Interface Implementation

HCI Lecture 11

David Aspinall

Informatics, University of Edinburgh

26th October 2007

Outline

Overview

Software Engineering
Usability Engineering
Explaining Design

Implementation Support
Windowing systems
Application architectures
Multi-threading

Outline

Overview

Focus on Implementation

(o

» HCl in the software process:

Usability Engineering and Design Rationale
» Programming interfaces:

Implementation Support

Outline

Software Engineering

HCI in Software Engineering

Requirements

specification
Architectural
‘ design

Operation and
maintenance

waterfall model with feedback

HCI in Software Engineering

Requirements

specification
Architectural
design

Operation and
maintenance

waterfall model with feedback

» traditional process
models require
modification. ..

HCI in Software Engineering

» traditional process
models require
modification. ..

» user participation

» during design
» during evaluation

Requirements

specification
Architectural
design

Operation and
maintenance

waterfall model with feedback

HCI in Software Engineering

» traditional process
models require
modification. ..

» user participation

» during design
» during evaluation
» usability evaluation

Requirements

specification
Architectural
design

Operation and
maintenance

waterfall model with feedback

HCI in Software Engineering

» traditional process
models require
modification. ..

» user participation

» during design
» during evaluation
» usability evaluation

» should design
interface early, not
as a bolt-on!

» — Ul in process

Requirements

specification
Architectural
design

Operation and
maintenance

waterfall model with feedback

HCl-oriented processes

» Lauesen and Harning (2001) describe a process
called Virtual Windows which connects tasks, data
models and Ul design.

HCl-oriented processes

» Lauesen and Harning (2001) describe a process
called Virtual Windows which connects tasks, data
models and Ul design.

System User
Data functions actions
| Data model Task descriptions |

Virtual windows

Visible Semantic Use
to user functions cases |
-

[Pagepan —1 v
9¢€ p functions

i
t\gﬂsg Function
presentation

§ == === === -

]
Usabili
——

Outline

Usability Engineering

Usability Engineering

» Ultimate usability test: measure user experience

Usability Engineering

v

Ultimate usability test: measure user experience

Usability measures made explicit as requirements
Usability specification:

» usability attribute/principle

» measuring concept

» measuring method

» now level/ worst case/ planned level/ best case

Cf. ISO 9241 metrics in Lecture 10

v

v

v

Usability Engineering

v

Ultimate usability test: measure user experience

Usability measures made explicit as requirements
Usability specification:

» usability attribute/principle

» measuring concept

» measuring method

» now level/ worst case/ planned level/ best case

Cf. ISO 9241 metrics in Lecture 10

Problems:

» usability spec requires level of detail that may not
be possible early in design

» satisfying a usability specification does not
necessarily satisfy usability

v

v

v

v

Usability specification for a VCR

Attribute: Backward recoverability

Measuring concept:

Measuring method:

Now level:

Worst case:

Planned level:

Best case:

Undo an erroneous
programming sequence
Number of explicit user
actions to undo current
program

No current product allows
such an undo

As many actions as it
takes to program-in
mistake

A maximum of two
explicit user actions

One explicit cancel action

<

Outline

Explaining Design

Design Rationale

» Design rationale is information that explains why
a computer system is the way it is.
» Benefits of design rationale
» communication throughout life cycle
reuse of design knowledge across products
enforces design discipline
presents arguments for design trade-offs
organizes potentially large design space
capturing contextual information
» Types of DR:
» Process-oriented preserves order of deliberation
and decision-making
» Structure-oriented emphasizes post hoc
structuring of considered design alternatives
» Examples:
» Issue-based information system (IBIS)

» Design space analysis
» Psychological design rationale

v VY vV VY VY

Issue-based Information System

» Process-oriented; main elements are:

» jssues: hierarchical structure with root
» positions: potential resolutions
» arguments: modify relationship between above

Spec%

Sub-issue /

. supports
Posmon ——— Argument
responds to
Issue
responds to

i objects to
Position +«——2==2

Argument

generalizes

questions

Sub-issue

Ny
Sub-issue

-
D

Design Space Analysis

» Structure-oriented: QOC hierarchy

» questions: major issues of a design
» options: alternative answers
» criteria: means to assess options

- Criterion

Option G

Question = Criterion

Option = . Criterion

: Cdnsequent
R < Question <

Psychological Design Rationale

» Supports the task-artefact cycle in which user
tasks are affected by the systems they use

Psychological Design Rationale

» Supports the task-artefact cycle in which user
tasks are affected by the systems they use

» Consequences of design for users made explicit
» Method:
» designers identify tasks system will support

» scenarios are suggested to test task
» users are observed on system

Psychological Design Rationale

v

Supports the task-artefact cycle in which user
tasks are affected by the systems they use
Consequences of design for users made explicit
Method:

» designers identify tasks system will support
» scenarios are suggested to test task
» users are observed on system

Psychological claims of system made explicit
Negative aspects used to improve next iteration

v

v

v

v

Outline

Implementation Support
Windowing systems
Application architectures
Multi-threading

Programming the Interface

» How does HCI affect the programmer?
» Advances in coding have elevated programming
» hardware specific = interaction-technique specific

Programming the Interface

» How does HCI affect the programmer?
» Advances in coding have elevated programming

» hardware specific = interaction-technique specific
» Layers of development tools

» windowing systems
» interaction toolkits
» user interface management systems (UIMS)

Programming the Interface

» How does HCI affect the programmer?
» Advances in coding have elevated programming

» hardware specific = interaction-technique specific
Layers of development tools

» windowing systems

» interaction toolkits

» user interface management systems (UIMS)
Application architectures

» Model-View-Controller (MVC)
» Presentation-Abstraction-Control (PAC)

v

v

Programming the Interface

» How does HCI affect the programmer?
» Advances in coding have elevated programming

» hardware specific = interaction-technique specific
Layers of development tools

» windowing systems

» interaction toolkits
» user interface management systems (UIMS)

Application architectures

» Model-View-Controller (MVC)
» Presentation-Abstraction-Control (PAC)

Body of programming techniques
» concurrency management

v

v

v

Windowing systems

» Role: mediate between devices and applications
» “multiplex” I/O devices to allow multiple
applications
» device indepedence on top of imaging model

Windowing systems

» Role: mediate between devices and applications
» “multiplex” I/O devices to allow multiple
applications
» device indepedence on top of imaging model
» Three possible software architectures:
» each application manages all processes

» everyone worries about synchronization
> reduces portability of applications

» management role within kernel of operating system
» applications tied to operating system
» management role as separate application

» maximum portability
» client-server, e.g. X Windows

Application architecture: read-eval

Client
Application

start

read input

|

process input

Server

| Device

repeat
read- event (nyevent)
case nyevent. type
type_1:
do type 1 processing
type_2:
do type 2 processing

type_n:
do type n processing
end case
end repeat

Application architecture: notification based

void mai n(String[] args) {

}

int nySave(Event e) {

}

int nyQuit(Event e) {

}

Menu

nenu = new Menu();

. setOption(“Save”);
.setOption(“Quit”);

. setActi on(“Save”, nySave)
.setAction(“Quit”, nyQuit)

Application

start

register
callbacks

with nofifier

| Notifier

¥

call
notifier

read input

/] save the current file

process event

_<| 2 -
=

send to
appropriate
callback

e

/1 close down

allback

request
qu

no

MVC: Model-View-Controller

» MVC highly influential design pattern used in
Smalltalk (1980)

view

U

controller | «—

PAC: Presentation-Abstraction-Control

» Coutaz (1987) introduced PAC, a generalisation of

Graphical specification

» Trend in dialogue control:
» internal control (e.g. read-eval loop)
» external control (e.g. UIMS)
» presentation control (e.g. graphical specification)

Graphical specification

» Trend in dialogue control:
» internal control (e.g. read-eval loop)
» external control (e.g. UIMS)
» presentation control (e.g. graphical specification)

ETD| e

CelsiusConverterGUl java * &

Source | Design | % |_;'|| =" ‘ & &

» coder draws
components

> sets actions with TexiFicld] -jLabell
script or links to
program

> Issues: focus on one
window, hard to “see”
paths through system

» Examples: Visual
Basic, Flash,
DreamWeaver,
NetBeans Interface
Builder

Multi-threading in practice

Multithreaded GUI toolkits seem to be one of the Failed
Dreams [of Computer Science].

Graham Hamilton, Sun VP
http://weblogs. java.net/blog/kgh/archive/2004/10/

» Multi-threading desirable; yet nearly all GUI toolkits
use single-threaded subsystem, e.g. an event
dispatch thread as in Swing. Why?

http://weblogs.java.net/blog/kgh/archive/2004/10/

Multi-threading in practice

Multithreaded GUI toolkits seem to be one of the Failed
Dreams [of Computer Science].
Graham Hamilton, Sun VP
http://weblogs. java.net/blog/kgh/archive/2004/10/

» Multi-threading desirable; yet nearly all GUI toolkits
use single-threaded subsystem, e.g. an event
dispatch thread as in Swing. Why?

» GUI components (visual, e.g. JTable and data, e.qg.
TreeModel) accessed only from event thread.
» A few exceptions, e.g:

» adding and removing listeners
» SwingUtilities.isEventDispatchThread to check
if current thread is event thread

http://weblogs.java.net/blog/kgh/archive/2004/10/

Example Event Listener

import javax.swing.x; import java.awt.event.x;
import java.awt.Color; dimport java.util.Random;

public class ColorButton extends JFrame {
// A button with a listener to change its color
public static void main(String[] args) {
new ColorButton();
}

final Random random = new Random();
final JButton button = new JButton("Change Color");
ColorButton() {
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
button.setBackground(new Color(random.
nextInt()));
}
1)
add(button); pack(); setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Flow of Events

» Simple event listener processes events like this:

mouse action action set
click event listener color

» To use a view and data model (MVC), this:

- X update
mouse action action P
. _— —| ——> | table
click event listener
model
update table
P table
table |=—|. <—— | changed
. listener
view event

» fireXxx methods used to indicate model change
» control stays in event thread

Advanced GUI architectures

» Update presentation from GUI thread:
» SwingUtilities.invokelLater, schedules a task for
execution in the event thread (callable anywhere)
» SwingUtilities.invokeAndWait, schedules task in
event thread and blocks (call from non-GUI thread)
» To keep GUI responsive, handle long-running tasks:
» dispatch separate non-GUI threads to do work (e.q.
using thread pool Executor)
» Need “thread-hopping”:
» non-GUI thread queues GUI events to signal
progress, completion
» GUI thread handles cancellation event to kill
non-GUI thread
» Managing data models:
» shared data model: synchronisation needed
» thread-safe data models: fine-grained concurrency;
versioning
» split data model:. presentation-domain and
application-domain models

References

[4 Joélle Coutaz.
PAC, on object oriented model for dialog design.
In Interact’87, 1987.

[1 Soren Lauesen and Morten Borup Harning.

Virtual windows: Linking user tasks, datamodels, and
interface design.

IEEE Software, pages 67-75, July/August 2001.

See also:
» Dix et al, Chapters 6 and 8.

» Jakob Nielsen’s website for more on Usability
Engineering: http://www.useit.com.

» Java Swing programming resources at http:
//java.sun.com/docs/books/tutorial/uiswing/

http://www.useit.com
http://java.sun.com/docs/books/tutorial/uiswing/
http://java.sun.com/docs/books/tutorial/uiswing/

	Outline
	Overview
	Software Engineering
	Usability Engineering
	Explaining Design
	Implementation Support
	Windowing systems
	Application architectures
	Multi-threading

