
Managing Program Binaries In a
Heterogeneous UNIX Network

Paul Anderson – University of Edinburgh

ABSTRACT
This paper presents some of the techniques adopted in the Computer Science Department at
the University of Edinburgh for providing a consistent user environment across a large
network of heterogeneous workstations. These include system management techniques that
allow non-privileged users to maintain and install network-wide application packages, as well
as software and techniques for automatically distributing and replicating program binaries
across the network.

Background

In a highly distributed network, it is often
desirable to provide a consistent user environment
across all workstations, so that users may move
freely between systems, and the network can evolve
with a minimum of disruption to the service. The
extreme approach is illustrated by Project Athena at
MIT [1] where an identical operating system, includ-
ing the kernel and a large quantity of local software,
is used on all workstations. Whilst this provides a
totally uniform environment and good control over
the available facilities, it is not suitable for many
sites because of the difficulty of supporting this
amount of software, especially where many different
architectures are involved. This is a particular prob-
lem where there is a need to regularly adopt new
and different hardware for technical, financial, or
political reasons.

The system employed in the Computer Science
Department at Edinburgh University, [2] involves a
compromise whereby a minimal base operating sys-
tem, supplied by the hardware vendor, is overlaid
with a standard local environment providing the
higher-level facilities such as the shell, the window
system, the editor, and other applications. 1 Clearly,
this does not provide an absolutely identical environ-
ment across all platforms, but it does allow new
machines to be incorporated quickly and the integra-
tion subsequently improved gradually by porting
more of the standard environment, as necessary.
The manufacturer’s system software and specific
enhancements also remain available (although unsup-
ported) for those who wish to use them.

The other essential component, in providing the
user with a consistent view of the network, is a vir-
tual, network-wide filesystem. Home directories, for
example, are physically located on a server in the
user’s home cluster, but are always referenced as
/home/user and can be accessed from anywhere on
the network. The manufacturer’s implementation of

1The GNU bash shell, MIT X11R4 and GNU emacs.

NFS [3] together with the AMD automounter [4] pro-
vides a basis for such a virtual filesystem that is
portable across many different platforms. The AMD
maps are currently provided via NIS [5] , but it is
likely that these will be converted to Hesiod [6] in
the future, allowing authority for a map to be
delegated to the appropriate cluster. This use of
standard NFS on a wide scale does incur several
penalties, such as the need for a network-wide uid
allocation scheme, and some difficult security issues
which cannot be completely resolved without
modifications to the NFS code itself. DNS [7] and
NIS provide a global namespace for hosts and user-
names.

Some filesystems, such as those containing
home directories, are necessarily stored as a single
live copy (since they need to be writable, and the
traffic is relatively low). Other filesystems, how-
ever, such as the network-wide program binaries,
need to be replicated across several servers, both to
provide resilience against server failure and to distri-
bute the load. The remainder of this paper presents
some techniques that allow these packages to be
maintained by users without superuser privileges,
and system managers to control the distribution and
amount of replication on a per-package basis. The
basic aims are very similar to those of the Depot [8]
framework, but a different filesystem organization,
together with some local programs, provides a more
flexible mechanism for controlling the distribution
and replication of individual packages among
servers.

Packages

Each package is allocated a user-id and all files
belonging to that package are are created with the
appropriate uid. The master distribution of the pack-
age is stored in the home directory, and any group of
people can work on the package by changing their
working uid to that of the package. A modified ver-
sion of su, called nsu, allows users to change the
working uid without supplying a password, providing
that they are members of the the netgroup

LISA V – Sep. 30-Oct. 3, 1991 – San Diego, CA 1

Managing program binaries ... Anderson

nsu_package_name. This allows systems managers
to authorize users, simply by adding them to the
appropriate netgroup in the NIS netgroup map.
Direct logins with package uids are disabled in the
password file, so that the "real" user is always
identifiable. (The conventional approach of using
Unix groups for this purpose was rejected for several
reasons, including limits on the number of groups to
which a user may belong, the need to make all pack-
age files group-writable, and differences in group
semantics between different systems.)

Compiling packages for multiple architectures
is often a problem because the object files created by
a compilation for one architecture may interfere with
those created on another architecture. Unless the
package provides its own mechanism, this is usually
handled by constructing shadow trees (a filesystem
hierarchy identical to the master, but with each file
replaced by a symbolic link to the master copy).
The compilations are performed in the shadow direc-
tory, providing common source files, but separate
object files for each architecture. The shadow trees
are built with the utility program lfu (below) and are
stored on a separate filesystem
(/obj/local/architecture) which, since it contains only
transient files, does not require backup.

On a standalone system, the final object files
would be installed under /usr/local in subdirectories
such as bin, lib, etc., similar to the usual hierarchy
under /usr. Files that are common to all (or several)
architectures, such as manual pages, or fonts, are
stored under /usr/local/share, possibly with a sym-
bolic link from other directories, in a similar way to
/usr/share under SunOS. No files are installed
directly into other directories under /usr, because of
the problems involved in reinstating these files when
the system is upgraded, or a new system is installed
(a practically continuous activity in a large network).

The use of separate uids for each package has
several additional benefits:

� It is easy to locate all the files corresponding to a
certain package by running find with the required
package name on the /usr/local filesystem.

� The system manager can obtain summaries of the
space occupied by each package, using du, or the
local program lfck (see Appendix I) which
checks the filesystem for files with suspect own-
ers, as well as providing a detailed disk usage
summary.

� A regular daemon collects README files from
the home directories of all the packages, append-
ing them together into a single document that
provides a summary of all the packages on the
system. Users can then browse this document
and locate the source (or at least the master dis-
tribution) for any package simply by looking in
the home directory.

� Mail directed to a package account can easily be

forwarded to the user(s) responsible for the
maintenance of the package.

Distribution and replication

The true network situation is more complex
than the simple standalone model presented above,
because servers need to supply binaries for more
than one architecture, and multiple copies of the
binaries need to be distributed among several
servers. The general approach to this problem is to
designate a master server for each package (usually
in the home cluster of the user maintaining the pack-
age) which holds master copies of installed binaries
for that package on all architectures. The slave
servers then run a nightly job to update themselves
from the various masters, and the clients mount
/usr/local from a nearby slave carrying the appropri-
ate architecture. Programs such as rdist [9] are
designed to perform this type of update operation,
but there are several problems which could not be
solved adequately by existing software, and a local
program lfu performs the server updates. Some of
the important features include:

� The copying process should be as faithful as pos-
sible, including ownership and status of all types
of filesystem object. For example, files with
holes can be created by seeking past the end of
the file; when these files are copied by most nor-
mal programs, the holes will be filled, usually
generating a file larger than the source file.

� Given the large volume of software (currently
over 1Gb for a single architecture and the com-
mon shared files), it is not generally possible for
every slave to carry binaries for every package,
so some mechanism is required to load easily
configurable subsets of packages onto slave
servers. However, to maintain a consistent view
of the virtual filesystem, there must be some
mechanism to ensure that files which are not
resident on a particular slave are still accessible
by the same pathnames.

� Slave servers will contain files from more than
one master server, so it is essential that the set of
files from one master server can be updated onto
the slave without disturbing the set of files sup-
plied from the other masters.

� Special actions are likely to be necessary when
certain files are updated. For example, when
replacing the binary for a daemon, it is essential
that the existing binary is not immediately
deleted, since it may be mapped into a running
process. (It may however, be useful to automati-
cally inform the system manager that the process
needs restarting).

� A good log of all updated files is valuable, both
for debugging, and to provide users with a list of
files that have recently changed.

2 LISA V – Sep. 30-Oct. 3, 1991 – San Diego, CA

Anderson Managing program binaries ...

Since a network-wide filesystem is already sup-
ported, this can be used to access the master servers
and no special network code is required in the
update program.

One disadvantage of this nightly "bulk" updat-
ing of slave servers, is that the inconsistent state of
the filesystem during the update could potentially
cause problems for any programs running at the
time. In practice, this has not proved to be a prob-
lem and any programs which are likely to be
affected can be marked for special treatment (see the
example for updating daemon programs below).

The virtual filesystem hierarchy

Ordinary users are normally only concerned
with the /home and /usr/local directories from the
virtual filesystem. /home provides the home direc-
tories and /usr/local provides access to binaries for
all the local packages. Package maintainers install
packages in /export/local which is the master server
for the the current cluster.

A
	

B C

A
	

B C

A
	

B C

A
	

B C

A
	

B C

/export/local/sun4 /export/remote/vlsi/sun4

/disk/local/sun4 /disk/local/sun4

/usr/local /usr/local

Local cluster Remote (vlsi) cluster

Master
server

Slave
�
server

Sun4
�
Client

Copy
�Copy Copy

�

Link

NFS mountNFS mount

Figure 1: Updating servers

The master and slave servers for any particular
cluster are also accessible as /export/remote/cluster
and /usr/remote/cluster. This allows the update
program to retrieve the latest version of a package

from the appropriate master server. Files belonging
to packages that are not carried on a particular slave
server can be replaced by symbolic links to a slave
server in a cluster which does carry the package. In
this way, common packages can be carried by all
servers, but packages that are normally of interest
only to one particular cluster, can be carried on the
slave servers from that cluster only. (although they
are still accessible from everywhere else, under
exactly the same pathnames, because of the sym-
bolic links).

Figure 1 illustrates two clusters, each contain-
ing a master, a slave and one client:

� Package A is maintained on the master server in
cluster A, and is copied onto the slave servers
for both clusters.

� Package C is a specialist package for the users in
the vlsi cluster. It is copied onto the vlsi slave
server, but links are inserted into the local slave
server so that the package is usable from the
client of the local slave. Note that the actual
value of the links will be
/usr/remote/vlsi/sun4/....; the name /disk/local
refers only to the mount point of the disk con-
taining the binaries on the slave server (it is not

LISA V – Sep. 30-Oct. 3, 1991 – San Diego, CA 3

Managing program binaries ... Anderson

part of the network-wide filesystem).
� Package B is a similar specialist package for the

local cluster. When this is referenced from
remote slave, then the full name of the local
cluster would need to be specified in the links.

Notice that all architectures are visible on the
servers, but each client sees only its own architec-
ture under /usr/local, and this view is functionally
identical for every client.

Resilience
It is very important that the interdependence

between machines is clearly defined and controlled;
on a single machine, even links from public pack-
ages into users home directories, for example, could
go unnoticed. In a distributed environment, this
causes complex interdependencies and it is easy to
reach a situation where a single workstation is
dependent on too many servers and will fail when
any one of the servers fails.

In most cases, the automounter is configured to
mount /usr/local from the bootserver of the worksta-
tion, so that the workstation depends only on a sin-
gle server for its basic operation. Where the works-
tation has no bootserver (or where the bootserver
does not carry local binaries), the automounter will
usually choose between several "nearby" (i.e., on the
same wire) servers that carry the binaries for the
appropriate architecture. Files that do not reside on
the local slave are linked to remote slave servers,
where there is also a choice between more than
server. This arrangement has the following proper-
ties:�

A diskless workstation depends only on its
bootserver for the basic operating system and
most of the programs from the local environ-
ment.

� Other workstations can obtain these programs
from more than one server.

� All of the basic local environment, and all appli-
cations which are of particular interest to this
cluster, are provided directly by one of the above
local servers. Other programs are provided from
a remote slave server, although the remoteness is
transparent to the user, and multiple copies are
still available to provide resilience.

� Without the use of disk, or server, "mirroring",
home directories always form a single point of
failure (although on a per-user, rather than a
per-workstation basis). However, in the event of
a server failure, these can normally be brought
online again very quickly by moving disks, or
restoring onto a different machine.

The lfu program

This program is responsible for copying files
from a master server onto a slave server, implement-
ing all of the features mentioned above, such as
replacing certain files with symbolic links to other
servers. In its basic mode of operation, lfu traverses
the hierarchy of the master server in parallel with
the hierarchy of the slave server. Files on the slave
are deleted and/or copied from the master to make
the slave into a faithful copy of the master. This
basic operation can be modified by providing a
script to lfu containing a list of conditions and
actions. The actions are applied to any file match-
ing the conditions, in place of the default action.
For example:

owner=vlsitools {
link;
source=/usr/remote/vlsi;

}

will update all files on the slave server from the
master server, except that files (or directories) owned
by the package vlsitools will be replaced with links
to the corresponding file on one of the servers in the
vlsi cluster (automounted under /usr/remote/vlsi).

The use of ownership to identify the packages
avoids the need to specify large explicit filesets. It
also allows the netgroup mechanism to be used for
specification of package sets. For example, if
server-A updates with

owner=@bfiles {
link;
source=/usr/remote/server-B;

}

and server-B updates with

owner!=@bfiles {
link;
source=/usr/remote/server-A;

}

then, the servers A and B will hold disjoint sets of
packages with all the packages in the netgroup bfiles
being held on the server-B and all other files being
held on server-A. Simply adding a new package to
the netgroup will cause all files belonging to that
package to migrate from one server to another when
the updates run. In practice, multiple servers will be
involved and the package would migrate off all the
servers in one cluster onto the servers in another
cluster.

This provides a powerful mechanism for the
system manager to control the usage of disk space
on the slave servers and the possibility of extending
the facility to provide a cacheing behaviour is
currently being investigated — the following script
would migrate files that had been accessed in the
last two weeks onto the local server and replace less

4 LISA V – Sep. 30-Oct. 3, 1991 – San Diego, CA

Anderson Managing program binaries ...

frequently used files by a link to the copy on a
larger server:

access > 2wks {
link;
source=/usr/remote/mainserver;

}

The following examples show some other
features of the lfu program:

updating daemon programs
If the file daemons contains the names of the

daemon programs, then the script:

path=@daemons {
exec restart $F;
keep;

}

will execute the shell script restart (with the name
of the updated program as a parameter) whenever
one of these programs is updated2. This shell script
could automatically restart the daemon or mail the
system manager to intervene manually. The keep
action indicates that the old version of the program
on the slave server should be renamed, rather than
being deleted, since the text may be mapped into a
running program. (In this example the renamed ver-
sion of the file would be deleted automatically next
time the update runs, since the corresponding master
file would not exist).

Programs that must be owned by root
Some programs need to be owned by root,

perhaps because they need to run "setuid". If such
files exist on the master server, they can be difficult
to identify and can cause problems across NFS if the
root user is mapped onto nobody. The following
script will change the ownership and permissions of
any files specified in rootfiles, as they are copied.
Any files owned by root on the master will generate
an error message and not be copied; this ensures that
the rootfiles are the only root-owned files on the
slave server, providing a useful security check.

path=@rootfiles {
chown root; chmod u+s;

}
else owner=root {
error "Root file on master";

}

2Unfortunately, the stateless nature of NFS normally
makes it impossible to automatically detect files which are
currently in use.

Updating from multiple servers
When a slave server updates from more than

one master server, the files supplied by one of the
masters must not be deleted when updating from the
other. For example, the following script could be
used to update the local slave server of Figure 1
from the local master:

owner=package-C {
ignore;

}

When updating from the remote vlsi master, the fol-
lowing script could be used:

owner=package-A |
owner=package-B {
ignore;

}
else owner=package-C {
link;
source=/usr/remote/vlsi/sun4;

}

Netgroups are particularly useful here to define the
sets of packages supplied by each of the master
servers, and the sets of packages carried by each
slave.

Some difficulties
The following paragraphs illustrate some issues

that have required special attention:

Package Installation
Care is needed when installing packages, since

the binaries must be installed on the master server
(/export/local/), but any references made by the run-
ning programs must be made to files on the current
slave server (/usr/local). Most installation pro-
cedures are not designed to handle this situation, and
it is easy to inadvertently install packages that make
direct references to the master server when they are
running. Such programs will continue to operate,
but this introduces an unwanted dependency between
the client and the master server. It may also intro-
duce an excessive load on the master server. These
dependencies are not always easy to detect; some-
times the automounter can be seen unexpectedly
mounting a directory from the master, or, more usu-
ally, the dependency is only noticed when the master
server is shut down.

Another difficulty for the package maintainer is
the time delay between installing a package onto the
master and having it propagate to the slave, where it
can be tested. For complex installations, a particular
workstation may be configured to reference certain
binaries directly off the master server, so that the
installation can be tested without waiting for changes
to propagate to the slaves3. The state of a particular

3Forcing updates is also possible, but this leaves slave

LISA V – Sep. 30-Oct. 3, 1991 – San Diego, CA 5

Managing program binaries ... Anderson

package can be "frozen" on all the slave servers by
added the package name to a netgroup which is
ignored by the lfu scripts. This is useful when
working on complicated installations or version
updating, to prevent incomplete or inconsistent ins-
tallations being propagated.

Conflicting filenames
With a large number of packages available,

/usr/local/bin, for example, becomes very large and
there is an increasing chance of the same filename
being used by more than one package. Where a
package (such as X11) has a large number of associ-
ated binaries, these are often moved to a subdirec-
tory and arrangements made to include the subdirec-
tory in the user’s path, when appropriate. Normally,
however, if two packages from different master
servers include a file with the same name, the
conflict may not be immediately apparent, although
it should be possible to detect.

Updating multiple slaves
With a large number of slave servers, there can

be a problem with too many slaves attempting
access the same master at the same time. Currently,
this is prevented by having some slave servers
update from other slaves, rather than directly from
the master. This idea could be extended to a hierar-
chy of slaves, which would prevent any one particu-
lar server becoming overloaded.

In a typical update run, 80-90% of the cpu time
(and NFS traffic) generated by lfu is incurred in
scanning the filesystems to locate files which have
been changed. In the case of identical slave servers,
it should be possible for just one of the servers to
perform the scan, and pass on information about the
required updates to the others. This is currently
being investigated.

Conclusions
The techniques described above have evolved

over the past three years on the network within the
Computer Science Department, and have recently
been extended to include clusters belonging to other
small groups. Currently, 200-300 workstations are
supported with three master servers and some tens of
slave servers. Four major architectures are sup-
ported4, and several others are included with a lesser
degree of support.

In practice, the network is continually evolving
and there are always some clusters and individual
machines that are only partially incorporated. Cer-
tain clusters may decide (perhaps for licencing

servers in inconsistent states and can be rather slow.
4Sun SPARC (SunOS), Sun 68000 (SunOS), HP9000

(HP/UX) and DECstation 5000 (Ultrix).

reasons) not to carry a particular package at all, or
not to provide access to a particular group of home
directories (perhaps for security reasons). The abil-
ity to support this degree of flexibility at the same
time as providing a consistent and stable user
environment has been one of the most important
benefits.

The concept of providing a uniform environ-
ment across a heterogeneous network has undoubt-
edly been successful, and is popular with users. The
need to attempt this without modifications to the
hardware vendor’s base operating system has lead to
some obvious visible differences between different
platforms and many difficulties that could have been
avoided by running a completely standard system.
However, a reasonable compromise has been reached
and new hardware can usually be incorporated, with
an acceptable degree of integration, very quickly.

The method adopted for management of
software packages has generally been very success-
ful, on the present scale. System managers are usu-
ally unaware of the detailed changes to individual
packages, but are able to monitor and control the
placement of the binaries very easily, whilst users
are unaware of the underlying services and can use
any software from any workstation.

The success of the current system is leading to
its adoption by other clusters and, although we
expect the basic concepts to scale reasonably well,
the wider scale is expected to emphasize the
difficulties of using standard available software, such
as the vendor’s implementations of NFS. As these
kind of problems become more widespread, we hope
that vendors will begin to incorporate solutions (such
as the kerberos [10] enhancements to NFS) into their
own products.

Acknowledgements
The implementation and evolution of the net-

work would not have been possible without the con-
tinual efforts of all the systems staff in the Computer
Science Department. In particular, Alastair Scobie
and Russ Green, have been actively involved in the
design of many of the concepts discussed above.

Biography
Paul Anderson graduated in Pure Mathematics

from the University of Wales in 1977. He taught
Mathematics and Computer Science at the North
East Wales Institute of Higher Education until 1984
when he became system manager for the Institute,
establishing a new computer centre and software
development team. In 1988 he moved to the Univer-
sity of Edinburgh as Systems Development Manager
with the Laboratory for the Foundations of Computer
Science, where he is currently managing the labora-
tory network and working with other system
managers to improve the integration and

6 LISA V – Sep. 30-Oct. 3, 1991 – San Diego, CA

Anderson Managing program binaries ...

administration of the university networks. Paul can
be reached by mail at the Laboratory for the Founda-
tions of Computer Science; Department of Computer
Science; University of Edinburgh; King’s Buildings;
Edinburgh; EH8 3JZ; U.K. Reach him electronically
at paul@dcs.ed.ac.uk.

References

1. Jennifer G. Steiner and Daniel E. Geer, Network
services in the Athena environment, Project
Athena, Massachusetts Institute of Technology,
Cambridge, MA 02139.

2. Paul Anderson, Installing software on the Com-
puter Science Department network, Department
of Computer Science, University of Edinburgh,
Edinburgh, August 1991.

3. Sun Microsystems, ‘‘Network File System: Ver-
sion 2 protocol specification,’’ in Network pro-
gramming guide, pp. 168-186, Sun Microsystems,
1990.

4. Jan-Simon Pendry, AMD - An automounter,
Department of Computing, Imperial College,
London, May 1990.

5. Sun Microsystems, ‘‘The Network Information
Service,’’ in System and network administration,
pp. 469-511, Sun Microsystems, 1990.

6. Stephen P. Dyer, The Hesiod name server, Pro-
ject Athena, Massachusetts Institute of Technol-
ogy, Cambridge, MA 02139.

7. Sun Microsystems, ‘‘Administering the Domain
name service,’’ in System and network adminis-
tration, pp. 513-554, Sun Microsystems, 1990.

8. Kenneth Mannheimer, Barry A. Warsaw, Stephen
N. Clark, and Walter Rowe, ‘‘The Depot: A
framework for sharing software installation
across organizational and UNIX platform boun-
daries,’’ Proceedings of LISA IV Conference,
1990.

9. Sun Microsystems, ‘‘rdist (1),’’ in SunOS refer-
ence manual, Sun Microsystems, 1990.

10. Jennifer G. Steiner, Clifford Newman, and Jef-
frey Schiller, Kerberos: An Authentication ser-
vice for open network systems, Project Athena,
Massachusetts Institute of Technology, Cam-
bridge, MA 02139.

LISA V – Sep. 30-Oct. 3, 1991 – San Diego, CA 7

Managing program binaries ... Anderson

Appendix I: lfck
The following example shows a fragment of output from the lfck program summarizing the disk usage (by

package, and by architecture) on one of the master servers. The figures in brackets represent the space occupied
by files exported to the slave server, and the main figures represent space occupied on the master server only
(home directory of the package, and compilations under /obj/local). Notice that this is only a section of the real
output, so the row and column totals do not correspond to the figures in the table.

--- |
|

Package share sun3 |
|

sun4 Total Mb
--- |

|

X11 Release 4 24.1 (24.7) 36.8 (29.9) |
|

36.0 (30.2) 615.6
Poplog 139.7 (29.9) 25.2 (28.9) |

|
0.1 (27.1) 297.1

GNU Emacs 185.9 (11.1) 0.1 (11.6) |
|

0.1 (11.0) 251.5
TeX 85.3 (41.5) 22.5 (17.6) |

|
24.4 (13.3) 233.1

InterViews 35.7 (1.7) 9.2 (6.4) |
|

28.8 (18.7) 113.8
GNU C Compiler 30.7 (2.1) 10.3 (2.0) |

|
11.4 (2.0) 110.5

Centaur 52.4 11.4 (14.5) |
|

0.1 (18.7) 96.8
Modula 3 41.2 (0.1) 0.0 |

|
31.8 (12.7) 94.6

__

Generic graphics 7.7 (0.8) 17.0 (15.0) |
|

11.3 (4.2) 89.1
IE Editor 0.1 0.0 |

|
0.0 0.1

Local Admin Data 0.1 0.0 |
|

0.0 0.1
--- |

|

Total Mb 2621.8 (235.2) 288.5 (318.7) |
|
282.2 (370.5) 4742.7

--- |
|

lfck can also detect files which are not owned by a valid package and apply a number of heuristics to sug-
gest the correct owner.

8 LISA V – Sep. 30-Oct. 3, 1991 – San Diego, CA

Anderson Managing program binaries ...

Appendix II: lfu
lfu currently accepts the following conditions and actions:

Conditions:

name=value Matches the name of the file against a regular expression. An explicit list of files can also
be specified.

path=value Matches the pathname of the file against a regular expression. An explicit list of path-
names can also be specified.

owner=value Tests the owner of the file. A netgroup can also be specified.

group=value Tests the group of the file.

type=value Tests the type (mode) of the file.

age[><=]value Tests the age (mtime) of the file.

access[><=]value Tests the last access time of the file.

Actions:

update The default action - update the file if the source is more recent than the destination.

ignore Ignore the file.

delete Delete the file.

preserve Update, if necessary, but do not delete.

chmod mode Change the mode (perms) of the file.

chown owner Change the owner of the file.

chgrp group Change the group of the file.

link Link objects rather than copying.

shadow Copy directories, but link other objects.

source value Specify the source directory for links.

log Log any changes to this file.

logall Log any examination of this file.

error msg Report specified error message.

exec command Execute specified command whenever file is updated.

keep Rename file rather then deleting.

fill Do not attempt to duplicate "holes" in files.

newtime Do not duplicate the mtime when copying files.

force Update files regardless of the file times.

follow Follow symbolic links.

LISA V – Sep. 30-Oct. 3, 1991 – San Diego, CA 9

10 LISA V – Sep. 30-Oct. 3, 1991 – San Diego, CA

