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Summary. A semantics for the Clear specification language is given. The 
language of set theory is employed to present constructions corresponding 
to Clear's specification-combining operations, which are then used as the 
basis for a denotational semantics. This is in contrast to Burstall and 
Goguen's 1980 semantics which described the meanings of these operations 
more abstractly via concepts from category theory. 

1. Introduction 

A number of techniques for the formal specification of software have been 
developed in recent years. Prominent in this area is work by Guttag and his 
colleagues [17, 19] and by the ADJ group [16] and many others on algebraic 
methods of specification. In this framework, a specification consists of a signa- 
ture - a set of sorts (kinds of data) and some operators (for constructing and 
manipulating data) - together with axioms (typically equations) describing 
constraints on the results produced by operators. Such a specification describes 
a collection of algebras (a set of data objects for each sort, and a function on 
those sets for each operator), where each algebra in the collection is a model of 
the specification (it satisfies the axioms). Programs can be considered to be 
algebras, so all programs satisfying a specification are in its collection of 
models. 

Most workers in algebraic specification concentrate on the specification of 
abstract data types, for which the method is particularly well suited. Although 
an algebraic specification could be written for a large system, such a specifi- 
cation would be impossible to understand because it would contain so many 
axioms. The value of a specification depends on the ease with which it was 
written and can be understood; a large number of pages densely packed with 
axioms are not of much use to anybody. 

The Clear specification language [4] was invented by Burstall and Goguen 
to combat just this problem. Clear is a language for writing structured algebra- 
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ic specifications; that is, it provides facilities for combining small specifications 
in various ways to make large specifications. With a tool such as this, the 
specification of a large real-world system could be built from small, easy to 
understand and (in many cases) reusable bits. 

An obvious way to combine specifications is to simply add them together, 
giving a specification which includes the sorts, operators and axioms of each 
component. Clear also provides a facility for constructing a parameterised 
specification which can be applied to various different specifications to sys- 
tematically enrich them in some way. A typical example is a parameterised 
specification of sorting, which would produce a specification of a program to 
sort lists of numbers when applied to the specification of natural numbers 
together with the usual < order relation. An operation called data can be 
applied when adding new sorts and operators to a specification; this constrains 
the collection of models to a small number of "best" ones. Finally, some of the 
operators and sorts of a specification can be "hidden" to yield a less elaborate 
specification. Clear is different from other specification languages because it 
attempts to take proper account of shared sub-specifications. That is, the 
specification-building operations are defined in such a way that if a certain 
component is used in building several larger specifications, then the specifi- 
cation which results from combining these larger units will contain only a 
single "copy" of the common subpart. 

In order to make use of specifications it is essential that they be written in 
a specification language equipped with a complete formal semantics. It is not 
enough to write specifications in a language having only a formal syntax; this 
merely gives a dangerous illusion of precision. Only by means of a formal 
semantics can specifications be given a precise and unambiguous meaning. The 
exact meaning of any specification can then be determined mechanically by 
consulting the semantics. 

Burstall and Goguen in I5,1 have given a denotational semantics for Clear, 
relying heavily on a number of concepts from category theory to give the 
meaning of Clear's specification-building operations. This semantics was devel- 
oped at the same time as the Clear language itself. This had a positive effect on 
the resulting language (cf. 1'1]); the desire to give Clear an elegant category- 
theoretic semantics led to certain features being rejected and suggested genera- 
lisations of others. A special advantage of using the language of category 
theory is the generality of the result. The semantics in 1'5,1 abstracts away from 
the particular logical system to be used for writing specifications (i.e. the 
definitions of signature, axiom and model) using the device of an institution 
(see [14,1; 1'5,1 used the term "language"), defining all at once the semantics of 
a large class of Clear-like languages. 

A different semantics for Clear is presented here. This uses straightforward 
set-theoretic constructions to define the semantics of the specification-building 
operations. The result is equivalent to the semantics of 1'51, except that a 
number of errors have been corrected. The language described is the Clear 
used for examples in E5, 6,1 in which many-sorted signatures and algebras 
(without error operators) are used and axioms are equations (this language will 
be referred to as ordinary Clear in the sequel) rather than a family of lan- 
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guages. The semantics is less general than the semantics of 15] since it 

describes only Clear under this particular institution but as discussed in Sect. 9 
it appears to be capable of straightforward modification to cover all in- 
stitutions of interest. 

Much of the material included here is taken with only minor changes from 
[5]. The overall organisation of the presentation used in that paper has been 
adopted here for the most part. Clear and its (category-theoretic) semantics is 
the result of much hard work by Burstall and Goguen; naturally the author 
does not claim credit for the design of the language or for those parts of the 
semantics which have not been altered. 

The reader may wish to consult [16] for a leisurely explanation of the basic 
concepts of algebraic specification, [6] for an introduction to Clear as a 
specification language, and 15] to compare the two versions of the semantics. 
In order to make this paper self-contained, definitions of basic concepts such 
as signature, algebra and equation are given in Sect. 2, data constraints (used 
to give the semantics of the data operation) are discussed in Sect. 3, and a brief 
introduction to Clear is given in Sect.4. Section 5 considers the problems 
involved in dealing with shared sub-specifications properly, and Sect. 6 dis- 
cusses the difference between metatheories (used to give requirements for the 
arguments of a parameterised specification) and ordinary specifications. In 
Sect. 7 the semantic operations which form the basis of the semantics are 
defined. Section 8 lists the semantic equations for Clear; these are similar to 
those in 15] but not identical. Finally, Sect. 9 concludes with comments on 
some points raised by the semantics. 

2. Basic Concepts and Notation 

The basic algebraic concepts which underlie the semantics of Clear are in- 
troduced in this section. Many of the notions are similar to those used by 
other authors (see e.g. I16]). The definitions themselves are adapted from [5]. 

2.1. Signatures 

A signature is a set of sorts (data type names) together with a set of operators 
(function names), where each operator has a type of the form sl  . . . .  , s n ~ s  
where s l  . . . . .  sn, s are sorts. A signature morphism maps the sorts and oper- 
ators of one signature to sorts and operators in another in such a way that 
types are preserved. 

Definition. A signature T, is a pair (S, g2) where S is a set (of sorts) and f2 is a 
family of sets {f2w,,}w~s. ~,s (of operators). We write f :  w-- ,s  to denote weS* ,  
seS ,  fe~2,~,~. 

Definition. A signature morphism a: (S ,  f2)---,(S' , f2') is a pair (a~o,t~,aop,~) 
where aso,t~: S--,S' and aop,~ is a family of maps {aw,,: f2w,s--,~.o~).,r 
where ~r*(s 1 . . . .  , s n) denotes a~o,t~(s 1), ..., Cr,o,,~(sn) for s 1 . . . . .  s neS.  We will write 
or(s) for a~o,t~(s), a(w) for a*(w) and a ( f )  for a,~,,(f), where f :  w ~ s  is in f2. 
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2.2. Algebras 

A EE-algebra has a set (the elements of a data type) for each sort of 2; and a 
function on those sets for each operator of 2. A 27-homomorphism maps the 
"data  types" of one 27-algebra to those of another in such a way that the 
functions are preserved. 

Let 27 = (S, tZ) be a signature. 

Definition. A 2;-algebra A consists of an S-indexed family of carrier sets IAI 
={IaI,L~s and for each f : s l  .. . .  , s n ~ s  a (total) function fA:IAI~lx... 
• Ihl,,--,Ial~. 

Definition. A 27-homomorphism from a 2;-algebra A to a 2;-algebra B, h: A ~ B ,  is 
a family of functions {hs}~ s where h,:IAIs~IBI~ such that for any 
f :  s l  . . . .  , s n ~ s  in f2 and al~lAl~1,...,a,~lAl~, hs(fA(a 1 . . . . .  a,)) 
=fn(h~l(al) . . . . .  h,n(a,)). A bijective homomorphism h: A--.B is called an iso- 
morphism, written A - B. 

Given a 2;'-algebra A' and an injective signature morphism a: 27~2;', we 
can recover the 27-algebra buried inside A' (since A' is just an extension of this 
algebra). The definition extends without modification to the case in which a is 
not injective, where the 2;-algebra will contain multiple copies of some of the 
carriers and functions of A'. 

Definition. For  any signature morphism a: 2;--,27' and 27'-algebra A', the a- 
reduct of A' is the 27-algebra A'Io such that for s~S, IA'lol,=deflA'[or and for 
f :  w--*s in 27, fa,i =d,fa(f)A, .  When a is obvious we sometimes use the no- 
tation A'Iz. 

2.3. Equations 

Definition. A 2;-term is a well-typed term built from operators in 2; and 
variables of sorts in 2;. A ground 27-term is a 2;-term which contains no 
variables. If  t is a 27-term and tr: 27-~2;' is a signature morphism, then the a- 
translation a(t) of t is the 2;'-term obtained by replacing each operator  f in t 
by a ( f )  and each variable x s by x,ts~. 

Definition. A 2;-equation VX.t = t' is a set X of variables of sorts in S together 
with a pair t, t' of 27-terms (possibly containing variables from X) of the same 
sort. An equation containing no variables is called ground. If a: 2~27' is a 
signature morphism and e=aefVX, t=t '  is a 2~-equation, then the a-translation 
a(e) of e is V~.  a(t) = a(t') where ]~ = {x~s~lxsEX}. 

Definition. A 27-algebra A satisfies a EE-equation VX. t = t' (written A ~ VX. t = t') 
if the equation is ' t rue '  (both sides evaluate to the same thing) for all assign- 
ments of values in A to the variables in X. A EE-algebra A satisfies a set E of 2;- 
equations (A w E) if A satisfies every 2;-equation in E. 
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2.4. Equational Theories 

An equational presentation is a signature together with a set of equations on 
that signature. The closure of a set of equations is that set together with all its 
(model-theoretic) logical consequences. An equational theory is then a signa- 
ture together with a dosed  set of equations. A theory morphism between two 
equational theories is a signature morphism between their signatures which 
preserves the equations. 

Definition. An equational T.-presentation is a pair (Z,  E )  where 2 is a signature 
and E is a set of 2-equations.  A 2-algebra A satisfies an equational pre- 
sentation (2;, E )  if A satisfies E. Then A is called a model of (Z,  E).  

Definition. If  E is a set of Z-equations, let E* be the set 1 of  all 2~-algebras 
which satisfy E. If  M is a set of  S-algebras, let M* be the set of all Z-equations 
which are satisfied by each algebra in M. The closure of a set E of 2-equations 
is the set E**, written/~. E is closed if E=/~.  

Definition. An equational Z-theory T is an equational presentation ( Z , E )  
where E is closed. 

Definition. An equational theory morphism tr: (T,,E)---,(Z',E'~ is a signature 
morphism u: T,~Z' such that tr(e)eE' for each e~E. 

3. Data Constraints and Data Theories 

An equational theory will typically have a number of different (non-isomor- 
phic) models. Some of these wilt be trivial, and others will contain extra useless 
values. Most  approaches to the specification of abstract data types and pro- 
grams restrict consideration to a special subset of models; probably the best- 
known example is the "initial a lgebra" approach of [16] in which an equational 
theory is taken to specify only its initial models. 

Definition. A model A of an (equational) theory T is an initial model of T if for 
every model B of T there is a unique homomorph i sm h: A--,B. 

Equivalently, a Z-algebra A is an initial model of T = ( E , E )  if it satisfies 
the following conditions: 
- " N o  junk" :  Every element in A is the value of some ground Z-term. 
- " N o  confusion": For  every ground Z-equation e, A satisfies e iff e~E. 
For  a proof  that these definitions are equivalent and for three other equivalent 
definitions see [15]. 

It  is well-known that the initial models of any (equational) theory form an 
isomorphism class; this allows us to refer to the initial model. 2 Note  that the 

1 Actually, this is not a set at all but a proper class. The set/class distinction will be ignored 
throughout this paper 
2 Category-theoretically speaking, the initial model of an equational theory T is the initial 
object in the category Mod(T) of T-models and homomorphisms between them 
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"no  junk"  condition corresponds to an induction principle; since all values in 
the initial model are generated by terms, proof by structural induction on 
terms is possible. 

Clear adopts a generalisation of the initial model approach. A Clear theory 
may include data constraints which must be satisfied (in addition to the 
equations) by any model of the theory. A data constraint specifies that for each 
model, the subalgebra of that model corresponding to a certain subtheory must 
be a "free extension" of the subalgebra corresponding to a certain smaller 
subtheory (i.e. initial relative to it). This is necessary for specifications such as 
Set-of-X (see Sect. 4), where X may be arbitrary. Each application of the data 
operation in a Clear specification contributes a data constraint. 

Definition. A 2-data constraint c is a pair ( i , a )  where i: T~--~T ' is an equa- 
tional theory inclusion and a: s ig (T ' )~S  is a signature morphism. 

A data constraint is a description of an enrichment (the theory inclusion 
goes from the equational theory to be enriched to the enriched theory) together 
with a signature morphism "translating" the constraint to the signature S. 

Definition. A Z-algebra A satisfies a Z-data constraint (i :  T~--~T ', 
a: sig(T')---,Z) if: 

- "No junk":  Every element of A[sigtr, ) is the value of some sig(T')-term 
containing variables only in sorts of T, for some assignment of values to 
variables. 
- "No  confusion": The values of two sig(T')-terms are the same in Alsistr') for 
an assignment of values to variables iff they are forced to be equal by the 
interpretation of T and the equations of T'. 

Again, the "no  junk"  condition corresponds to an induction principle. See I-5] 
for a category-theoretic version of this definition. 

A signature morphism from Z to Z' can be applied to a Z-constraint to 
translate it to a Z'-constraint, just as it can be applied to a Z-equation to give 
a S'-equation. 

Definition. If a: Z ~ Z '  is a signature morphism and (i,a') is a Z-data con- 
straint, then the a-translation of (i, a ' )  is the 2 '-data constraint (i, a 'o a) .  

Since data constraints "behave" just like equations (in the sense that satis- 
faction of a data constraint by an algebra and the translation of a data 
constraint by a signature morphism are defined), they can be added to the 
equation set in an equational presentation to give a data presentation (or 
presentation for short). 

Definition. A (data) Z-presentation is a pair (Z, EC) where Z is a signature and 
EC is a set of Z-equations and Z-constraints. 

The notions of satisfaction (of a data presentation), closure, (data) theory, 
and (data) theory morphism follow as in the equational case. The denotation of 
a Clear specification is a (data) theory (Z,  EC), specifying all Z-algebras which 
satisfy the equations and data constraints in EC (actually, a based data theory 
- see Sect. 5). 

The data constraints described here are a special case of those discussed in 
1"5]; general data constraints never arise in ordinary Clear. Essentially the same 
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concept was described earlier in [20] (of. [23]) under the name initial restric- 
tion. Data constraints are also used in the L O O K  specification language [8]. A 
more general form of data constraints (free generating constraints) is discussed 
in [9]. 

It is possible to employ a weaker version of data constraints, sometimes 
called hierarchy constraints [26] cf. [2] or generating constraints [I0], in which 
an algebra satisfies a constraint iff it satisfies the "no junk"  condition. In order 
to avoid trivial models it is necessary to allow specifications to contain in- 
equations or else to impose the extra condition that all models satisfy 
true 4: false. 

4. An Introduction to Clear 

Below is an example of a Clear specification which displays most of the 
features of the language. Some brief explanatory notes follow the example. 

coast Bool ffi 
theory 

data s o n s  bool 
opus true, false: bool 

not  : bool -~ bool 
eqns not( true)= false 

not(false) = t r u e  eadth 
coast  Boolopns = 

enrich Bool by 
olms and,  or, =~: bool, bool--* bool 
eqRs all p:bool, p and t r u e = p  all p:bool, p and f a l s e r  false 

all p:bool, p or t r u e = t r u e  all p:bool, p or  f a l s e f p  
all p,q:bool,  pf~qff inot(p  and not(q)) codco 

meta  Ident = 
let IdentO=corich Boolopns by 

sorts element 
olms -- : element, element ~ bool 
eqns all ra:element, m - m = t r u e  

all m,n:elemenL m f - n f n = - m  
all m,n,p:element.  ( m - n  and n - p ) f . m - p f t r u e  enden 

in derive sorts  element 
opns eq �9 element, element -~ bool 

using Bool 
from IdvntO 
by r is-= endde 

lWOr Set(X:Ident)= 
let SetO---emicb X by 

data sorts set 
opus 0 : set 

singleton: element --, set 
u : set, set ~ set  

(alms aH S:sct. ~ u S f S  
aH S:set. S u S = S  
all S, T: set. S u  T =  TuS 
all S, T, V: set. S u ( T u  V) = ( S u  T ) u  V 
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in enrich SetO + Boolopns by 
OlmS ~: element, set --* bool 

choose : set --) element 
eqns all a:element, a~q~=false 

all a, b: element, a ~ singleton (b) = eq (a, b) 
all a:element, S, T: set. a~(SuT)=(aES) or (acT) 
all a:element, S:set. choose(singleton(a)uS)~(singleton(a)uS)=trur enden 

const Nat = 
enrich Bool by 

data sorts nat 
Ol)nS 0 : nat 

succ: nat ~ nat 
+ : nat, nat ~ nat 

eqns all n:nat. O+n=n 
all m, n:nat, succ(m) + n = succ(m + n) enden 

Set(Nat[element is nat, eq is = =]) 

Note  that  the data opera t ion  is associated with an enrichment,  not  just  
with a specification (theory.. .endth is equivalent to enrich Empty  by...enden). 
As well as adding  a data constraint  describing the enrichment,  data contributes 
an  extra opera tor  = = : s, s ~ bool  for each new sort s. If p and q are terms of  
sort  s, p = =q = true iff p =q in all models  of  the specification (which must  
satisfy the new data constraint). Thus, the models of  Bool and Na t  are the 
s tandard  ones, with the expected interpretat ion of  = = .  It is also possible to 
enrich a specification wi thout  using the data operation,  as in Boolopns  (where 
in fact an appl icat ion of  data would not  change the class of  models) and in 
Ident  (where data would force all models  to have an empty carrier for the sort 
element). The derive opera t ion is used in Ident  to ' forget '  the operators  of  
Boolopns  which made  it convenient  to write the equations of  Ident0 but  which 
are not  required in the result, and to rename the opera tor  - to eq. The using 
clause here says that  the result should incorporate  Bool. 

Ident  is a metatheory, i.e. it is used as the requirement (metasort) of a 
parameter ised specification (procedure) to  describe its allowable actual  parame-  
ters. The  m e t a  construct  for declaring metatheories did not  appear  in previous 
versions of  Clear because (incorrectly) the distinction between a meta theory  
and  an ord inary  constant theory was not  made. See Sect. 6 for a detailed 
discussion of  this point. Set is a parameterised specification with a single 
parameter  which may  be applied to any specification which "matches"  Ident. A 
fitting morphism must  be provided to give the correspondence between the 
sor t /opera tor  names in Ident  and in the actual parameter.  The applicat ion of  
data in Set contributes the data  constraint  (Ident~---)Set0,id> with the result 
that  in each model  A of  Set, [A[set ~ ~ ( I a l , ,  . . . .  ,) (the set of  finite subsets of  IA[ c, . . . .  ,) 
with the appropr ia te  interpretations for the operators  ~, singleton and u .  
But note tha t  choose has not  been completely specified; all that  has been said is 
that  choose selects some element f rom any nonempty  set. Which element to 
pick is left unspecified, as is the result of  choose(ok). Thus, the models  of  
Set(Nat[...]) do not  form an isomorphism class; we say that Set(Nat[...]) is a 
loose specification. 

Infix operators  have been used freely in the example above, a l though 
formally the syntax of  Clear does not  provide for them. Ano the r  liberty 
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concerns "over loaded" operators (such as = = : bool, bool--* bool and = = : 
nat, nat ---, bool in Nat); although the definition of  signature allows an oper- 
ator  to have multiple types, the semantics provides no way of resolving 
references to such operators. In practice a typechecker can usually disam- 
biguate such references according to the context. 

5. Dealing with Shared Subtheories 

Consider the following specification fragments taken from the example in the 
last section: 

const Boolopns = enrich Bool by 
opus and, or, =~:bool, bool ~ bool 
eqns ... 

const Nat  = enrich Bool  by 
data sorts nat 

opns 0: nat 
succ: nat --* nat 
+ : nat, n a t - ,  nat 

eqlls ... 

Notice that both Boolopns and Nat "include" the theory Bool; Bool is a 
shared subtheory of Boolopns and Nat. What  does this mean formally? And, 
how does the semantics of Clear define the theory-combining operations so 
that the theory Boo lopns+Na t  includes only one copy of Bool? 

In [4], shared subtheories are explained by analogy with the EQ predicate 
of LISP [21]. The EQUAL function in LISP tests whether two lists look the 
same (i.e. whether they contain the same elements in the same order), while EQ 
tests whether two lists are the same (occupy the same list cells in s t o r a g e -  
note that EQ(a,b) implies EQUAL(a,b)  but not vice versa). The important  
features of EQ are given by the following examples (a, b and c are arbitrary 
lists): 

i) EQ(CONS(a,b), CONS(a,b))-- false (but EQUAL( ... . . . .  ) = true) 
ii) (EQ(I,/) where l=CONS(a,b))=true 

iii) EQ(CAR(CONS(a,b)), CDR( CO NS(c,a)))=true 

These examples show that 

i) Writing down a CONS expression twice gives two different lists. 
ii) Two uses of the same variable refer to the same list. 

iii) Two different lists can share a common sublist. 

Now to complete the analogy, the theory-building operations of Clear act 
like CONS and the behaviour of EQ indicates what is meant by "identical" in 
the following: 

Requirement. The theory-building operations should be defined in such a way 
that a theory can never contain two identical subtheories. 

This leads (for example) to the following informal constraint on the combine 
( + ~ ooeration: 
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Constraint. If B is a subtheory of A and D is a subtheory of C, then B and D 
should be identified when forming A + C iff they are identical. 

In order to write a semantics for Clear we must devise some representation 
of theories which makes it easy (or at least possible) to determine if two 
theories are identical, so that the above constraint can be satisfied. The general 
category-theoretic semantics of 15] uses a rather complicated representation of 
a theory which shows explicitly how the theory is related to every one of its 
subtheories. We can use a much simpler representation because the only way 
that a theory and one of its subtheories can be related in ordinary Clear is by 
inclusion. 

An important observation is the fact that the requirement above is in- 
herited by the sorts and operators of a theory (where identity is again by 
analogy to EQ in LISP), giving: 

Requirement. The theory-building operations should be defined in such a way 
that a theory can never contain two identical sorts or operators. 

Moreover, if this low-level requirement is satisfied (and the operations are 
defined in a reasonable way) then the previous requirement will be satisfied as 
well. The above contraint on combine also has a low-level equivalent. 

The semantics of EQ in LISP is defined in terms of a model of storage 
where lists are stored in addressable cells and EQ simply checks whether its 
arguments begin at the same address (see 121]). By associating a unique 
address with each non-EQ list cell, the meaning of EQ is reduced to equality of 
addresses. By analogy, if we associate an appropriate tag with each sort and 
operator we can easily determine whether two tagged sorts or tagged operators 
are identical in the sense indicated above. If the name of the theory of origin of 
a sort or operator is used as a tag, then the sort or operator name together 
with the tag forms a unique and precise name for the object (sort or operator). 
Then if (for example) f is an operator belonging to both A and B, f will 
appear once in A +B  if f has the same tag (theory of origin) in both A and B; 
otherwise f of A and f of B are really different operators which just happen to 
have the same name, and A + B  should include both. The language IOTA [22] 
also uses tags (to qualify operator names). 

Each theory is therefore represented for the purposes of our semantics as a 
tagged theory (a theory where the names are all tagged). The tagged theories 
Boolopns and Nat  look like this, where tags are shown as subscripts: 

Boolopns = Nat  = 
sorts boolBool 
opns truesoo~, falseso.l: boolBo.~ 

not Booi: boolsoo~ --. bOOIBooi 
andsoolop~: bool~.ol, boo1Bool --~ boolso.~ 

eqns ... 

sorts boolsool , natNa t 
OlmS true~o 1, false~,.~: bools**l 

not so.l: boolso.~ --* bool~,.~ 
0Na t : natr~at 

eqlls ... 
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Boolopns + N a t  is simply the set-theoretic union of these two tagged theories: 

sor t s  booleool, n a t N a  t 

opns  trueeoo~, falsesoo~: booleo,~ 
not soo~ : boolso,~ ~ boolBoos 
andeootop.s: boolsoo t, bools.o~ ---, bOO1Boot 
. . .  

0 N a  t : natN, t 

eqns ... 

The particular tags used are not important ;  all that matters is that the tags 
for two different sorts (or operators) which have the same name, are different. 
Thus, X146 and Y27 would serve as well as Bool and Nat  above. Also (for 
example) true and false need not have the same tag. This fact will be useful in 
the semantics; it turns out to be inconvenient to tag sorts and operators with 
the name of their theory of origin. 

A problem arises when we consider how to treat the operat ion of applying 
a parameterised specification to an argument. Suppose that  Set is the para-  
meterised specification defined in the last section. I t  is natural to regard its 
body as a tagged theory: 

s o r t s  boOlBoo~, elemenhdent, Setse t 
opus  ~bs, t : Sets~, 

singletonsc t : elemenhdcn t --, sets, ' 

eqns  ... 

The expressions Set(Nat[element is nat, eq is = = ] )  and Set(Bool[element is 
bool, eq is = = ] )  will also denote tagged theories. But what should the tags 
be? A first a t tempt  might be the following: 

Set(Nat[element is nat, eq is = = ] ) =  
s o r t s  boo1B**l, natlqat , Setse t 
o p n s  ONat : natNa t 

. . .  

~ S e t  : Setset 
singletons~ t : nats~t -- ,  s e t s e  t 

eqns  ... 

Set(Bool[element is bool, eq is = = ] ) =  
s o r t s  bOOlBool, Setse  t 

opns  trues**~, falseso.1: boolsoo~ 

~set: Setset 
singletonse t : bool Boo~ ---' Setset 

eqns  ... 

Now consider the theory Set(Nat[...])+Set(Bool[... 'l). We would expect 
this theory to contain two sorts with the name set, one from each of the two 
theories. But the result contains only one sort named set since in both of the 
tagged theories above this sort has the same tag. A similar problem arises with 
the operators  on sets, al though types serve to distinguish the two singleton 
operators. 

The solution is to assign new (and distinct) tags to the sort set and the 
operators  ~, singleton etc. in the process of applying the parameterised specifi- 
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cation. This gives: 

Set(Nat[element is nat, eq is = = ] ) =  
sorts boolBoo. , natNat, setNewl 
opns 0Na t : natNa t 

~bNewl : setN,wl 
singletonr~ew 1 : natNat ~ SetNew 1 

eqns ... 

Set(Bool[element is boo1, eq is = = ] ) =  
sorts booIBool , setNew2 
opns trueBo~, false~oo~: boO1Bool 

t~New2 : setNew2 
singletonNew 2 : boolBool ---> setr~ew 2 

eqns 

When these two theories are combined, the desired result is produced. Note  
that sorts such as bool and nat (and their associated operators) retain their 
original tags, so combinations such as Set(NatE.. .])+Nat will contain just one 
copy of each. 

The problem now is: how do we determine which sorts are to be retagged 
during the application of a parameterised specification? In this example, one 
possibility would be to retag all sorts and operators having the tag Set but 
such a simple approach does not work for more complicated examples. 

The solution to this problem which gives the same effect as the semantics of 
[5] is to retag in P(A[. . . ] )  only those sorts and operators of P which do not 
originate in a constant subtheory of P, i.e. in a subtheory originally produced 
by a declaration const TN . . . . .  (This is not the only possible solution, and in 
fact it gives rise to the problem of "proliferat ion" mentioned in [6] - i.e. 
Set(Nat[ . . .])+Set(Nat[ . . .])  will contain two sorts with the name set.) In order 
to implement this strategy it is necessary to keep track of all the constant 
subtheories of a theory. Since all these subtheories appear  in the constant 
theory environment (see below) it is sufficient to keep track of their names. 
Adding this set of names (called a base) to a tagged theory gives a based 
theory. The addition of a base does not complicate the definition of the sum of 
two theories; the base of the sum is simply the union of the bases. 

Definition. A based theory is a pair (T, B)  where T is a theory with tagged sorts 
and operators and B (the base) i s  a set containing the names of the constant 
subtheories of T. (T, B)  is normally written T B. 

Definition. A based theory morphism tr: T B ~ T  ~, (where B~_B') is a theory 
morphism a: T ~ T '  such that a restricted to the theories named in B is the 
identity. 

These based theories should not be confused with the based theories of [-5] 
mentioned earlier. Although the definitions are different, bo th  kinds of based 
theories serve the same purpose so we use the same name to draw attention to 
this similarity. 

The base of a based theory contains names of theories in the environment 
of constant theories, which records declarations of the form eonst TN . . . .  : 

Definition. The constant theory environment p is a function which maps names 
to based theories. 
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The constant theory environment is used in the usual way to retrieve the 
theory associated with a particular theory name. The semantics also requires 
separate metatheory and parameterised specification environments - see 
Sect. 8.5. 

Note that the constant subtheories of a constant theory include the theory 
itself, but the constant subtheories of the theory which appears on the right- 
hand side of a declaration do not include the theory being declared. That  is, in 
the declaration 

const TN = expr 

the base of the theory which expr denotes (this is the based theory which is 
bound to TN in the constant theory environment) will not contain TN, while 
subsequent uses of the theory name TN will denote a theory having a base 
which includes TN. 

A subtle point is the way that  the base of a theory influences sharing. In all 
contexts which do not include application of a parameterised specification or 
declaration, a tagged sort/operator coA will be identified with v z iff c o - v  and A 
=B.  But in general contexts this is only the case if every parameterised 
specification and metatheory which includes coA (or vs) has a theory in its base 
which includes coA (resp. vB), since otherwise coA and v B are subject to retagging. 

6. Metatheories 

Metatheories are used in Clear specifications to give the requirements (meta- 
sorts) of parameterised specifications. For  example (simplifying a fragment 
from Sect. 4): 

meta Idmeta = enrich Bool by 
sorts element 
opns eq: element, e lement~bool  
eqns all m: element, eq(m, m) = true 

proc Set(X: Idmeta)=enrich X by ... 

Here, Idmeta is a metatheory "describing" all theories having at least one sort 
and an equivalence relation on that sort. Any such theory can be used as an 
argument of Set. In this section the relation between metatheories and ordinary 
(constant) theories is discussed. The category-theoretic Clear semantics of [5] 
did not treat this aspect correctly, using constant theories to give requirements 
of parameterised specifications. (A corrected version of this semantics is given 
in E24].) 

A metatheory is not a new kind of theory, but only an ordinary based 
theory used in a special way. A metatheory M described the class containing 
those based theories T for which a based theory morphism o': M ~ T  exists. 
This is the formal equivalent of the condition that an actual parameter theory 
must match the corresponding requirement theory with respect to the renam- 
ing of sorts and operators given by the fitting morphism. This fitting morphism 
(supplied by the user) is used to construct the result of applying a param- 
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eterised specification. But in order for this to work the metatheory M must 
be constructed in a slightly different way from a constant theory; this is the 
reason why the meta construct is used to define a metatheory. The meta 
construct did not appear in previous versions of Clear because (incorrectly) this 
distinction was not made. 

An easy way to understand the difference between constant theories and 
metatheories is to observe what happens when the metatheory Idmeta above is 
replaced by a constant theory Idconst as the requirement of a parameterised 
specification: 

eonst Idconst =enrich Bool by 
sorts element 
opns eq: element, e lement- ,bool  
eqns all m: element, eq(m, m) = true 

. . .  

proc Setconst(X: Idconst)= enrich X by ... 

Idconst yields the following based theory: 

sorts boolaooi, elemenhaco, s t 
opns trueaool, falseB.ol, ... 

eqldconst 
eqns ... 
base Bool, Idconst 

What  are the possible actual parameter theories to which Setconst can be 
applied? Recall that a based theory morphism is used to fit an actual parame- 
ter to its corresponding requirement theory; the morphism goes from the 
requirement to the actual parameter. Since the base of the target of a based 
theory morphism must include the base of the source (and the morphism 
restricted to the base must be the identity), the actual parameter must contain 
Idconst as a constant subtheory. In essence, the only theory Setconst can be 
applied to is Idconst itself. This is clearly neither intended nor desirable. 

The declaration of Idmeta above yields the following based theory: 

SOrtS boo1eool, elementldm�9 
opns trueeoot, falseBeol, ... 

eqldmeta 
eqns ... 
base Bool 

The only difference between Idconst and Idmeta as based theories is that while 
Idmeta has a base consisting only of Bool, the base of Idconst contains Idconst 
itself as well. This change is all that is necessary to make Idmeta the appropri- 
ate requirement for the parameterised specification Set above. Since the base of 
Idmeta contains Bool, any actual parameter of Set must include Bool as a 
subtheory. But it need only match the rest of Idmeta; that is, it must include a 
sort with an equivalence relation. Suitable actual parameter theories and fitting 
morphisms are: 

Nat[element  is nat, eq is = ='] 
Bool[element is bool, eq is = = ]  
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and many others. In general, the difference between constant theories and 
metatheories is just that metatheories are not recorded in the bases of theories 
which contain them. 

In the example above, a constant theory (Bool) was included in a meta- 
theory (Idmeta). In general, metatheories can be put together (with each other 
and with constant theories) using the same operations as for constant theories, 
since they are nothing more than a special kind of based theory. When such a 
conglomerate is used as a requirement theory, any matching actual parameter 
must include all of the constant subtheories of the requirement as well as sorts 
and operators which match those of the metatheories. 

The concept of a metatheory in Clear is similar to the notion of a sype in 
the language IOTA [22]; there too, a sype is not very different from an 
ordinary type, although it can be regarded as a higher order concept. 

7. Semantic Operations 

In this section the semantic operations which "implement" the theory-building 
operations of Clear are defined. This forms the quintessence of Clear's seman- 
tics; the semantic equations given in Sect. 8 serve only to attach a syntax to 
the operations defined here. The definitions depend heavily upon the special 
representation of based theories described in Sect. 5; the objects defined in 
Sect. 2 are used as well (signatures, equations, constraints) but their repre- 
sentations are not important. 

Definition. If Z=(S, f2) and I'=(S',f2') are tagged signatures then the union 
of I and Z', written ZwI ' ,  is (SwS ' , f2w~)  (where f2 and ~ are the exten- 
sions of f2 and [2' to indexed sets of operators over S w S'). 

7.1. Combine 

This implements the " + "  theory-building operation of Clear. 

combine: based-theory x based-theory~based-theory 

combine( ( / ,  EC)B, (Z' ,  E C')s,) = (Z u Z', a(EC) w a'(EC') )s~s" 
where a and a' are the signature inclusions 

1 , 9  I U N  

We will sometimes use "+" in the sequel rather than combine; this should 
cause no confusion. 

The result has the sorts and operators of both theories, the closed union of 
the axioms (translated to give Z w/ ' -equa t ions  and -constraints), and the union 
of the two bases. Since I and I '  are tagged signatures, the union N u I '  
respects shared sorts and operators. 
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7.2. Enrich 

An enrichment consists of some new sorts, operators (with their types) and 
equations. The enrich operation takes a based theory and an enrichment and 
produces the enriched based theory. Each new sort and operator  must be given 
a unique tag, according to the discussion in Sect. 5. This tagging is not done 
by the enrich operation itself; we require that new sorts and operators be given 
unique tags before they are used to enrich a theory. This is necessary to avoid 
complications in cases where the type of a new operator includes both old and 
new sorts. The tags are attached by the semantic equations (as part  of the 
semantics of sort and operator  declarations - Sect. 8.3). 

enrich: based-theory 
x tagged-sort-set x (tagged-operator x type)-set x equation-set 

---,based-theory 

enrich((S,  E C ) B  , S', f2', E') = ( S  ~ (S' ,  f2'), cr(E C) w E ' )  8 

where f2' is indexed over sorts(Z)w S' 
E' is a set of Sw(S ' , t2 ' ) -equa t ions  

and a is the signature inclusion 

s ~ z  w (s', ~ ' )  

7.3. Data Enrich 

When a theory is enriched by some new data, the axioms of the resulting 
theory contain a data constraint describing the enrichment. Moreover, an 
equality predicate =---:s,  s--*bool for each new sort s is introduced. Otherwise 
the result is the same as for ordinary (non-data) enrich. We employ a model- 
theoretic approach to obtain the equations which specify the meaning of the 
new equality predicates. 

Definition. Suppose 2; is a tagged signature which includes the sort boolBoot and 
the operators truesoo~, falsesoo~:boolBoo~, A is a S-algebra, E C  is a set of S 
equations and constraints, x is a new tag, S is a subset of the sorts of S, and 
ssS .  Then: 

- 2;~, is S with an additional operator = =~: s,s~boolB~,t.  S s is defined 
similarly (i.e., an additional operator = =x for each sort in S). 

- A~ is a S~,-algebra just like A but with an operator  = =~ satisfying 
= =~(a, b)=tru%ool iff a = b ,  for all a, b~lA[ s. A s is defined similarly. 

- E C  s is the set of SS-equations and constraints given by M*, where M 
= {ASIA~EC*}.  

If S is the set of new sorts and E C  is the set of equations and constraints 
already in a theory, then E C  s includes E C  as well as all the equations needed 
to define the new equality predicates on sorts in S. 

data-enrich: based-theory 
x tagged-sort-set x (tagged-operator x type)-set x equation-set 
x t ag~based- theory  
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data-enrich((Z, EC)B, S', g2', E', x) = ((Zenr) s', (ECenr w (F, " s" zcl~,.,) )x ) B,~, 

where ( Zenr, E Cenr ) 8,n r = enrich((z ,  E C) n, S', g2', E'> ) 
and F is the equational theory inclusion 

( Z, ~p) ~-%(Zenr, ff~'> 

data-enrich gives an error if Zenr does not include booIBoot and trueaoo~, 
false Bool : bool nool . 

The result is the same as the result of enrich, with the addition of an 
operator = = for each new sort, the equations Concerning those operators, and 
the data constraint (F,  idre~, ~ where F is the equational theory inclusion 
describing the enrichment. 

7.4. Derive 

The derive operation is used to "forget" sorts and operators of a theory, 
possibly renaming the ones remaining. The renaming is accomplished by a 
signature morphism which takes the new names into the old names. Given a 
Z-theory, a Z'-theory and a signature morphism a: Z ~ Z ' ,  derive produces a 
theory with the signature and base of the Z-theory, and all the Z-equations 
and constraints which are satisfied in all models of the Z'-theory - that is, the 
inverse image under tr of the equations and constraints of the Z'-theory. 

derive:  based-theory x signature-morphism x based-theory---,based-theory 
derive((Z, EC)B, a, (,~,', EC')B,) = (Z ,  tr- I(EC')) B 

where a -  I(EC') = {el a(e)eEC'} 
derive gives an error if or: (Z ,  EC)B-- . (Z ' ,EC')n ,  is not a based theory 

morphism. 

The result is a theory because of the following fact: 

Fact (see I-5]): If EC is closed then a - x ( E c )  is closed. 

Also, E C ~_ a-1 (EC') since a is a theory morphism. 

7.5. Apply 

Apply defines the meaning of applying a parameterised specification to its 
arguments. A parameterised specification is represented as a based theory (the 
body) together with a list of based theories (the requirements). This is the first 
argument of apply; the second is a list of (based-theory x signature-morphism)- 
pairs (actual parameter x fitting morphism). The third argument is a tag to be 
attached to the "new" sorts and operators, and the fourth argument is the 
present constant theory environment. 

apply: (based-theory x based-theory*) [parameterised specification] 
x (based-theory x signature-morphism)* [parameters] 
x tag 
x environment ~ based-theory 
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The definition of apply uses two auxiliary functions. The first applies a 
signature morphism a: Z,A---,~B to a theory T with a signature Z which 
includes 2~A; the sorts and operators in ~ but not in ZA are not affected. This 
is used to apply a fitting morphism to the body of a parameterised specifi- 
cation, and is also useful in defining the second auxiliary function. 

_ altered by _ : theory x signature-morphism--.theory 
Suppose E = (S, f2), 2~A = (SA,  f2A), Z,B = (SB, f2B) and (Crso,ts, Cro,,~) 

= a :  , Y , A ~ B .  Then: 

(E, EC) altered by a =  (27, o-'(EC)) 
where 27 and a' are constructed as follows: 

, faso,~(s ) if s~SA 
for seS, let a,o,ts(s) = Js 

otherwise 
let S'= {a'~o,~(s)ls~S} 
for w~S*, s~S and f :  w---,s in f2, 

~(aop.~)w,(f) if f :  w--*s is in f2A 
let (a'opJw~(f)=~f otherwise 

for w'eS'* and s'eS', let f2",~,= U {(#opJw~(f)l f: w ~ s  in g2} 
<w,s>~J 

where J = {(weS*, s~S)  [(a'~o,~)*(ws ) = w' s'} 
then 27 = (S', g2') 
and a': Z,~S,' =(a'~o,,~, a'op,~) 

an error results if 2~A $ 

Informally, (Z , ,EC)  altered by a just replaces the sorts and operators of 2~ 
which are in 2~A by their images in $B. 

The second auxiliary function attaches a given new tag to all of the sorts 
and operators in a theory, excluding those sorts and operators which belong to 
a distinguished subsignature. 

_ retagged w i t h _  preserving_ : theory  x tag x signature--.theory 
( Z, E C) retagged with x preserving ,Y,' = ( Z, E C) altered by mtag 

where mtag is a signature morphism which gives each of the sorts and 
operators in E -  Z' the tag x 

an error results if E' $ 

Apply is now defined with the help of these two functions. The idea is to first 
attach the given new tag to each sort and operator in the body of the 
parameterised specification, excluding those belonging to a requirement theory 
or base theory. This is necessary so that (for example) the sort set in the theory 
Set(Natl . . .])  will always remain distinct from the sort set in Set(Bool[...]) as 
discussed in Sect. 5. The fitting morphisms are then applied to change each 
reference to the requirement signature into the corresponding reference to a 
sort or operator  in the signature of the actual parameter, and the base of the 
parameterised specification is attached. Finally, the actual parameters are 
added using combine to give the result. An error results unless all the fitting 
morphisms are based theory morphisms. 
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apply((Pnp,(M1, ..., M , ) ) ,  ( (A1 ,  a~), ..., ( A , ,  en)),  x, p) 
= A~ + ... + An+((P retagged with x preserving Sold) 

altered by al u . . .  u an)he 

where Sold= sig(M0 u . . .  usig(Mn) u U sig(p(TN)) 
TNEBP 

apply gives an error if some ui: Mi~A~ is not a based theory morphism. 

This construction is rather more elaborate than any of those given pre- 
viously. In order to understand it, consider first the simple case in which 
theories contain only sorts (no operators or equations/constraints) and the 
parameterised specification has only one argument. For  example: 

P---- sorts boolsool, m M, natNat, PP base Bool, Nat 
M = sorts boolsoo, ,  m M base Bool 
A = sorts boolBool, aA, a~ base Bool ,  A 
a = ['booleoolv'-*boo1Bool, m MV--*aA] 

NOW let us evaluate a p p l y ( ( P , M ) , ( A , a ) , J 3 6 , p )  where p is an environment 
including (at least) Bool, Nat  and A. The "o ld"  sorts upon which P was built 
(Sold) are: 

sorts boolBo.~, mM, natNat 
P.etagging P (without its base) while preserving 27oM gives: 

sorts boolBoob m M, natNat, PJ 36 

This is exactly P except that the sort p (which is "new" in P) is tagged with 
J 36 to ensure that it remains distinct from the sort p in the application of P to 
some other parameter. Applying the fitting morphism a and reattaching the 
base of P gives: 

sorts boolBoo,, aA, natNat, PJ36 base Bool, Nat 

and combining this with the actual parameter A gives the final result: 

sorts boolsool,  aA, natNat, PJ36, a~ base Bool, Nat, A 

For  a more difficult example, consider the specification of Sect. 4. Accord- 
ing to the semantic equations (see Sect. 8), the denotation of the expression 

Set(Nat[element is nat, eq is = = ] )  

is the result of evaluating a p p l y ( ( P , M ) , ( A , u ) , J 3 7 , p ) ,  where ( P , M )  is the 
denotation of the parameterised specification Set (P is the body and M is the 
requirement Ident), A and a are the denotations of the argument Nat  and the 
fitting morphism respectively, ./37 is some new tag, and p is the constant 
theory environment. 

The denotation of Nat is the following based theory (ignoring equations 
and constraints): 

sorts boolsool, natNa t 
opns 0Nat~ SUCCNat, = ~-Nat,  trueBoo:, --- 

eqn$ ... 
base Bool, Nat  
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Ident has the following denotation: 

sorts boolBoo~ , elementlden t 
opns eqld�9 , t r u e B o o l  , . . .  

eqns ... 
base Bool 

Note that since Ident is a metatheory, it is not recorded in the bases of 
theories (like Ident itself) with contain it. The body of Set denotes the follow- 
ing based theory: 

sorts boolBool, elementldent, Setse t 
opns ~bset, singletonset, eq~d,nt, trUeaool, ... 
eqns ... 
base Bool 

The constant theory environment contains Bool and Nat  (and Boolopns); Ident 
and Set are in the metatheory and parameterised specification environments, 
respectively. 

Referring to the definition of apply, the value of Sold is: 

sorts boO1soot, elementlden t 
o p n s  e q l d e n t  , t r u e B o o l  , . . .  

Retagging P (without its base) with the new tag J37 while preserving Sold 
gives: 

sorts boolBoot, elemenhdr setj37 
opns ~ba 37, singletonj 37, eqldent, trueBooi, --- 
eqns ... 

Applying the fitting morphism [elementla,,t~--,nat~at, eqldend "~=  =Nat] to this 
theory and reattaching the base of Set yields: 

sorts boolaoo~, natNat, seta37 
opns (~J37 ,  singletonj37, = =Nat, trueBooi, ... 
eqns ... 
base Bool 

Finally, this is combined with the actual parameter Nat to give the answer: 

sorts boolBoo~, natNat, setj37 
o p n s  (~J37 ,  singletonj37, 0Nat, SUQCNat, = = N a t ,  trUeBool, . . .  

eqns ... 
base Bool, Nat  

Note that applying a parameterised specification P with formal parameter 
X and requirement M to an argument A using a fitting morphism a is the 
same (because of the restriction that P must include M) as rewriting the body 
of the parameterised specification, with A substituted for X and all occurrences 
of sorts and operators in M translated using tr to the matching bits of A. The 
definition of apply simulates this rewriting, using the trick of attaching fresh 
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tags to the sorts and operators which are "new in P "  (i.e. not included in the 
base or requirement theories) to distinguish them from the corresponding 
objects produced in a different application of the same parameterised specifi- 
cation. 

7.6. Copy 

The copy operation is used to make a fresh copy of a theory, preserving a 
given set of subtheories. 

copy: based-theory x based-theory x tagobased- theory  
copy(TB, (~-,', EC')s,, x) =(T retagged with x preserving Z')B,~e, 

Given two based theories (the second theory is the combination of the 
subtheories to be shared), copy simply gives the new tag x to the sorts and 
operators of the first theory which are not in the second theory. The base of 
the result is the intersection of the bases of the argument theories. 

7.7. Copy-meta 

The copy-meta operation is used in the semantics of parameterised specification 
declaration. Consider the following declaration: 

proc P(X: Ident, Y: Ident) = enrich X + Y by ... 

In cases like these (i.e. whenever a multiple-parameter specification has require- 
ments which share non-constant subparts) the following operation is used to 
make fresh copies of the requirement theories while preserving any constant 
subtheories: 

copy-meta(T~rNl ..... rsvp, x, p )=  copy(T~rN, ..... rN,,~, p(TN1) +...  + p(TNm), x) 

8. Semantic Equations 

Below are the semantic equations which associate the syntactic constructs of 
Clear with their semantics. The equations are divided into several levels. Level 
I deals with the semantics of sort and operator names, and depends on the 
notion of a dictionary. Level IIa contains the semantics of enrichments (sort 
and operator declarations, and equations), and level IIb describes signature 
changes (used in derive and in application of a parameterised specification). 
Finally, level III gives the semantics of Clear's theory-building operations and 
declarations, based on levels IIa and IIb and the operations on based theories 
defined in Sect. 7. Much of the material in this section is taken from [5], 
although there are some corrections and many minor changes. 
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8.1. Dictionaries 

In Clear the notat ion s of  TN (where s is a sort name and TN is a theory 
name) may be used to refer to a sort which is included in a subtheory TN of 
the current theory (similarly o of TN for operators). This may be necessary if 
the sort (or operator) name alone is ambiguous. A dictionary gives the cor- 
respondence between such an expression and the tagged sort or operator  to 
which it refers. 

Definition. A dictionary is a pair of functions<sd, od> where 

sd: sort-name x theory-name~tagged-sor t  
od: operator-name x theory-name~tagged-opera tor  

The operation dict is used to construct a dictionary from a based theory; 
the resulting dictionary interprets sort and operator expressions referring to 
sorts and operators in that  theory. 

diet: based-theory x envi ronment~dic t ionary  
dict(TB, p) = <sd, od> 

where sd(s, TN)= the unique tagged sort with name s in p(TN) 
and od(o, TN)= the unique tagged operator  with name o in p(TN) 

sd(s, TN) gives an error if TNq~B, or if there is no unique sort called s in 
p(TN) (similarly for od(o, TN)). 

Note  that this definition says that the notation s of TN (similarly o of TN) 
may only be used to refer to theories which are in the base of the current 
theory. 

8.2. Level I: Sorts, Operators and Terms 

Syntactic categories 

s: sort name 
o: operator  name 
TN: theory name 
sex: sort expression 
oex: operator  expression 
x: variable 
tex: term expression 

Syntax 

(lower case identifier) 
(identifier or operator  symbol) 
(capitalised identifier) 

(identifier) 

sex:: = s Is of  TN e.g. element of  X 
oex:: = o l o  of TN e.g. not of  Bool 
tex:: = x loex(tex~ . . . .  , tex,) e.g. or(true of Bool, p) (infixes etc. also permitted) 

Values 

d: dictionary 
X: sort-indexed variable set 
tm : term 
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Semantic functions 

Sex: sort-expression ~ signature ~ dictionary ~ tagged-sort 
Oex: operator-expression ~ signature ~ dictionary ~ tagged-operator  
Tex: term-expression ~ s i g n a t u r e ~  dictionary ~ sorted-variable-set--* term 

Semantic equations 

Sexl[s]iZd = t h e  unique tagged sort in sorts(Z) with name s 
SexEs of  T N ] Z d  = sd(s, TN)  where (sd, od)  = d  

O e x [ o ] Z d =  the unique tagged operator  in operators(Z) with name o 
Oexl[o of T N ~ Z d  = od(o, TN)  where (sd,  od)  = d 

T e x [ x ] Z d X = x  (a Z-term on X) if x 6 X  else e r r o r  

Tex[oex(tex i . . . . .  tex.)] Z d X  = 
let f = Oex[[oex]lZd in 
let tm 1 . . . . .  tm.  = Tex [[tex 1]] Z d X  . . . .  , Tex[[teXn] Z d X  in 
f (tml . . . .  , tm~) (a Z- term on X) 

8.3. Level  I l  a: Enrichments  

Syntactic categories 

sd: sort declaration 
od: operator  declaration 
varl: variable list 
eq: equation expression 
enrb: enrichment body 
enr: enrichment 

Syntax 

s d : : = s  
od :: =o:  sex1, ..., SeXn-"~ s e x  

v a r l : : = x 1 1 , . . . , X l n  ~ �9 S e X l , . . . , X m l ~  . . .~Xmnr, , :  s e x  m 

eq:: = all varl. tex i = tex2 
enrb:: = sorts sd 1 . . . .  , sdm opus od l . . . od ,  eqns eq 1.--e% 
enr:: = enrbldata  enrb 

The operator  declaration o: sex  is permitted as 
o: --,sex. Furthermore,  the notation 

e.g. nat 
e.g. < : nat, n a t ~ b o o l  
e.g. i , j :nat,  p :bool  
e.g. all p:nat ,  p + 0 = p  

an abbreviation for 

01 ,  � 9  Oral s e x l ,  . . . ,  SeXn--->sex 

is allowed for operator  declarations, defined by the obvious expansion into a 
sequence of declarations, and the notation texl =tex2 is allowed as an abbre- 
viation for all. texl =tex2 (ground equation). 

Semantic functions 

Sd: sor t -declarat ion- ,  t ag - .  tagged-sort 
Od: operator-declaration-~ tag ~ signature ~d ic t ionary  

~( tagged-opera tor  x type) 
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Var l :  var iable- l i s t  ~ s ignature  ~ d i c t iona ry  ~ s o r t e d - v a r i a b l e - s e t  
Eq:  equa t ion-express ion  ~ s igna ture  ~ d i c t iona ry  ~ equa t ion  
Enrb :  en r i chmen t -body- - ,  tag ~ s igna ture  ~ d i c t iona ry  

~ ( t a g g e d - s o r t - s e t  x ( t agged-ope ra to r  x type)-set  • equat ion-se t )  
Enr :  en r i chment  ~ t a g - - ,  based- theory  ~ d i c t iona ry  ~ based- theory  

Semant ic  equa t ions  

Sd[[ s~x = s~, 
OdR'o: sex~ . . . .  , s e x . ~ s e x ] l x Z d  = 

let Sl, . . . ,  s , ,  s = Sex[[sexl~Zd, . . . ,  Sexl[sex,~2~d, Sexl[sex~z~d in 
<ox,<<s~ . . . . .  s.>,s)) 

Varlffxl l  . . . . .  x l . ,  : sexl  . . . . .  xm 1 . . . .  , xm,m:sex~  Zd = 
let s 1 . . . . .  s m = Sex[ sex l~Zd ,  . . . ,  S e x [ s e x ~ Z d  in 
{ < x . , s l )  . . . . .  < x l . , , s l )  . . . .  < x . l , s . )  . . . . .  < x . . . , s . ) }  

Eq~al l  varl.  tex 1 = t ex2 ]Zd  = 
let X = V a r l l [ v a r l l l Z d  in 
let tm l,  tm 2 = Texl[ texl]]ZdX, Texl[tex21]ZdX in 
VX. tm~ = t m  z (a Z-equa t ion)  

E n r b [ s o r t s  sd~ . . . . .  sdm opns o d x . . . o d ,  eqns e q ~ . . . e q p ] x Z d =  
let S ' =  {Sd~sdll]x . . . .  , Sdl]'sd.1]x} in 
let 2 7 = Z u ( S ' , ~ b )  in 
let f2 '=  {Od[[odt ]x27d . . . . .  Od[od.1]xS'd} in 
let Z " =  Z ' w ( q ~ , O ' )  in 
let E ' =  {Eql[eql l lZ"d . . . . .  Eql[eqel]Z"d } in 
(S',O',E'> 

Enr  I[ enrb~ x Td = enrich(T, E nrbn'enrbl] x sig(T)d) 
Enr[[data  enrb]xTd  = data-enr ich(T,  En rb [en rb ] lx  sig(T)d, x) 

8.4. Leve l  l i b :  Signature Changes 

Syntac t ic  ca tegor ies  

sc: sor t  change  
oc:  o p e r a t o r  change  
sic: s igna ture  change  

Syntax 

s c : : = S l  is sexl ,  ...,Sn is sex. 
o C : : = o  1 is oex l ,  ..,,On is oexn 
sic : : = SC, OC e.g. e lement  is nat, 

o rde r  is < of  N a t  
Semant ic  funct ions  

Sc: sor t -change-- ,  s igna ture  ~ signature---, d i c t iona ry  
( tagged-sor t  ~ tagged-sor t )  

Oc :  o p e r a t o r - c h a n g e  ~ s igna tu re -*  s igna ture  ~ d ic t iona ry  
- - . ( t agged-opera to r  ~ t agged-opera to r )  

Sic: s igna ture-change- - ,  s igna ture  ~ s ignature  ~ d ic t iona ry  
s i gna tu r e -morph i sm  
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Semantic equations 

Scitsl is sexl, ...,sn is sexn]lZ27d' = 
{<Sex[slllZd, Sexltsexl]Z'd'> . . . . .  <Sexl[sn~Zd, SexitsexnllZ'd'>} 
where d = <~b, q~> (the null dictionary) 

Ocitol is oexl, ..., on is oexni2727'd' = 
{<Oexi tol~d,  Oexitoexln27'd'>, .... <Oexiton]]Zd, OexB'oexn~27d'> } 
where d =  (~, ~b> (the null dictionary) 

Sicitsc, oc~2727'd' = make-signature-morphism(2Y, Scitsc]]Z,r'd', Ocitoc]2~27d', 27') 
where make-signature-morphism(S, a,o,~,, g, 27') is the signature morphism 
<a~o,z~,aopn~>: ~ Z '  with (aopn~),~ the set of all pairs < f , f ' > e g  such that 
f :  w ~ s  is in/2 

8.5. Environments 

Reference has already been made in previous sections to an environment of 
theories. In that case the reference was to the constant theory environment, 
only one of the three environments which will be needed. This is a function 
binding names to based theories. The other two environments store metatheory 
and parameterised specification bindings; the metatheory environment is again 
a function binding names to based theories, while in the parameterised specifi- 
cation environment each name is bound to a value consisting of a based theory 
(the body) together with a list of based theories (the requirement theories). 

Several operations are defined for manipulating these environments. The 
operation 

bind: name x value x environment--.environment 

returns an environment with an added association between the name and value 
given (the type of value depends on the environment). Similarly, 

bind: name* x value* x environment--*environment 

binds a list of names to the corresponding elements in a list of values. These 
operations suffice for binding names to values in the metatheory and pa- 
rameterised specification environments, but adding bindings to the constant 
theory environment involves a slight complication. Recall that the base of a 
theory contains the names of its constant subtheories, and that the constant 
subtheories of a constant theory include the theory itself. This implies that the 
base of every theory in the constant theory environment should include the 
name to which the theory itself is bound. This addition to the base is made 
when a new binding is added to the constant theory environment using the 
following operation: 

bind-const: name x based-theory x constant-theory-environment 
constant-theory-environment 

bind-const(TN, TB, p)= bind(TN, Ts~rN~, P) 

There is an analogous operation for binding a list of names to the correspond- 
ing elements in a list of based theories: 
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bind-const: name* x based-theory* x constant-theory-environment 
constant-theory-environment 

bind-const((TNl,  ..., TNm ), ( T I B I , ..., Tmnm), p)=  
bind((TN1 . . . .  , TNm ), ( T1B1 ~trN ll . . . . .  Tmem~trNm~), P) 

Since each of the three environments is a function from names to values, 
bindings can be retrieved using function application, i.e. p(TN) is the value 
bound to TN in p, 

8.6. Level I I I :  Theory Building Operations 

Let J be a countably infinite list of distinct tags. This is where the tags 
required by the representation of based theories discussed in Sect. 5 come 
from. The functions 

hd: tag-list--.tag 
tl: tag-list ~tag-l ist  
split: tag-list x nat ~(tag-list)* 

are defined by the following axioms: 

hd[x lx2 . . . ]  = x  1 
t l [x l  x2... ] = Ix2.. .]  
split ( [ x l  x2. . .] ,n)= ( [ x l  xn+ l x~.+ l.. .], [x2x.+ 2x~.+ z...] . . . . .  [ x . x z , xa . . . . ] )  

These functions are used in the semantic equations below to provide tags and 
lists of tags wherever they are required. All these tags originate from J and are 
hence distinct. 

Syntactic categories 

PN: parameterised specification name (capitalised identifier) 
e: expression 
spec: specification 

Syntax 

e:: = TNI theory enr endth 
l e l+e2  
[enrich e by enr enden 
[derive enr using el,  ..., e. from e by sic endde 
I PN(el  [sic1] . . . .  , e.[sic.]) 
Ilet T N = e l  in e2 
Icopy e using ex, . . . , e .  

spec:: = e lconst TN = e spec 
Imeta TN = e spec 
Iproc PN(TNI :e l  . . . . .  T N , : e . ) = e  spec 

e.g. const Bool = theory...endth 
meta Triv = theory...endth 
proc String~X;Triv)= theory...endth 
String(Bool[element is bool]) 
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Values 

T: based theory (sometimes M, P or A for metatheory, parameterised 
specification body or actual parameter respectively) 

p: constant theory environment (name---,based-theory) 
#: metatheory environment (name-,based-theory) 
n: parameterised specification environment 

(name-,based-theory • based-theory*) 
L: tag-list 

Semantic functions 

E: expression--* constant-theory-environment---,metatheory-environment 
---, parameterised-specification-environment ~ tag-list 

--.based-theory 
Spec: specification-,constant-theory-environment--.metatheory-environment 

---, parameterised-specification-environment--, tag-list 
--,based-theory 

Semantic equations 

fp(TN) if TNedomain(p)  
E[[TN]p#nL= ~g(TN) if TNedomain(/~) 

terror if TN is in neither or both domains 

E[[theory enr endth]p#TrL = Enr[enr]hd(L)~dict(~,  p) 
(4 is the empty based theory) 

El[el + e2]]p#rcL = 
let L1, L2 = split(L, 2) in 
E~[el]p#nL1 + E~e2]]p#rrL2 

E[em'ich e by enr eaden]pl~nL= 
let T= E[e]p/tr~tl(L) in 
Enr[enr]  hd(L) Tdict(T, p) 

E[derive enr using el,  ..., e. from e by sic e u d d e ] p g n L =  
let L1 . . . .  , L.+I =split(L, n + 1) in 
let T =  E[el ]]p#nL~ +. . .  + El[e~]p/anL, in 
let T' = Enr[enr]hd(L,+ 1)Tdict(T, p) in 
let T" =E[e]pgr r t l (L .+  1) in 
let a = Sic[ sic ]lsig( T')sig( T")dict( T", p) in 
derive(T', a, T") 

EnPN(ei l s ic l ] , . . . ,  e . [s ic . ])]pt tnL = 
let L 1, ..., L. + 1 = split(L, n + 1) in 
let At . . . .  , A. = E[ea~p#nLl  . . . . .  E[e.]p#7~L. in 
let (P,, (M1,  ..., M~))  = 7r(PN) in 
let a l, ..., a. = Sic[[sicl ]lsig(M t)sig(A t)dict(A1, p), 

~  

Sic[sic.]sig(M.)sig(A.Rlict(A., p) in 
apply((P, (M1, ..., M . ) ) ,  ( ( A l ,  a l )  . . . .  , (A. ,  t r . ) ) ,  hd(L.+ l), P) 



470 D.T. Sannella 

El[let TN = e l  in e 2 ] p # = L =  
let L1, L2 = split(L, 2) in 
let T=E[el]pI~nL1 in 
let p' = bind-const(TN, T, p) in 
let Tk=E[[ez]]p' l.trcL2 in 
TB-{TN} 

E[copy e using e l , . . . ,  e . ] p # 7 ~ L  = 

let L 1, ---, L. + 2 ~--- split(L, n + 2) in 
let T= E[e]]plt~zL1 in 
let T '= E[[ei]p#nL2 + . . .  + E[e.]p#nL.+ ~ in 
copy(T, T', hd(L. + 2)) 

Specl[e]p/.tnL = El[el p~nL 
Spec[[const TN = e spec]pkt•L = 

let Lx, L2 = split(L, 2) in 
let p' = bind-const(TN, E[[ e] p l~nL1, p) in 
Spec[[ spec]] p' ktlt L2 

Spec[[meta TN = e spec]p/~zL = 
let L~, L2 = split(L, 2) in 
let #' = bind( TN, En'e]p#rcL1, #) in 
Specl[spec]]p#'zL2 

Spec[proc PN(TN1 : e l , . . . ,  TNn: e,) = e spec ]ppnL  = 
let L1, ..., L,§ 2 = split(L, n + 2) in 
let M1, . . . ,  M, = copy-meta(E[el]p/~ztl(L1),  hd(L1), p), 

copy-meta(E[[e,]p#rctl(L,), hd(L,), p) in 
let p' =bind-cons t ( (TN~ . . . .  , TN,) ,  ( M ~, ..., M, ) ,  p) in 
let Ps= El[e]p' l~nL,+ x in 
let ~' =bind(PN,  (PB-trs ...... rN.~, (Mx . . . . .  M , )  ) ,n) in 
Spec[[spec]]p#~z'L,+ 2 /f {TN1, ..., TN.} ~ B  else error 

The denotat ion of a specification spec in the initial environments p, p, r~ is 
then given by the value of Spec[spec]lplznJ (recall that J is a n  infinite supply 
of distinct tags). The initial constant theory environment p should normally 
include a binding of the theory name Bool to a theory containing (at least) the 
sort boolnoo~ and operators  trUeRoo~ and falsenoo~ with base {Bool}; these exact 
names are required by the data-enrich operation. 

9. Conclusion 

There are a number  of algebraic specification languages besides Clear which 
have a formal semantics, including CIP-L  [2], L O O K  [8], ACT O N E  1-7], 
ASL [27] and the Larch Shared Language [18]. In comparison with these, the 
semantics of Clear in [5] as well as the one given here seem overly complex. 
The reason for this is that Clear at tempts to take proper account of shared 
subtheories. A number  of complications in the semantics are required to 
handle this feature, namely the addition of tags to sort and operator names (to 
indicate their theory of origin), of  bases to theories (to keep track of constant 
subtheories) and the distinction between constant theories and metatheories. 
Frills like the automat ic  addition of an equality predicate for "da t a"  sorts 
entail some complication as well, but here the effect is more localised. 



A Set-Theoretic Semantics for Clear 471 

We inherit from the semantics of [5] the problem of "proliferat ion" men- 
tioned in Sect. 5 whereby each application of a parameterised specification 
gives a fresh copy of the resulting theory, and so e.g. Set(Nat[.. .]) 
+Set(Nat l . . . ] )  contains two sorts with the name set. A set-theoretic semantics 
of Clear which avoids this problem is given in [24]; the basic idea is to tag 
sorts and operators created by application of a parameterised specification 
with tags of the form P(A[a]) .  Another problem we inherit from [5] concerns 
the semantics of derive. Intuitively, we would expect that  to every model A of 
the specification derive.. .using.. .from T' by a there should correspond a model 
A' of T'  such that A'Io~--A. This is not the case with the present definition of 
derive; the difficulty is that T'  might contain data constraints which cannot be 
expressed in the signature of T. This situation could be put right by adopting a 
more elaborate definition of data constraint similar to the canonical constraints 
of [9]. But in the context of an arbitrary institution as in [5] it is necessary to 
descend to the level of models as in [27] to give a semantics of derive with the 
desired property. 

By describing Clear under an arbitrary institution, the semantics of [5] is 
more general than the semantics of ordinary Clear given here. But it is easy to 
see that our  semantics is independent of the definitions of  model (algebra and 
satisfaction) and - with the exception of level I I a  of the semantic equations (as 
in [5]) - of axiom (equation), so long as these definitions satisfy the simple 
consistency conditions required by an institution. The semantics does depend 
on the definitions of signature and signature morphism, as a consequence of 
the way tags are used to handle sharing. But (apart from the lower levels of the 
semantic equations, as in E5]) the semantics really only relies on the following 
essential features of their definitions: 

- signatures are n-tuples of sets 
- a signature morphism a: 2~--,27 consists of an n-tuple of functions (maps) 

between the components  of 2; and 27. 
In addition, the tagging trick depends on the following: 

- enrichments denote theory inclusions (in [5] they may denote arbitrary 
theory morphisms) 
The semantics could easily be modified to work for any institution satisfying 
these conditions. This means that essentially the same semantics works for 
(e.g.) Clear with errors [12, 1 i],  ordered sorts [13], polymorphism [25], and/or 
partial algebras [3]. No  institution has been proposed to my knowledge which 
does not satisfy the conditions above. 
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