
A KERNEL LANGUAGE FOR ALGEBRAIC SPECIFICATION AND IMPLEMENTATION

-- EXTENDED ABSTRACT* --

Donald Sannelis

Department of Computer Science
University of Edinburgh

Martin Wtrsing

FakoltUt fUr Informatik
Universit~t Passau

Abatrect

A kernel specification language called ASL is presented. ASL comprises five fundamental but powerful specification-

building operations and has a simple semantics. Behavioural abstraction with respect to a set of observable sorts san

be expressed, and (recurstve) parameterisad specifications can be defined using a more powerful and more expres-

sive parameterisation mechanism than usual. A simple notion of implementation permitting vertical and horizontal

composition (i .e. it is transitive and monotonic) is adopted and compared with previous more elaborate notions. A

collection of identities is given which san provide a foundation for the development of programs by transformation.

] I n t r o d u c t i o n

In recent years there has been a great deal of work on developing the algebraic approach to specification of data

types and programs. Guttag [Gut 75] and others began by viewing an abstract data type as a class of

heterogeneous algebras and showing how such a type can be specified by a signature (a collection of sorts and

operators) together with a set of axioms. For quite simple data types (e.g. natural numbers) such an approach can

be used without problems. But it is more convenient to build large algebraic specificaUons in a structured fashion by

combining and modifying smaller specifications. Several specification languages have been developed to support this

structured approach, including Clear [aG 77, 80] (of. [HKR 80]), CIP-L [Bau 81] and LOOK [ZLT 82, ETLZ 82].

Each language provides a certain set of operations for use in building specifications together with a convenient syntax

and a formal semantics.

We describe here (section 3) a kernel language for algebraic specification called ASL (a significantly revised ver-

sion of the ASL in [Wit 82]). This language is nothing more than a collection of five fundamental but powerful

speclflsation-building operations. It has a simple semantics in comparison with high-level specification languages like

Clear, CIP-L and LOOK. ASL is intended mainly as a kernel language rather than for writing specifications. That is,

It provides a solid foundation on top of which high-level specification languages can be built. The semantics of the

constructs of such a language would then be expressed by mapping them into ASL expressions.

ASL differs from previous specification languages in a number of important respects:

- ASL is a language for describing classes of algebras rather than for building sets of axioms (theories) like
moat other specification languages. Some of the operations of ASL (e.g. abstract) cannot be viewed as
simple operations on theories.

- An ASL specification may be loose (i .e. it may possess non-isomorphic models)= Loose specifications are
also allowed by Clear, CIP-L and LOOK but not by some previous approaches (e.g. the initial algebra
proach [ADJ 76, 78]) . Loose specifications can be precise while leaving some freedom of choice (e.g.
to the impiementator).

- ASL is oriented toward a ~ehavioural' approach to specificatmn rather than toward an initial or final algebra
approach. Along with [GGM 76] and others, we argue that it is usually irrelevant how values of a sort
are represented in an algebra as long as the desired input/output relation is satisfied. ASL includes a
very general abstraction operation which can be used to behaviourally abstract from a specifisation, relax-
ing interpretation to those algebras which are behaviourally equivalent to • model. This san be used to
write 'abstract model' specifications as in [LB T7].

*The full version of this paper is available as Report CSR-131-83, Dept. of Computer Science, Univ. of Edinburgh.

4~,4

- The approach to parameterication in ASL (section 5) is more general and flexible than in other languages.
The main difference is that the signature of the result ot applying a parameterised specification may
depend on the signature of the actual parameter in a more flexible way then before. Since parameterised
specifications may be recursive we can write 'abstract domain equations' as in [HR 80] and [EL 81].

Since ASL is a powerful specification language it is possible to adopt a simple notion of the implementation ot one

specification by another (T---~T') which can easily be extended to the case of parameterised specifications. Then the

transitivity of implementations (vertical composition - - if T--~T~ and T'---)T '; then T---~T") follows immediately and

the monotonioity of ASL's operations gives horizontal composition (specification-building operations preserve implemen-

tations, e.g. if P---~P' and A~--~A ' then P(A)~-~P'(N)) , These results permit the development of programs from

ASL specifications in a gradual and modular fashion. A number of more elaborate notions of implementation can be

expressed using ASL, including notions which coincide with or approximate most previously proposed definitions.

An advantage of the kernel language approach is that facts about the basic operations (easy to prove because of

the simple semantics) automatically extend to facts concerning the high-level constructs of any language built on top

of the kernel. Thus the ASL identities and relations given in section 7 extend to identities and relations on any lan-

guage built on top of ASL, These could be used as the basis for a methodology of program development by trans-

formation of specifications.

2 A l g e b r a i c b a c k g r o u n d

In this section the algebraic definitions which will be needed throughout the rest of the paper are presented,

2.1 Signatures

In order to get a clean mathematical semantics of parameterisation with fixed points of recursive parameterised

specifications (see section 5) we need a more elaborate definition of signatures and signature morphisms than the

standard one (as in e,g. [BG 80]), First, we need to fix the set of possible sorts and operators to ensure that the

possible signatures and signature morphisms form sets rather than classes, Then we extend the usual definition of a

signature morphism - - as a total function from one (finite) signature to another - - to a partial function from the

(infinite) set of all sorts and operators into that set, Since we think that signature morphisms should be computable

we require them to be partial recursive functions. Formally:

Fix arbitrary countably infinite sets A of sorts and r of operators.

Def: A signature ~, is a pair <S,n> where SC_./~ is a set (of sorts) and n is a family of subsets of 1 ~ (operators)

indexed by S*XS. The index of a set OEn is the type of every element of O. Let the universal signature T~univ be

<Suniv , l'~univ > where Suniv=A and nuniv is the family (F)usCA.X.A.

D~: A signature morphism O is a pair <f,g> where f:Suniv-~Suniv is a partial recursive function and g is a family of

partial recursive functions gus: (nuniv)us-* (t'~univ)f*(u)f(s)' where uES;ntv , SESuniv and f* S*un.v=*S*un.v is the ex-

tension of f to strings of sorts. We write O:T'- -~" if ~=0-1(T~') (i .e, T_ is the inverse image of T_'). Then

O:~- - -~ ' implies that O1~. (O restricted to the domain ~) is a total function into ~'. Furthermore, we write O(s)

for f (s) and O(¢d) for gus((d), where (~(~l"tus.

Note that infinite signatures are permitted; for examples showing how this could be useful see [Wir 82].

Moreover, the definition of signature permits overloading (i. e. several operators having the same name but different

types) as does the definition in [BG 80].

According to the above definition, a signature morphism O:Z~-~ ' is almost the same as in [BG 80]; the dif-

ference is that a signature morphism (7 can simultaneously be O:~A-~J~' and o : ~ B ~ ~..B' for ~.A~,~B and ~A'~,~.B °.

This difference is important. Signature morphisms are used for renaming the sorts and operators of a specification

(via the derive operation); since it is possible to define signature morphisms which 'make sense' over a range of sig-

natures, we can (for example) write a parameterised specification which systematically renames the sorts and

415

operators of any specification it is given as an actual parameter, which is impossible in Clear, CIP-L, LOOK, or the

ADJ approach to parameterisation [ADJ 76, 80]. This point is discussed at greater length in section 5,

2 .2 ~ b r u

The definitions of a (total) T--algebra A with carriers [A I and of a ~'-homomorphism are as usual, except that the

carrier IAIs is required to be non-empty for every sEsorts(E). The reason for this requirement is that permitting

such degenerate algebras would give rise to problems in later definitions (see the definitions of reachable and -W in

section 2.4) . rhe class of all)".-algebras will be denoted AIg(T-).

Given a T-'-algebra A' and an injective signature morphism O:E~T- ' . we can recover the T--algebra buried inside

A' (since A' is just an extension of this algebra), the definition extends without modification to the case in which O

is not injective, where the E-algebra wilt contain multiple copies of some of the carriers and operations of A',

Def: If O=<f,g> is a signature morphism o : E - > E ' and A' is a T'?-algebra, then the O-restriction of A', written A'IO

is the T--algebra with carrier IAta=lA'lf(s~ for each sEsorts(T-), and O)A=g(bJ)A, for each wEopns(T-). When O is

obvious we sometimes use the notation A'I~

2.3 Terms and the term algebra

T--terms, the translation O(t) of a T--term t by a signature morphism O:T--.~T- ', and the term algebra WT-(X)

are defined as usual. For some choices of ~" and X, WT-(X) will have an empty carrier for some sort sEsorts(T-)

(in this case WT-(X) is not an algebra, strictly speaking). We then say that WE(X) is empty in s. If we have a

T_-term t and an assignment ¢ :X-~ IA I of values in A to variables then the value of t in A under (~ is denoted ~ # (t)

(i .e. ~#:WT~(X)-->A is the unique homomorphism extending ~) .

Def: If T- is a signature then let XT- be a sorts(T~)-indexed set of variables with (XT-)a=~ for each sEsorts(E). If

T- is obvious we will write X instead of XT-. We write Xl, x2, y, a etc. instead of ls, 2 s etc. E(XE) s,

Notation: If Z is an S-indexed set and $ 'CS, then ZS, denotes the restriction of Z to S'. For example, the notation

IwT-(Xs)I s, refers to the (S'-indexed) set of T--terms of sorts in S' containing variables of sorts in S.

2 .4 Properties of algebras end W-equivalence

Def: If A is a T--algebra and SCsorts(E) is a set of sorts, then A is reachable on S if for every sort s~S and every

carrier element aEIAIs there is a term tEIWT-(Xs,)Is and assignment ~:XT---> tAI such that ~#(t)=a, where

S~aorts(T-)-S. Unreachable carrier elements are called Pink. tf an algebra is reachable on ell sorts then it is

finitely generated.

Equivalently, A is reachable on S iff there exists a surjective homomorphism f:WT-(Xs,)--eA.

Def: A E-formula is a first-order equational formula on T-; that is, a formula built from T--terms using = (term

equality), the logical connectives 7 , A, V and ===} and the quantifiers V and 3 . Satisfaction of a T!-formuie e by a

T--algebra A (Al=e) is defined as usual.

In fact, any notion of E-formula will do; we only need to know when a E-formula is satisfied by a T--algebra.

The definition above gives one example of such a notion. 1he semantics of ASL can thus be viewed as

parameterised by the notions of formula and satisfaction. The semantics of Clear [BG 80] is parameterised by an

institution [GB 83] - - i .e. by notions of signature, algebra, formula and satisfaction which must satisfy certain

properties. The semantics of ASL can be made independent of the notion of algebra and (to some extent) of the

notion of signature as well, but the properties which the notions must satisfy are different (see [SW 83] for

details).

Def: If A,A' are)'-algebras and WcIWT-(X) I then A and A' are W*equivelent (A m W A') if there are surjective as-

signments ~:X-->IAI and ~' :X->IA' I such that Vt, t'EW. ((~#(t)=~#(t ') ~ ~ ' # (t)=~ '# (t ')) .

This definition generalises the various notions of behavioural equivalence in the literature. If OBSC_sorts(~] is a

set of observable sorts then two Y~-algebras are considered to be behaviourany equivalent with respect to OBS if all

computations yielding a result of observable sort give the same result in both algebras, There is some disagreement

over which class of inputs to these computations should be considered: IW~(X)JoBs-equivalance (all inputs} is be-

havioural equivalence according to [Rei 81] and [GM 82]; IW~(XoBs)JOl~S-,equivalenoe (inputs of observable sorts)

is behavioural equivalence in the sense of [Sch 82] and [GM 83]; and IW~,(~){OBS-equivatence (no inputs) is the

same as behavioural (or I/O) equivalence in IBM 81] and [Kam 83] (and implied by [GGM 76]) except that in

these three papers only finitely generated algebras are considered, There are other choices for W which yield inter-

esting equivalences; one of these (used to define the junk operation} is given in the next section.

3 The l a n g u a g e ASL and its s e m a n t i c s

ASL is a language for describing classes of algebras, tt contains five constructs, each construct embodying a

primitive operation on classes of algebras. These are:

- Form a ba#io speci f icat ion having a given signature ~ and given axioms E, This specifies the class of all
~--algebras satisfying E,

- Take the sum T+T' of two specifications, specifying the class of algebras obtained by combining a model of
T with a model of T'. This allows large specifications to be built from smaller specifications.

- Restrict interpretation to those models which are reachable on certain sorts, Requiring teachability is the
same as restricting by a certain second-order principle which is equivalent to structural induction,

- Derive a specification from a richer specification by renaming or forgetting some sorts and operators but
otherwise retaining the class of models. This can be used to hide the details of a constructive specifica-
tion to give a more abstract result.

- Abatract away from certain details of the specification, relaxing interpretation to those algebras which are
the same as a model with respect to some observability criterion. With an appropriate observability
criterion this amounts to behavioural abstract ion with respect to a set of observable sorts.

These fundamental and mutually independent operations can be composed to give higher-level operations for build-

ing specifications in a wide variety of ways. ASL is a kernel language which provides a foundation on top of which

high-level specification languages such as Clear, CIP-L and LOOK can be built. The semantics of the specification-

building constructs of these languages can be expressed by mapping them into ASL expressions. A specification lan-

guage has been defined on top of a previous version of AaL [Gau 83] and we have informally redefined the

specification part of CIP-L on top of ASL (see [Wir 82] for the basic idea], We do not intend that ASL itself be

used directly for writing specifications, although in the next section examples are given showing that this is possible.

Expr

Basic-Spec

Sum

Reachable

Derive

Abstract

• := Basic-Spec I Sum I Reachable t Derive I Abstract

: := < signature, set of formulas •

: := Expr + Expr

:: = reachable Expr on set of sorts

: : = derive from Expr by signature morphism

: : = abstract Expr wrt set of terms

No special syntax is provided for signatures, sets, formulas or signature morphisms; the usual mathematical nota-

tion will be used in examples.

Semantics
The semontios of A~L is defined by two functions

$ig: Expr--~ signature

Mod: Expr --> class of algebras

such that for any expression T, Mod~T]] is a class of stg r[T]] -algebras. We use square brackets [] to denote

classes. The definition of Slg below includes context conditions for each construct; if these are not satisfied then the

expression is invalid. It is easy to prove that for any specification T, Mod~[T]] is closed under isomorphism.

417

Sig~<~. ,E>]] = ~.

sigl [T .T '] l = s igl [T]] U s ,g l rT ' l l

SigEreachalNe T on S]] = ,SigET]]

sigl [o~, , t~ from T by 0]] = r.

Sig~abltrast T wrt W']] = Sig~T]]

Mod~[<~,E>]] = [AEAIg(~,) J AI=E]

the operators and sorts used in E are in T

s c sor=(s,g I[r]])

~ :~ : - *s ig [[T]] (r a ~ . that Z : = o - I (s i g E T ~))

w_~twZ~(X)h where T.=Sig~'T]]

Mod~T+T'~ = [AEAIg{Sig~T+T']]) t AISig~T ~ EMod~T]] and AISig~'T,]] EMod~'T']]]

M o d ~ = ~ T o . S]] = C A~Modl]~T]] I A is reachable on S]

ModlTdaM ~m "r by o~ = c A I o I A~MOdlTT]}]

M o d ~ T wrt W]] = [AEAIg(Sig~'T]]} I 3AoEMOd~T]] , (A 0 ~N A)]

The + operation is not quite the same as + in Clear, since no account is taken of shared subspecificetions. This

feature of Clear is designed to make it easy to build specifications without worrying about the names of sorts and

operators. Such high-level features have no place in a kernel language like ASL, The same effect can be achieved

manually by usa of + in conjunction with the derive operation.

The reachable construct restricts interpretation to models which are reashable on the given set of sorts S. It Can

be used to express the data operation in 'hierarchical' Clear laW 82] and the Imsed on construct of CIP-L. The data

operation of 'ordinary' Clear l e g 80] and the conStJrainmg operation of LOOK [ETLZ 82] cannot be fully expressed in

ASL because they restrict to the class of initial models. We do not view this as a disadvantage. In our opinion the

initial algebra approach to specification [ADJ 76] adopted by Clear and LOOK has more problems than advantages;

this view seems to be shared by others, e,g. [GGM 76], [Wand 79] and [Bau 81]. Some of these problems are:

initial models do not always exist for specifications having axioms which include V or 3 ; to prove that an inequality

t~t ' holds, one must in general prove that the equality tat ' is not provable; implementations have unpleasant

properties in the presence of an operation for restricting to initial models [SW 82]; and in the stepwise development

of specifications and programs, the set of constructors for a data type is often fixed at an early stage, whereas the

inequalities satisfied by the type are only established once all design decisions have been made. No power is lost by

abandoning the initial algebra approach [BBTW 81].

The derive operation corresponds to derive in Clear. This already gives a hint of abstraction because it is possible

to construct a specification which employs auxiliary sorts and operators and then use the derive operation to forget

them, retaining only the semantics of the remaining sorts and operators. But this is not real abstraction, because

the structure induced by the auxiliary operators remains (compare the examples List and Impoverlshed-List in the next

section]. The real abstraction is done by the abstract operation which ignores invisible structure (compare the ex-

amplas Impoverished-List and Behavioural-$et). The result of abstracting from T with respect to a set W of visible

terms is the class of algebras which are W-equivalent to a model of T. No similar operation is found in any other

specification language, so far as we are aware.

An interesting use of ibst~mt is to express behavioural abstraction with respect to a set of observable sorts:

beltmdour T wrt OBS =clef ab~rect T ~ ' t IW~-(XoBsHOB s where T~=sig~[T]] and OBSCsorts(~}

(Please note that behaviour is only an abbreviation for a special case of ~=trect; it is not a new operation of ASL. }

This gives the class of all algebras which are behaviourally equivalent (with respect to OBS) to a model of T, usirH 3 a

notion of behavioural equivalence due to [Sch 82] and I'GM 83] (this is the notion which seems to fit most gracefully

with our notion of implementation). This operation can be used to abstract from a concretely-specified input/output

behaviour as in the 'abstract model specifications' of [LB 77]. tt also allows us to adopt a very simple notion of im-

plementation, as discussed in section 6.

Another use of abstract is to express the junk operation;

junk T on S =def abstract T wrt IW~(Xs,)l where ~ = s i g ~ T]] , SCsorts(T~) and S ' : so r t s (~) -S

This gives those algebras which are the same as models of T except that they may contain arbitrary junk (non-reach-

able values) in sorts S. It can be seen as a kind of dual to the reachable operation, Note that some of the models

of junk T on S will be reachable on S even if none of the models of T are, We can select these by applying the

reectt=ble operation. This particular combination occurs often so we give it a name:

restrict T on S =def reachable (junk T On S) on S where SCsor ts(T)

This gives the class of reachable ton S) subalgebras of models of T which are unchanged for sorts not in S.

The following abbreviations will be convenient in the sequel:

reachable T =def reachable T on sorts(T) restrict to the finitely generated models of 1"

junk T =def junk T on sorts(T) al low arbitrary junk in all sorts

restrict T =def restrict T on sorts(T) finitely generated subelgebras of models of T

Cleat's enrich operation (add some sorts, operators and axioms to e specification) can be expressed using the *

and basio-spec operations:

enrich T by sort8 S opcm F axioms E =def T ÷ < < sortstT) US, opns(T) U F > , E >

The notation TaT' (where T and T' are ASL expressions) will be used to abbreviate M o d ~ T]] = M o d E T ']] ;

s~m.arly, T_C~" meens Sig ~ T]]--Sig I[]] and r' Mod~r]]~MOdET']].

4 Examples

The specifications of booleans, natural numbers, and lists of natural numbers in ASL are much the same (except

for syntax) as they would be in CIP-L:

13oo1 =def reaoheble
enri¢~ ~ by

sorts bocl
opns true, false : bool
axioms true ~ false

Nat =clef reachable
enrich ~ by

sorts nat
olms 0 : nat

succ : n a t - ~ nat
axioms 0 ~= suco(x)

socc(x) = succ(y) x = y

List =
def

re~:hable
enrich Bool * Nat by

sorts list
OlPnS nil : list

cons : nat, list -~ list
head : l i s t - > nat
tail : list *'~ list
E : nat, list "~ bool

axioms head(cons(a, I)) = a
ta i l (cons(s , I)) = I
a E nil = false
a E cons(a, I) = true
a ~ b - ~ a E cons(b, I) : a £ I

All models of each of these specifications are isomorphic to the standard model. The axioms in 13oo1 and Nat are re -

quired to avoid trivial models, in contrcst to Clear and LOOK,]'he inequations in Bool and Nat together with the

axioms of List induce inequations like cons(a, cons(a, 1))~'=cons(a, 1) so it is not necessary to state them explicitly.

Suppose ~Set denotes the following signature:

S lg l [Boo l~ U s i g l I N a t]] U (= r ~ set
opns • : set

add : nat, s e t - ~ set
E : nat, set .-~ boot)

and O:T~Set-~sig~List]] is the signature morphism with a(set)=/iat, O(~)=ni l , o(add)=cons and O(x)=x for all

other sorts and operators x in T~Set. Then the specification

impoverished-List =def derive f rom List by a

has exactly the same class of models as List except for the absence of head and taft and the renaming of the sort list

419

and some of the remaining operators. The formulas add(a, add(a ,S))#add(a ,S) and

a~b ===~ add (a, add (b, S))~add (b, add (a, S)) still hold in every model of Impoverished-List, although there is no

longer any context in which values like [1 , 2] , [2 ,1] and [2,2, 1] can be distinguished.

Behavioural abstraction results in a broader class of models:

BehaviouraI-Set =clef behlwiour Impoverished-List wr t {nat, bool}

Models of BehaviouraI-Set include the models of Impoverished-List as well as the algebra with a carrier consisting of

the set of bags of natural numbers (satisfying add (a, add (b, S)) =add (b, add (a, S)) and add (a, add (a, S)) #add (a, S))

and the standard model of finite sets with carrier ~P(~r) (where add (a, add (b, S)) =add (b, add (a, S)) and

add(a, add(a,S)):=add(a,S)) and all algebras isomorphic to them. All models may include arbitrary junk for the sort

set. Trivial models (satisfying e .g . a d d (a , ~) = ~) are still excluded, tf we form a specification from List which is

similar to Behavioural-Set but with the order of derive and behaviour reversed, the result is identical to

Impoverished-List except that its models may contain junk (and different from 8ehaviouraI-Set):

junk Impoverished-List on {set} = derive from (behavtour List wrt {bool ,nat}) by O C BehavlouraI-Set

BohaviouraI-Set has almost the same class of models as the following more direct specification of sets:

Loose-Set =def enrich Bool , Nat by
sorts set axiollrm a E ~ = false
opns ~) : set a E edd(a,S) = true

add : nat, s e t - > set a ~ b ===~ a E edd(b,S) = a E S
E : nat, s e t - ~ boo!

The only difference between the models of Behavioural-Set and Loose-Set is that models of Behavioural-Set may con-

tain arbitrary junk of sort set, while any junk in models of Loose-Set must satisfy the axioms o(~ Loose-Set:

Behaviourat-Set = junk Loose-Set on {set} = behmdour Loose-Set wr t {nat, bcol}

In order to restrict interpretation to the standard model of sets we must add more information to Loose-Set:

Set =def enrich reachable Loose-Set on {set} by
axioms add(a, add(b,S)) = add(b, add(a ,8))

add(a, add(s ,S)) = sdd(a,S)

The only model of Set (up to isomorphism) is the standard model. The same class of models results i f the order of

enrich and resemble is switched. Now

BehaviouraI-Set = beh~wtour Set wrt {bool, nat] = behavtour (junk Set on {set}) wrt {bool, nat}

In fact, i f Set is enrich Loose-Set by axioms E or enrich reacheJble Loose-Set on {set} by axioms E where E is any

set of axioms consistent with those in Loose-set, then these identities still hold.

Set can be extended by adding a new value, an 'infinite set' which contains every natural number:

Infinite-Set =def resolvable enrich junk Set on {set} by
opns infset : set
axiom8 add(s, infset) = infset

a £ infset = true on {set}

In every model of Infinite-Set the value of intact will be different from every other value of sort set. Apart from this

new value, the models of Infinite-Set are exactly the models of Set. This kind of extension (in which a new con-

structor is added to a previously reachable-restricted sort) is not possible in Clear, CIP-L or LOOK.

tf we use derive to forget the operator infset the result is almost the same as Set; the only difference is that

every model will contain a single junk element. We can apply restrict to obtain their reachable subalgebras:

Set = restrict (derive from Infinite-Set by o) on {set}

• here a : S ~ I[Set] l ~ S i g I[,nfinite-Set][I is the inclusmn.

Suppose that Loose-Set is enriched as follows:

420

Loose-Sag =def enrich Loose-Set by
ClOtS howmany : nat, se t -~ nat
axioms howmany(a,#) = 0

howmany(a, add(a,S)) = succ(howmany(a,S))
a # b ==~ howmany(a, add(b,8)) = howmany(a,S)

Recall that the models of Loose-Set included the standard model where add(a, add(a,S))=add(a,S) as well as models

where add(a, add(a,S))#add(a,8) . The models of Loose-Set in which repeated elements are ignored cannot be ex-

tended to give models of Loose-Bag; if {a, a}={a] then howmany(a, {a, a])=howmany(a, {e}) so 2=1. The other

models of Loose-Set (extended by howmany) remain. The original models of Loose-Set (along with medals contain-

ing arbitrary junk of sort set) cart be regained by forgettirtg howmany arid applying behavioural abstraction:

behavloer (derive from Loose-Bag by o) wrt {net, bool} = junk Loose-Set on {sat}

where O: 8ig ~ Loose-Set]]¢-~Sig ~ Loose-Bag]] is the inclusion.

Although the examples in this section are very small, they illustrate some of the things which can be accomplished

using ASL. Some of these things are impossible in any other algebraic specification lartguage, viz behavioural

abstraction (as in the construction of BehaviouraI-Set from List) and the addition of a new element to a reachable-

restricted sort (as in the construction of Infinite-Set from Elet).

5 P a r a m e t e r i s e d s p e c i f i c a t i o n s wi th r e c u r s i o n

The semantics of a nonparametarised specification consists (as described in section 3) of a signature T. together

with a class M of T--algebras, that is:

~T]] = <T-,M> where T'-C~univ and M CAIg(~) such that M is closed under isomorphism

The collection of isomorphism classes of (countable) f-algebras forms a set for any T.. Therefore the collection of

possible pairs <T.,M> forms a set, which we will call 8EM. If <T~,M>ESEM, then 8ig<T-,M>=T- and Mod<~,M>=M.

We will refer to classes of T--algebras which are closed under isomorphism as T--model classes.

The semantics of a parameterised specification t sa function taking a member of SEM together with a signature

morphism as argument and giving a member of SEM as a result (similar to Clear):

f : SEM X signature morphism .4 SEM

The generaliseUon to multiple parameters is not difficult but this presentation will be confined to the 1-parameter

case. A parameterised specification is written) ,X :R[O] .B where X is the formal parameter, R is the parameter
requirement (itself a specification), O is the formal fitting morphi~m and El is the body (a specification which normally

contains X, may contain O, and may refer to the sorts and operators of R). Application is written

()~X:R[O] .B) (ARGrp]) where p:Sig[~R~J-~Sig~ARG]] is the fitting morphiam which matches the actual parameter

ARG with R. In contrast to Clear, the fitting morphism p is available for use in the body B via the formal fitting

morphism 0. The semantics of application is as follows (where Bp[ARG/X] is an abbrevlatJon for

Ei[ARG/X, p/O, p((d)/O) for all O)ESig~[R]]] - - the substitution into the body B of ARG for X and /3 for O, and of

p((~) for ~ for every sort or operator ~ in Sig~[R]]):

Sig ~[(XX: R[O].El) (ARG[p])]] = Sig ~ Bp[ARG/X]]]

M o d ~ (X X : R [O] . E I) (A R G [p])]] = [Mod~Elp[ARG/X]]] if [A l p I AeMod(ARG)] _C Mod~R]]

AIg(Sig [[Elp[ARG/X]]]) otherwise

Note that ARG is a semantic object from 8EM, not a specification; this is necessary for the semantics of recursion.

This semantics describes a parameterisetion mechanism which is more powerful and more expressive than in other

languages. Using this we can define parameterised specifications in which the signature of the result depends on the

signature of the actual parameter in a more flexible way than previously possible. For example, suppose we want to

write a parameterised specification called Copy which produces a specification containing two copies of its actual

421

parameter (i .e. two copies of an its sorts and operators). In Clear, CIP-L, LOOK and the ADJ approach to

paremeterisstion this is impassible; the parameterised specification can only transform the pc-t of the actual

parameter which corresponds to the formal parameter. The best we could do is to make two copies of this part of

the actual parameterF leaving the rest of the actual parameter alone. We can write Copy in AaL as follows:

CoPY =clef XX :# [O] . X + derive from X by p
where p: ~. _~->T. - iv is defined by

pea'Y"% s ~ ' /s 'e^
p(O)') = (~ (F s l . . . s n ~ s for co' E Fs l , . . sn ' -~s"

(this assumes that A and 1" are closed under 'priming': sEA ==Y s'EA and ¢dEFus ===) (J'E1Pu,s,). Copy(Nat[#])

then has the sorts naf and nat' and operators O: nat, 0:" nat', suoc: net~ nat and suco" nat ~ nat'. Note how heavily

this specification relies on the definition of signature morphisms in section 2.1.

But this specification is not quite correct; suppose T contains P. a-->s and f:- a'-ba'. Then Copy(r [#]) will include

the operators f:. a-+a, f': a ' -)~ and f".- a'-~a". In order to get two copies of each sort and operator, Copy has to

take account of the signature of the actual parameter. So in fact we need p In COpy to be perameterlsed by the

signature of the actual parameter:

CoPY =clef) .X :~ [O] . X + derive from X by p(Slg(X))
where p:signeture -> signature morphtsm is defined by p (~) = p ~

where p~ :~un i v -~un l v is in turn defined by

pz~(s~+~') = s where n is the maximum number of

P Z : (O) ' ~) = ~ primes on a sort or operator In

In order to define the semantics of reourstve perameterised specifications we need orderings on signatures, on

~-model classes and on signature morphisms. For these we use signature inclusion, set containment and the 'less

defined' relation (E) on partial functions respectively.

Theorem: All operators are monotonic with respect to signature inclusion and containment of model classes.

Note that the operations are also continuous for signatures and (except reachable) for model classes.

The monotonioity of the operations implies that every fixed-point equation for signatures or for model classes (on

the same signature) has a I ~ t solution (taking the usual point'wise extension of an ordering on a set to an ordering

on functions on the set). Pheretora we define the semantics of recursive perametertsed specifications (written

I t t (XX:R[O] .B) where B may contain t) as the least fixed point of the equation t=)~X:R[O].B; that is:

S ig [[Yt (~ .X:R[o] .B)]] = the function (of type SEM X signature morphism --) signature)

which is the least solution of Sigl~t]](ARG, p) = s i g E (X x : R [O] . B) (A R G [p])]]

ModEYt (XX:R[o] .B)]] = the function (: SEM x signature morphism --~ model class)

which is the lecst =olution (i .e. the 'l~]u;t' according to _,D which is actually the greatest) of

ModEt]]CARG,p) = ModE()~X:R[G] .B) (ARG[p] }]]

in the clcs$ of functions taking a SEM--object ARG with signature ~ and a signature morphism p :Sig E R]] .-> ~ and

giving a SigEYt()~X:R[O'] .B)]] (ARG, p) -modal class as result.

Then ~0~olying a recursive perameterised specification to an argument is just function application:

$ t g l [~ (X X : R [o] . B) (A R G [p])]] = S igEYt (XX:R[o] .B]~ (ARG, p)

ModEYt(XX:R[G] . 8) (A R G [p])]] = ModEYt()~X:R[G].B)]] (ARQ, p)

GeneraJisation to mutually reoursive definitions is possible (see [Wir 82]).

Reoursive parameterised slxicific~tions can be used to write 'abstract donmin equations' as in [HR 80] and

L22

[EL 81]. By monotontcity, every such equation has a sotutlon which c~n be computed within a finite number of

iterations (if specifications are nnite and every signature morphism has finite domain).

6 I m p l e m e n t a t i o n o f s p e c i f i c a t i o n s

The programming discipline of stepwise refinement advocated by Wirth and Oijkstra suggests that a program be

evolved by working gradually via e series of suecesslvely lower-level refinements of the specification toward a

specification which is so low-level that it can be regarded as a program. This approach guarantees the correctness

of the resulting program, provided that each refinement step can be proved correct. A formalisation of this approach

requires • definition of the concept of refinement, t .e. of the implementation of one specification by another.

in programming practice, proceeding from a specification to a program (by stepwise refinement or by any other

method) means making a series of design decisions. These will include decisions concerning the concrete represen-

tation of abstractly defined data types, decisions about how to compute abstractly specified functions (choice of

algorithm) and decisions which select between the various possibilities which the hlgh-level specification leaves open.

The following very simple formal notion of tmplements.tion captures this idea; s specification T is implemented by

another specification 1" if I " incorporates more design decisions than T:

Def: If T and T' are specifications, then T is implemented by T', written T ~ T', if ~6 # T' _ T.

For example, suppose SetChoose specifies the standard model of sets of natural numbers (like Set in section 4)

together with an operator choose; set -~ nat constrained only by the following axiom:

ohoose(add(x,S)) E add(x,$) = true

That is, choose will select some arbitrary element of any non-empty set. And suppose SetChoose' is SetChoose aug-

men~.ed by axioms which further constrain choose to always select the minimal element. Then

Mod [[SetChoose']] c Mod [[SetChoose ~ and so SetChoose~ SetChoose' (since SetChoose' is satisfiable).

As another example, 8ehaviouraI-Set from section 4 (recall BehsviouraI-Set = beheviour Set wrt {bool, r~t} , where

Set specifies the standard model of sets) is implemented by List (lists of natural numbers together with the operator

E) once the 'auxiliary' operators head and fail have been forgotten and the sort I/st and operators nil and cons

renamed as set, ~ and add:

BeheviouraI-Set ~ derive from List by 0

where 0 : Sig {~ Behevioural-Set]]-~ sig ~ List]] is a signature morphism with o (set)-=tist, G(~)=nil, O(add)=cona and

O(x)=x for all other sorts and operators x in BehaviouraI-Set, But note:

Set 7/~ derive from List by O

since Set itself (before behavioural abstraction) is satisfied only by algebrcs isomorphic to the standard model.

Under most previous notions of implementation (see below) Set ~ derive from List by (7 is a proper implemen-

tation. This was necessary because previous specification languages did not permit behevioural abstraction, so the

notion of implementation had to capture it.

This notion of implementation extends to give a notion of the implementation of parameterised specifications;

Def: If P=~.X:R[o] .B and P'=)~X:R[o] .8 ' are parameterised specifications, then P is implemented by P', written

P--~ P', if for all actual parameters ARG EaEM with fitting morphism p : Sig {~ R]] --> Sig (ARG) such that

[A l p I AEMod(ARG)] c Mod[[R]] , P(ARG[p]) ~ P ' (ARG[p]) .

This definition can easily be generalised to parameterised specifications with multiple parameters.

An important issue for any notion of implementation is whether implementations can be composed vertically and

horizontally [GB 80]. Implementations can be vertically composed if the implementation relation is transitive (I"~-~T '

423

and T'---~T" implies T - -~T ") and they can be horizontally composed if the specification-budding operafions preserve

implementations (i .e . P'--~P' and A - '~A ' implies P(A) ~ P'(A'); A'--*A' and B ' - ~ B ' implies A+B ~ A'÷B'; and a

similar rule holds for each of the remaining operations), Our notion of implementation has both these properties

(the proofs are immediate by transitivity of C and monotonicity of ASL's operations):

Theorem (vertical composition): If T--.~T' and T'---,~T" then T'-">T",
Theorem (horizontal composition): If A,,,,~A', 8--~->8 ' and P=kX:R [O] .C ~ P '=XX:R[o] ,C ' , then:

1, A + B ~ A' + 8' iff A' + B" is satisfiable

2. For any SCsor ts(A) , reachable A o n S ~ reachable A' on $ iff reachable A' on S is satisfiable

3. For any O : ~ - ~ S i g ~ A]] , derive from A by 0 ~ derive from A' by 0

4. For any W__IWT.(X}I, abstract A wrt W ~ abstract A' wrt W

5, tf p : S i g ~ R]] - - + S i g ~ A]] is a fitting morphism such that [M I p I M E M o d ~ A]]] C_ Mod~R]]

and [M I p I M E M o d ~ A ']]] C Mod~ 'R]] , then P (A [p]) " -~ P ' (A ' [p])

These two results allow large structured specifications to be refined in a gradual and modular fashion. All of the

individual small specifications which make up a large specification can be separately refined in several stages to give a

collection of lower-level specifications (this is easy because of their small size). When the low-level specifications

are put back together, the result is guaranteed to be an implementation of the original specification.

ASL can be used to express a number of other concepts of implementation as well, including notions which coin-

cide with or approximate most previously proposed definitions such as [EKMP 82], [EK 82], [GM 82] and [SW 82],

Only one of these is given below; see [$W 83] for some others,

Def: If A and A' are ~-algebras, then A;~A' if there exists a surjective homomorphism f :A-~A ', If T and T' are

specifications with S ig { [T]]=S ig~ 'T ']] , then T' is a homomorphic image of] (T~>T') if for every AEMod~[T~ there

exists an A'EModI[T ']] such that A•A',

o ~ : if T and T' are sp~¢ifications, o : S i g l [T]] - * S i g l [T ']] ~s a =gnature morph,sm, OBSC so~s(T~ and

reachable T = T then T ~ T ' i f ~) # derive from T' by 0 ;~ junk T,

This corresponds to the notion of implementation in [Ehr 79], and is a simplified version of the notion in

[EK 82]. Observe that Set F ~ List where O is an appropriate signature morphism, and note that this notion may

be extended to give a notion of the implementation of parameterised specifications.

When using a powerful specification language one can adopt a simple notion of Implementation. Previous lan-

guages and specification methods were less powerful (lacking operations hke behaviour) so a more complex notion of

*mplementation was necessary to handle cases like the implementation of sets by lists above. W=th ASL such com-

plexity is not required because all such oases can be handled by explicit use of the behaviour operation.

One benefit of such a simple notion of implementation is that one can reason about implementatmns in a formal

way using the specification language itself rather than at a metalevel using a metatanguage. For example, the iden-

tities in the next section can be used I~o prove the transitivity of F ~ (see [SW 83] }, A second benefit is that with

this simple notion the specifier has more freedom to say exactly what is required. For example, in some situations

we might really want sets to be implemented only using a representation isomorphic to the standard model (e.g. in

cases where the choice of data representation influences the complexity of an algorithm). In ASL one has the

freedom not to apply behavioural abstraction m cases such as these. Finally, the simple notion of implementation

permits vertical and horizontal composition of implementations, but this is generally not the case for the more compli-

cated notions unless rather strong conditions are imposed (see e .g . [EKMP 82], [SW 82] and [GM 82]) .

424

7 Iden t i t i es and t r a n s f o r m a t i o n o f s p e c i f i c a t i o n s

Because the semantics of ASL is simple, it is easy to prove that certain identities and relations between specifica-

tions hold, For example (see [SW 83] for some others):

Theorem: 1. reachable (reachable T on S) on S" = reachable (reachable T on S') on S :2_ reachal~e T on S U 8'

2, W'C_ W implies al:)~bract (abstract T wrt W) wrt W' = eb~ract T wrt W'

= abstract (abstract T wrt W') wit W

Fact:

so a. beheviour (junk T on S) wrt OBS = beheviour T wrt OBS if $ROeS =

b, junk (junkT on 8') on 8 = junk T on 8 = junk (junk T on 8) o,'1 S" if 8 ' c $

c. behaviour (beheviour T wrt OB8*) wrt 088 = behavtour T wrt O8S if 08SCOBS'

d, junk (beh=viour T wrt OBS) on 8 : behaviour T wrt O8S if 8 R O88 =

3, derive from (derive from F by O) by O' = derive from T by 0 ' . 0

4. behaviour (restrict I on 8) wrt OBS = behevtour T wrt 08S

if 8 R 0138 = ~ and W~(X8,) is non-empty in all sorts of $, where ~=Sig~'T]], S'=sorts(~.)-$

5. ~ (derive from T by cr) wrt W ~ derive from (abstract I" wrt O(W)) by 0

6, abstract (abstract T w t t W) wrt W' C abstract f wrt W R W'

so a. junk (junk T on S) on S' C junk T on S U 8 '

b. behaviour (behaviour T wet OB8) wrt OBS' C_ beheviour T wrt OBS 13 OBS'

7, reachable (T + reachable T' on 8) on S' = T + recchable T' on S i f 8 ' c 8

8. reachable (enrich T by axioms E) on S = enrich reachable T on S by axioms E

9. T ;~ T' implies junkT on 8 ~ junkT' on S

lO. T ~ T' implies derive from T by 0 ~= derive from T' by 0

11. Yt. (X.X: R[O']. B) (ARG[p]) = Bp[ARG/X][Yt. (XX: R[0] . B) / t]

if [A l p I AEMod(ARG)] C Mod~R'[I

But tt is possible to find counterexamples showing that the following inequations hold:

1'. ~ (derive from T by O) wrt W ~ derive from (abstract 1" wrt or(w)) by 0

2'. reachable (reachable T on S) on S' ~ rmtchable T on S U 8'

3'. ab~rect (abstra~ T wrt W) wrt W' ~ abstract T wrt W R W'

4". beheviour (beheviour T wrt OBS) wrt OBS' ~ 10Qhaviour (behaviour T wrt OBe') wrt OBS

beltavionr T wrt OBS U OBS'

These properties can be useful for understanding the effects of ASL's operations. For example, properties 2a and

4 together indicate that the behmd~ur operation disregards any junk of invisible sorts.

It is possible to carry out proofs concerning specifications using the above properties. For example, solutions of

domain equations can be computed. The following theorem can be proved in this way.

(vertical composition fo. ,: and ,m0,ies

These rules provide transformations for changing one specification into another specificatmn which is equivalent (or

an implementation, using the rules containing C) . Therefore they could be used as the basis of a method for

developing data structures and programs from specifications (see e.g, rBau 81a]).

8 C o n c l u d i n g r e m a r k s

The small set of operations in ASL seems to provide a powerful means for writing specifications. But some of the

operations we decided not to include are interesting as well, Here are two which together could replace allWln¢~:

425

Def: If A,A' are T'-alg@bras and WC~WT(X) ~ then A is w-f iner then A' (A ~W A') if there are surjective assign-

ments ~:X->IAI and ¢~':X-~IA'I such that Vt, t'EW. (~ # (t) = ~ # (t ') ==~ ~ '#(t)=~°#(t ')) .

The W-coar6"er relation ;>W is obtained by replacing =~ in this definition by (:'~--,

Sigl[T~W]l = SigI [TvW]] = s ig l IT~ if WClW~:(×) 1 ,here ~ :~ ,g [IT]]

ModETZ~W]] = [AEAIg(SigETn) I 3AoEMOdET]] .(A ~W AO)]

Modl [rvw]] = [A~AIg(S ig~T]]) I 3Ao~MOdI [T]] . (A ;~W AO)]

Then ~ ' t r i c t T wrt W =def TZ~W + T~'W
hem T ~ S =def beheviour 'r wrt s + l~lW~:(X)l where T~=~Sig~T]]

T/eqns --clef <Sigl[T~,eqns> + WlW~(X)l where T'=Sig~T]]

The hem operation is the same as behaviourat abstraction except that it only permits models which are coarser than

models o~ T (i .e. in which more terms ere identified). An operation permitting only finer models c~=n be defined

similarly. T/E is the quotient of T by the equations E as defined in [WiT 82] (not exactly the usual quotient, since

everything coarser then the quotient is included as well). Other interesting possibilities are:

8 igETUT*]] = S i g [T R T ']] = Sigl [T~ if S igET]J~ igET ']]

ModET U T']] = [AEAIg(SigET]]) [3AoEMOdET]],A~EMod~ET']]. CA is the glb of A 0 and A~)]

Mod I[r n r ']] = [A~A~g(Sig lI r 11) ~ 3A oEMod I[r]] ,%~Mod II r ']1 CA as the lub of A o and %))

The lub (least upper bound) end glb (greatest lower bound) ere with respect to the homomorphlo image relation ;~

defined in section 6. Note that the lub and glb are not defined uniquely but only up to i~morphism,

Then T,~. =def <$ ig~T]] ,~> I1 1 (i .e. T&IWT~(X)I]

=def <$ ig~T]] .~> U T (i .e. T~71Wz:(X)I)
h o m T w r t S --clef b e h ~ r T w r t S + TV

- < Sig ~ T ~ , eqns> + TV T l eqns "clef

Parameterised specifications with signature morphisms as parameters are a special case of I~rameterisE~t s ~ i f i c a -

tions as defined here. This allows the expression of e.g. Clear-style procedure application with avoidance of name

clashes. But signature morphlsms are not yet 'first class citizens'; it Is not possible to specify 'requirements' for sig-

nature morphism parameters, For example, it should be possible to require that a signature morphlsm be defined at

least (or at most} on a particular domain, or that it extends = given signature morphism. This should be a

straightforward extension, Another interesting generalisatlon would be to allow (recursive) higher-order

paremeferisecl specifications.

Inference in ASL specifications is more complex than in a 'fiat' equational specification or in an ordinesy structured

theory as in LCF [GblW 79] or Clear. Besides the usual inference rules which allow theorems to be derived by

combining axioms, inference rules are needed which allow theorems in a specification (say T) to be converted to

theorems in a larger specification built from T (say T + T') as in [SB 83]. For example:

thin in T ==> thin in T + T'

O(thm) in T ===~ thin in derive from T by O

thin in T and VtEtarms(thm).[tEW and VxEF'V(t)s. VyEXs.t [y/x]EW] ~ thm in abstract T twt W

The last of these implies the following rule:

thin in T end thm contains only terms of sorts in O ~ with variables of O ~ sorts

=~) thin in behaviour T wrt OBS

The ~ operation gives rise to an induction principle.

Finally, it would be interesting to build a new high-level specification language on top of ASL, trying to make

available most of the power of ASL (e.g. behavioural abstraction) in higher-level spe<~ificatlon-building operations

t.26

while hiding some of the sharp edges (e.g. it probably should not be possible to get the effect of abstract T wrt W

for arbitrary W). The result should be more versatile and expressive than any present specification language.

To avoid confusion, it is important to point out the differences bebween the present paper and [Wir 82] which

also defined a language called ASL (we will refer to the two languages as new ASL and old ASL respectively). Apart

from details of syntax, the differences between the two langue~3es are as follows:

- New ASL contains an important new operation (~bstract) which allows the expression of behavioural
abstraction. Old ASL includes a 'quotient' operation which is not provided in new ASL, This change gives
a language which is more oriented toward a behavioural approach to specification. The quotient operation
was difficult to use in writing specifications [Gau 83] and did not easily extend from equational axioms to
general first-order axioms.

- New ASL includes a more general and flexFole parameterisation mechanism than old ASL,

- Old ASL is a language for specifying partial algebras, while new ASL (as described here) is for specifying
total algebras, There is no difficulty in changing new ASL to specify partial algebras; we restricted atten-
tion to total algebras only for simplicity of presentation.

Furthermore, the present paper develops and justifies an elegant and simple notion of implementation of ASL

specifications. This notion was mentioned briefly in [Wit 82], but here it is more appropriate because new ASL can

express behavioural abstraction.

Acknowledgements

Thanks for useful discussions and helpful comments: from DS to Rocco de Nioola, David Rydeheard, Oliver Schoett

and (especially) Rod Burstall; and from MW to Manfred Broy and Marie-Claude Gaudel. This work was supported by

the Science ~u'~d Engineering Research Council and the Sonderforschungsbereich 49, Programmiertechnik, Mf~nchen.

9 R e f e r e n c e s

Note: LNCS n denotes Springer Lecture Notes in Computer Science, Vol. n

[ADJ 76] Goguen, J .A. , Thatcher, J.W. and Wagner, E.G. An initial algebra approach to the specification, cor-
rectness, and implementation of abstract data types. IBM research report RC6487. Also in: Current
Trends in Programming Methodology, V o l . 4 : Data Structuring (R.T, Yah, ed,), Prentice-Hall,
pp. 80-149 (1978).

[ADJ 78] Thatcher, J.W,, Wagner, E.G. and Wright, J.B. Data type specification: parameterization and the
power of specification techniques. SIGACT 10th Annual Symp. on the Theory of Computing, San Diego,
California.

[ADJ 80] Ehrig, H., Kreowski, H. -J . , Thatcher, J.W., Wagner, E.G. and Wright, J.B. Perameterized data
types in algebraic specification languages (short version). ProD. 7th ICALP, Noordwijkerhout,
Netherlands. LNCS 85, pp. 157-168.

[Bau 81] Bauer, F.L. et al (the CIP Language Group) Report on a wide spectrum language for program
specification and development (tentative version). Report TUM-18104, Technische Univ. MUnchen.

[~ u 81e] Bauer, F.L. ef al [the CIP Language Group) Programming in a wide spectrum language: a collection of
examples. Science of Computer Programming 1, pp. 73-114.

[BBTW 81] IBergstra, J .A, , Broy, M. , Tucker, J.V. and Wirsing, M. On the power of algebraic specifications.
Proc. 10th MFCS, Strbske Pie,so, Czechoslovakia. LNCS 118, pp. 193-204.

[SG 77] Burstall, R.M. and Qoguen, J.A. Putting theories together to make specifications. Proc. 5th UCAt,
Cambridge, Massachusetts, pp. 1045-1058.

[I~G 80] 8urstall, R,M. and Goguen, J.A. The se~mantics of Clear, s specification language. Proc. of Advanced
Course on Abstract Software Specifications, Copenhagen. LNCS 86, pp. ;292-332.

IBM 81] Bergstra,, J.A. and Meyer, J.J. t10 computable data structures. SIGPLAN Notices 16, 4 pp. 27-32.
[Ehr 7~J Ehrich, H.-D, On the theory of specification, implementation, and parametrization of abstract data

types, Report 82, Univ. of Dortmund. Also in: JACM 29, 1 pp. 206-:227 (1962).
[EK 82] Ehrig, H. and Kreowski, H.-J. (1982) Parameter passing commutes with implementation of

parameterized data types. Proc. Sth ICALP, Aarhus, Denmark. LNCS 140, pp. 197-2t i .
[EKMP 82] Ehrig, H., Kreowski, H. -J . , Mahr, B. and Padawitz, P. Algebraic implementation of abstract data

types. Theoretical Computer Science 20, pp. 209-263.
[EL 81] Ehrich, H.-O, end Lipeck, U. Algebraic domain equations. Report 125, Univ. of Dortmund.
[ETLZ 82.] Ehrig, H., Thatcher, J .W., Luc, ss, P. and Zilles, S.N. Oenotational and initial algebra semantics of

the algebraic specification language LOOK. Draft report, IBM research.
[Gau 83] Gaodel, M,-C. Personal communication with M. Wirsing.

427

[Ge 8O]

[QB 63]
[QGM 76]

[GM 82]

[GM 83]
[GMW 79]
[Gut 75]

[HKR 80]

[HR 80]

[K=m ~]
[LS 7~]

[Rei 81]

[se e3]

[s w 82]

[sw s3]

[8ch 82]

[Wand 79]
[Wir 82]

[ZLT ¢Z]

Goguen, J.A. end 8urstall, R.M. CAT, a system for the structured elaboration of correct programs
from structured specifications. Technics! report CSL-118, Computer Science Laboratory. SRI
international.
Ooguen, J.A. and Burstatl, R.M. institutions: logic and specification. Draft report, 8RI International.
GJarratene, V., Gtrnona. F. and Mentenari, U. Observabitity concepts in abstract data type specification.
Proc. Sth MFCS, Gdansk. LNCS 45, pp. 576-587.
Goguen, J.A. and Meseguer, J. Universal realization, persistent irtterconnestion and implementation of
abstract modules. Proc. 9th ICALP, Aarhus, Denmark. LNCS 140, pp. 310-323.
Goguen, J.A. and Meseguer. J. An initiality primer. Draft report, SRt International.
Gordon, M.J. , Milner, A.J.R. and Wadsworth, C.P. Edinburgh LCF. LNCS 78.
Gutteg, J.V. The specification and application to programming of abstract data types. Ph.D. thesis,
Univ. of Toronto.
Hupbach, U.L. , Kaphengst, H. and Reichel, H. Initial algebraic specihcation of date types, param-
eterized data types, and algorithms. VEIB Robotron, Zentrum ffJ'r Forschung und Teohnik, Dresden.
Hornung, G. and Raulefs, P. Terminal algebra semantics and retractions for abstract data types. Proc.
7th ICALP, Noordwijkerhout, Netherlands. LNCS 85, pp. 3t0-323.
Kemin, 8. Final data types end their specification. I"OPLAS 5, t pp. 97-121.
Liskov, 8. H. and Berzins, V. An appraisal of program specifications. Computation Structures Group
memo 14t- t , LaJ~oratory for Computer Science, MIT.
Retchel, H. IE~ehavioural equivalence - - a unifying concept for initial end final specification methods.
Proc. 3rd Hungarian Computer Science Conf., Budapest, pp. 27-39.
Sannella, D.T. and 8urst~ll, R.M. Structured theories in LCF. Proc. Sth CAAP, L'Aquila, Italy.
LNCS, to appear.
8annella, D.T. and Wirsing, M. Implementation of perameterised specifications. Report C8R-103-82,
Dept. of Computer Science, Univ. of Edinburgh; extended abstract in: Proc. 9th ICALP, Aarhus,
Denmark. LNCS 140, pp. 473-488.
Sannella, D.T. and Wirsing. M. A kernel language for algebraic specification and implementation.
Report C8R-131-83, Dept. of Computer Science, Univ. of Edinburgh.
Schoett, O. A theory of program modules, their specification and implementation. Draft report, Univ. of
Edinburgh.
Wand, M. Final algebra semantics and data type extensions. JCSS 19 pp. 27-44.
Wirsing, M. Structured algebraic specifications. Proc. AFCET Syrup. on Mathematics for Computer
Science, Paris, pp. 93-107.
Zilies, 8 .N. , Lucas, P. and Thatcher, J.W. A look at algebraic specifications. Draft report, IBM
research.

