version control!  

• Organization of files, directories 

• “Connect” your code to the figures in the paper



Version Control
• Many examples: RCS, SCCS, CVS, SVN, hg, 

git, arch 

• For new projects you should use at least 
Subversion, consider the distributed system 
(e.g., hg, git) 

• I version control everything that I care about 

• My code, my research publications, my 
personal bib file, my Web site 

• If you ran an experiment on May 13 that you 
need to reproduce two years later, reproduce 
that exact state



Version Control

• Every file that is 

• Text 

• Related to your research 

• Cannot be reproduced automatically 

• ...should be under version control 

• To do otherwise is courting disaster



Keep track of parameters
• Your experiments will have many parameters 

to tune 

• Which schedule algorithm you used 

• Max queue size 

• Which heuristics for X, Y, Z 

• Learning rate 

• Make these parameters of the “experiment 
running scripts” 

• Keep track of them in an organized way



Connecting your paper to your results 
directories

• Bench scientists have a lab notebook. You need something similar 

• You need a system where 

• if you open up your paper file a year later 

• you will know how to rerun all the code needed for Figure 3 

• Key idea: Generate figures automatically via script 

• Then you just need a map Figure => script file 

• Could use text file 

• Comments in LateX code  

• Also need the version of your code  

• Keep tarball 

• Use version control



Example System
To start an experiment, run a shell script

sh scripts/test-tiny-heuristic.sh

This script contains the parameters of the experiment:

scripts/test-tiny-heuristic.sh

DIR=results/tiny-heuristic/airlockF/al2.7/
java uk.ac.ed.inf.csutton.HalMain \
  --open-airlock FALSE \
  --alpha 2.7 \
  --output-dir $DIR



Automating your driver 
script

• Lots of times you will need to run a “parameter 
sweep” 

• Helpful to have a “driver script” that runs through 
the parameter grid 

• Interacts well with grid/cloud computing: Run 
every parameter setting in parallel



Principles of experiment 
running scripts

• 1. Automate as much as possible 

• 2. Record as much as possible 

• Text files are your friend! 

• Some of my fancy systems friends use 
databases 

• Makefile’s are good for recording 
preprocessing steps 

• (use the filesystem to keep records for you) 

• Another possibility (haven’t tried it): http://
neuralensemble.org/trac/sumatra

http://neuralensemble.org/trac/sumatra
http://neuralensemble.org/trac/sumatra


hg/ 
  projects/ 
        qneta/ 
           papers/ 
               nips10/ 
               icml11/ 
           experiments/ 
               synthetic-expt/ 
                     code/ 
                     scripts/ 
               real-data-expt/ 
           results/ 
               synthetic-expt/ 
                  graphs/ 
               real-data-expt/ 
                  graphs/



Notes about dir structure
• Typically for me a “project” is a paper or two 

worth of work. (May take more than one 
submission.) 

• Never quite sure where to put the results/ 
directory. Parallel to experiment dir? 
Underneath? Outside of hg altogether 

• Important: Everything in results/ automatically 
generated 

• code/ ==> implementation of the algorithms 

• scripts/ ==> stuff that only matters for the 
experiments I happened to run



Notes

• There are other ways to do this 

• I can never decide myself what’s best 

• The principle is: 

• If a year from now you look at the results file 
alone you can tell: 

• What code you used to generate it 

• With what parameters



Trust your results

• Unit tests are great 

• Test a small part of your code 

• The test code itself checks success, not 
human 

• They should be fast to run, so you can run 
them after every major change  

• Nip regression in the bud



Testing is hard

• Testing and debugging research code can 
require ingenuity 

• Often your algorithm is heuristic or 
approximate 

• If you expect it to fail 10% of the time, how 
can you be sure it’s correct? 

• Especially true in machine learning, etc



Creative testing
• Look for special cases 

• Maybe if you set alpha = 0, your method 
reduces to a simpler one 

• Special case on which your approximation is 
exact? e.g., Beam search on small state 
space 

• There’s more than one way to do it 

• e.g., Check different approximation 
algorithms against each other



Bespoke tools

OS, Standard library, etc

Domain frameworks: BLAS, Matlab, R, etc.

Your personal shared code

Research area A Research area B

Experiment
1

Experiment
2

Experiment
3

Experiment
4



Making a toolkit

• TinyOS http://www.tinyos.net/ 
• Jikes (research Java compiler) http://

jikes.sourceforge.net/ 
• SVMlight http://svmlight.joachims.org/ 

(machine learning) 
• Festival (speech synthesis) http://

www.cstr.ed.ac.uk/projects/festival/ 
• Moses (machine translation) http://

www.statmt.org/moses/

Many times you see researchers making 
software that many people use.  A few examples:

http://www.tinyos.net/
http://jikes.sourceforge.net/
http://jikes.sourceforge.net/
http://svmlight.joachims.org/
http://www.cstr.ed.ac.uk/projects/festival/
http://www.cstr.ed.ac.uk/projects/festival/
http://www.statmt.org/moses/
http://www.statmt.org/moses/


Making a toolkit

• People more likely to use your ideas if they 
don’t have to implement them 

• Shared infrastructure: you can try ideas 
quickly 

• Other people can add components which you 
then use 

• Fame

Why would you do this?  Seems to violate 
every principle so far.

In any case, this is calculated risk.



Summary

• Remember the four principles 

• Your code is an investment of your time 

• Too little: Can’t trust results, Can’t reproduce 

• Too much: You try too few new ideas 

• Writing efficient code can give you a 
competitive advantage as a researcher 

• Good luck finding the balance!


