
Acta Informatica 21, 443-472 (1984)

�9 Springer-Verlag 1984

A Set-Theoretic Semantics for Clear

D.T. Sannella

Department of Computer Science, University of Edinburgh. James Clerk Maxwell Building,
Mayfield Road, Edinburgh EH9 3JZ, UK

Summary. A semantics for the Clear specification language is given. The
language of set theory is employed to present constructions corresponding
to Clear's specification-combining operations, which are then used as the
basis for a denotational semantics. This is in contrast to Burstall and
Goguen's 1980 semantics which described the meanings of these operations
more abstractly via concepts from category theory.

1. Introduction

A number of techniques for the formal specification of software have been
developed in recent years. Prominent in this area is work by Guttag and his
colleagues [17, 19] and by the ADJ group [16] and many others on algebraic
methods of specification. In this framework, a specification consists of a signa-
ture - a set of sorts (kinds of data) and some operators (for constructing and
manipulating data) - together with axioms (typically equations) describing
constraints on the results produced by operators. Such a specification describes
a collection of algebras (a set of data objects for each sort, and a function on
those sets for each operator), where each algebra in the collection is a model of
the specification (it satisfies the axioms). Programs can be considered to be
algebras, so all programs satisfying a specification are in its collection of
models.

Most workers in algebraic specification concentrate on the specification of
abstract data types, for which the method is particularly well suited. Although
an algebraic specification could be written for a large system, such a specifi-
cation would be impossible to understand because it would contain so many
axioms. The value of a specification depends on the ease with which it was
written and can be understood; a large number of pages densely packed with
axioms are not of much use to anybody.

The Clear specification language [4] was invented by Burstall and Goguen
to combat just this problem. Clear is a language for writing structured algebra-

444 D.T. Sannella

ic specifications; that is, it provides facilities for combining small specifications
in various ways to make large specifications. With a tool such as this, the
specification of a large real-world system could be built from small, easy to
understand and (in many cases) reusable bits.

An obvious way to combine specifications is to simply add them together,
giving a specification which includes the sorts, operators and axioms of each
component. Clear also provides a facility for constructing a parameterised
specification which can be applied to various different specifications to sys-
tematically enrich them in some way. A typical example is a parameterised
specification of sorting, which would produce a specification of a program to
sort lists of numbers when applied to the specification of natural numbers
together with the usual < order relation. An operation called data can be
applied when adding new sorts and operators to a specification; this constrains
the collection of models to a small number of "best" ones. Finally, some of the
operators and sorts of a specification can be "hidden" to yield a less elaborate
specification. Clear is different from other specification languages because it
attempts to take proper account of shared sub-specifications. That is, the
specification-building operations are defined in such a way that if a certain
component is used in building several larger specifications, then the specifi-
cation which results from combining these larger units will contain only a
single "copy" of the common subpart.

In order to make use of specifications it is essential that they be written in
a specification language equipped with a complete formal semantics. It is not
enough to write specifications in a language having only a formal syntax; this
merely gives a dangerous illusion of precision. Only by means of a formal
semantics can specifications be given a precise and unambiguous meaning. The
exact meaning of any specification can then be determined mechanically by
consulting the semantics.

Burstall and Goguen in I5,1 have given a denotational semantics for Clear,
relying heavily on a number of concepts from category theory to give the
meaning of Clear's specification-building operations. This semantics was devel-
oped at the same time as the Clear language itself. This had a positive effect on
the resulting language (cf. 1'1]); the desire to give Clear an elegant category-
theoretic semantics led to certain features being rejected and suggested genera-
lisations of others. A special advantage of using the language of category
theory is the generality of the result. The semantics in 1'5,1 abstracts away from
the particular logical system to be used for writing specifications (i.e. the
definitions of signature, axiom and model) using the device of an institution
(see [14,1; 1'5,1 used the term "language"), defining all at once the semantics of
a large class of Clear-like languages.

A different semantics for Clear is presented here. This uses straightforward
set-theoretic constructions to define the semantics of the specification-building
operations. The result is equivalent to the semantics of 1'51, except that a
number of errors have been corrected. The language described is the Clear
used for examples in E5, 6,1 in which many-sorted signatures and algebras
(without error operators) are used and axioms are equations (this language will
be referred to as ordinary Clear in the sequel) rather than a family of lan-

A Set-Theoretic Semantics for Clear 445

guages. The semantics is less general than the semantics of 15] since it

describes only Clear under this particular institution but as discussed in Sect. 9
it appears to be capable of straightforward modification to cover all in-
stitutions of interest.

Much of the material included here is taken with only minor changes from
[5]. The overall organisation of the presentation used in that paper has been
adopted here for the most part. Clear and its (category-theoretic) semantics is
the result of much hard work by Burstall and Goguen; naturally the author
does not claim credit for the design of the language or for those parts of the
semantics which have not been altered.

The reader may wish to consult [16] for a leisurely explanation of the basic
concepts of algebraic specification, [6] for an introduction to Clear as a
specification language, and 15] to compare the two versions of the semantics.
In order to make this paper self-contained, definitions of basic concepts such
as signature, algebra and equation are given in Sect. 2, data constraints (used
to give the semantics of the data operation) are discussed in Sect. 3, and a brief
introduction to Clear is given in Sect.4. Section 5 considers the problems
involved in dealing with shared sub-specifications properly, and Sect. 6 dis-
cusses the difference between metatheories (used to give requirements for the
arguments of a parameterised specification) and ordinary specifications. In
Sect. 7 the semantic operations which form the basis of the semantics are
defined. Section 8 lists the semantic equations for Clear; these are similar to
those in 15] but not identical. Finally, Sect. 9 concludes with comments on
some points raised by the semantics.

2. Basic Concepts and Notation

The basic algebraic concepts which underlie the semantics of Clear are in-
troduced in this section. Many of the notions are similar to those used by
other authors (see e.g. I16]). The definitions themselves are adapted from [5].

2.1. Signatures

A signature is a set of sorts (data type names) together with a set of operators
(function names), where each operator has a type of the form sl , s n ~ s
where s l sn, s are sorts. A signature morphism maps the sorts and oper-
ators of one signature to sorts and operators in another in such a way that
types are preserved.

Definition. A signature T, is a pair (S, g2) where S is a set (of sorts) and f2 is a
family of sets {f2w,,}w~s. ~,s (of operators). We write f : w-- ,s to denote weS* ,
seS , fe~2,~,~.

Definition. A signature morphism a: (S , f2)---,(S' , f2') is a pair (a~o,t~,aop,~)
where aso,t~: S--,S' and aop,~ is a family of maps {aw,,: f2w,s--,~.o~).,r
where ~r*(s 1 , s n) denotes a~o,t~(s 1), ..., Cr,o,,~(sn) for s 1 s neS. We will write
or(s) for a~o,t~(s), a(w) for a*(w) and a (f) for a,~,,(f), where f : w ~ s is in f2.

446 D.T. Sannella

2.2. Algebras

A EE-algebra has a set (the elements of a data type) for each sort of 2; and a
function on those sets for each operator of 2. A 27-homomorphism maps the
"data types" of one 27-algebra to those of another in such a way that the
functions are preserved.

Let 27 = (S, tZ) be a signature.

Definition. A 2;-algebra A consists of an S-indexed family of carrier sets IAI
={IaI,L~s and for each f : s l , s n ~ s a (total) function fA:IAI~lx...
• Ihl,,--,Ial~.

Definition. A 27-homomorphism from a 2;-algebra A to a 2;-algebra B, h: A ~ B , is
a family of functions {hs}~ s where h,:IAIs~IBI~ such that for any
f : s l , s n ~ s in f2 and al~lAl~1,...,a,~lAl~, hs(fA(a 1 a,))
=fn(h~l(al) h,n(a,)). A bijective homomorphism h: A--.B is called an iso-
morphism, written A - B.

Given a 2;'-algebra A' and an injective signature morphism a: 27~2;', we
can recover the 27-algebra buried inside A' (since A' is just an extension of this
algebra). The definition extends without modification to the case in which a is
not injective, where the 2;-algebra will contain multiple copies of some of the
carriers and functions of A'.

Definition. For any signature morphism a: 2;--,27' and 27'-algebra A', the a-
reduct of A' is the 27-algebra A'Io such that for s~S, IA'lol,=deflA'[or and for
f : w--*s in 27, fa,i =d,fa(f)A, . When a is obvious we sometimes use the no-
tation A'Iz.

2.3. Equations

Definition. A 2;-term is a well-typed term built from operators in 2; and
variables of sorts in 2;. A ground 27-term is a 2;-term which contains no
variables. If t is a 27-term and tr: 27-~2;' is a signature morphism, then the a-
translation a(t) of t is the 2;'-term obtained by replacing each operator f in t
by a (f) and each variable x s by x,ts~.

Definition. A 2;-equation VX.t = t' is a set X of variables of sorts in S together
with a pair t, t' of 27-terms (possibly containing variables from X) of the same
sort. An equation containing no variables is called ground. If a: 2~27' is a
signature morphism and e=aefVX, t=t ' is a 2~-equation, then the a-translation
a(e) of e is V~. a(t) = a(t') where]~ = {x~s~lxsEX}.

Definition. A 27-algebra A satisfies a EE-equation VX. t = t' (written A ~ VX. t = t')
if the equation is ' t rue ' (both sides evaluate to the same thing) for all assign-
ments of values in A to the variables in X. A EE-algebra A satisfies a set E of 2;-
equations (A w E) if A satisfies every 2;-equation in E.

A Set-Theoretic Semantics for Clear 447

2.4. Equational Theories

An equational presentation is a signature together with a set of equations on
that signature. The closure of a set of equations is that set together with all its
(model-theoretic) logical consequences. An equational theory is then a signa-
ture together with a dosed set of equations. A theory morphism between two
equational theories is a signature morphism between their signatures which
preserves the equations.

Definition. An equational T.-presentation is a pair (Z, E) where 2 is a signature
and E is a set of 2-equations. A 2-algebra A satisfies an equational pre-
sentation (2;, E) if A satisfies E. Then A is called a model of (Z, E).

Definition. If E is a set of Z-equations, let E* be the set 1 of all 2~-algebras
which satisfy E. If M is a set of S-algebras, let M* be the set of all Z-equations
which are satisfied by each algebra in M. The closure of a set E of 2-equations
is the set E**, written/~. E is closed if E=/~.

Definition. An equational Z-theory T is an equational presentation (Z , E)
where E is closed.

Definition. An equational theory morphism tr: (T,,E)---,(Z',E'~ is a signature
morphism u: T,~Z' such that tr(e)eE' for each e~E.

3. Data Constraints and Data Theories

An equational theory will typically have a number of different (non-isomor-
phic) models. Some of these wilt be trivial, and others will contain extra useless
values. Most approaches to the specification of abstract data types and pro-
grams restrict consideration to a special subset of models; probably the best-
known example is the "initial a lgebra" approach of [16] in which an equational
theory is taken to specify only its initial models.

Definition. A model A of an (equational) theory T is an initial model of T if for
every model B of T there is a unique homomorph i sm h: A--,B.

Equivalently, a Z-algebra A is an initial model of T = (E , E) if it satisfies
the following conditions:
- " N o junk" : Every element in A is the value of some ground Z-term.
- " N o confusion": For every ground Z-equation e, A satisfies e iff e~E.
For a proof that these definitions are equivalent and for three other equivalent
definitions see [15].

It is well-known that the initial models of any (equational) theory form an
isomorphism class; this allows us to refer to the initial model. 2 Note that the

1 Actually, this is not a set at all but a proper class. The set/class distinction will be ignored
throughout this paper
2 Category-theoretically speaking, the initial model of an equational theory T is the initial
object in the category Mod(T) of T-models and homomorphisms between them

448 D.T. Sannella

"no junk" condition corresponds to an induction principle; since all values in
the initial model are generated by terms, proof by structural induction on
terms is possible.

Clear adopts a generalisation of the initial model approach. A Clear theory
may include data constraints which must be satisfied (in addition to the
equations) by any model of the theory. A data constraint specifies that for each
model, the subalgebra of that model corresponding to a certain subtheory must
be a "free extension" of the subalgebra corresponding to a certain smaller
subtheory (i.e. initial relative to it). This is necessary for specifications such as
Set-of-X (see Sect. 4), where X may be arbitrary. Each application of the data
operation in a Clear specification contributes a data constraint.

Definition. A 2-data constraint c is a pair (i , a) where i: T~--~T ' is an equa-
tional theory inclusion and a: s ig (T ')~S is a signature morphism.

A data constraint is a description of an enrichment (the theory inclusion
goes from the equational theory to be enriched to the enriched theory) together
with a signature morphism "translating" the constraint to the signature S.

Definition. A Z-algebra A satisfies a Z-data constraint (i : T~--~T ',
a: sig(T')---,Z) if:

- "No junk": Every element of A[sigtr,) is the value of some sig(T')-term
containing variables only in sorts of T, for some assignment of values to
variables.
- "No confusion": The values of two sig(T')-terms are the same in Alsistr') for
an assignment of values to variables iff they are forced to be equal by the
interpretation of T and the equations of T'.

Again, the "no junk" condition corresponds to an induction principle. See I-5]
for a category-theoretic version of this definition.

A signature morphism from Z to Z' can be applied to a Z-constraint to
translate it to a Z'-constraint, just as it can be applied to a Z-equation to give
a S'-equation.

Definition. If a: Z ~ Z ' is a signature morphism and (i,a') is a Z-data con-
straint, then the a-translation of (i, a ') is the 2 '-data constraint (i, a 'o a) .

Since data constraints "behave" just like equations (in the sense that satis-
faction of a data constraint by an algebra and the translation of a data
constraint by a signature morphism are defined), they can be added to the
equation set in an equational presentation to give a data presentation (or
presentation for short).

Definition. A (data) Z-presentation is a pair (Z, EC) where Z is a signature and
EC is a set of Z-equations and Z-constraints.

The notions of satisfaction (of a data presentation), closure, (data) theory,
and (data) theory morphism follow as in the equational case. The denotation of
a Clear specification is a (data) theory (Z, EC), specifying all Z-algebras which
satisfy the equations and data constraints in EC (actually, a based data theory
- see Sect. 5).

The data constraints described here are a special case of those discussed in
1"5]; general data constraints never arise in ordinary Clear. Essentially the same

A Set-Theoretic Semantics for Clear 449

concept was described earlier in [20] (of. [23]) under the name initial restric-
tion. Data constraints are also used in the L O O K specification language [8]. A
more general form of data constraints (free generating constraints) is discussed
in [9].

It is possible to employ a weaker version of data constraints, sometimes
called hierarchy constraints [26] cf. [2] or generating constraints [I0], in which
an algebra satisfies a constraint iff it satisfies the "no junk" condition. In order
to avoid trivial models it is necessary to allow specifications to contain in-
equations or else to impose the extra condition that all models satisfy
true 4: false.

4. An Introduction to Clear

Below is an example of a Clear specification which displays most of the
features of the language. Some brief explanatory notes follow the example.

coast Bool ffi
theory

data s o n s bool
opus true, false: bool

not : bool -~ bool
eqns not(true)= false

not(false) = t r u e eadth
coast Boolopns =

enrich Bool by
olms and, or, =~: bool, bool--* bool
eqRs all p:bool, p and t r u e = p all p:bool, p and f a l s e r false

all p:bool, p or t r u e = t r u e all p:bool, p or f a l s e f p
all p,q:bool, pf~qff inot(p and not(q)) codco

meta Ident =
let IdentO=corich Boolopns by

sorts element
olms -- : element, element ~ bool
eqns all ra:element, m - m = t r u e

all m,n:elemenL m f - n f n = - m
all m,n,p:element. (m - n and n - p) f . m - p f t r u e enden

in derive sorts element
opns eq �9 element, element -~ bool

using Bool
from IdvntO
by r is-= endde

lWOr Set(X:Ident)=
let SetO---emicb X by

data sorts set
opus 0 : set

singleton: element --, set
u : set, set ~ set

(alms aH S:sct. ~ u S f S
aH S:set. S u S = S
all S, T: set. S u T = TuS
all S, T, V: set. S u (T u V) = (S u T) u V

450 D.T. Sannella

in enrich SetO + Boolopns by
OlmS ~: element, set --* bool

choose : set --) element
eqns all a:element, a~q~=false

all a, b: element, a ~ singleton (b) = eq (a, b)
all a:element, S, T: set. a~(SuT)=(aES) or (acT)
all a:element, S:set. choose(singleton(a)uS)~(singleton(a)uS)=trur enden

const Nat =
enrich Bool by

data sorts nat
Ol)nS 0 : nat

succ: nat ~ nat
+ : nat, nat ~ nat

eqns all n:nat. O+n=n
all m, n:nat, succ(m) + n = succ(m + n) enden

Set(Nat[element is nat, eq is = =])

Note that the data opera t ion is associated with an enrichment, not just
with a specification (theory.. .endth is equivalent to enrich Empty by...enden).
As well as adding a data constraint describing the enrichment, data contributes
an extra opera tor = = : s, s ~ bool for each new sort s. If p and q are terms of
sort s, p = =q = true iff p =q in all models of the specification (which must
satisfy the new data constraint). Thus, the models of Bool and Na t are the
s tandard ones, with the expected interpretat ion of = = . It is also possible to
enrich a specification wi thout using the data operation, as in Boolopns (where
in fact an appl icat ion of data would not change the class of models) and in
Ident (where data would force all models to have an empty carrier for the sort
element). The derive opera t ion is used in Ident to ' forget ' the operators of
Boolopns which made it convenient to write the equations of Ident0 but which
are not required in the result, and to rename the opera tor - to eq. The using
clause here says that the result should incorporate Bool.

Ident is a metatheory, i.e. it is used as the requirement (metasort) of a
parameter ised specification (procedure) to describe its allowable actual parame-
ters. The m e t a construct for declaring metatheories did not appear in previous
versions of Clear because (incorrectly) the distinction between a meta theory
and an ord inary constant theory was not made. See Sect. 6 for a detailed
discussion of this point. Set is a parameterised specification with a single
parameter which may be applied to any specification which "matches" Ident. A
fitting morphism must be provided to give the correspondence between the
sor t /opera tor names in Ident and in the actual parameter. The applicat ion of
data in Set contributes the data constraint (Ident~---)Set0,id> with the result
that in each model A of Set, [A[set ~ ~ (I a l , , ,) (the set of finite subsets of IA[c, ,)
with the appropr ia te interpretations for the operators ~, singleton and u .
But note tha t choose has not been completely specified; all that has been said is
that choose selects some element f rom any nonempty set. Which element to
pick is left unspecified, as is the result of choose(ok). Thus, the models of
Set(Nat[...]) do not form an isomorphism class; we say that Set(Nat[...]) is a
loose specification.

Infix operators have been used freely in the example above, a l though
formally the syntax of Clear does not provide for them. Ano the r liberty

A Set-Theoretic Semantics for Clear 451

concerns "over loaded" operators (such as = = : bool, bool--* bool and = = :
nat, nat ---, bool in Nat); although the definition of signature allows an oper-
ator to have multiple types, the semantics provides no way of resolving
references to such operators. In practice a typechecker can usually disam-
biguate such references according to the context.

5. Dealing with Shared Subtheories

Consider the following specification fragments taken from the example in the
last section:

const Boolopns = enrich Bool by
opus and, or, =~:bool, bool ~ bool
eqns ...

const Nat = enrich Bool by
data sorts nat

opns 0: nat
succ: nat --* nat
+ : nat, n a t - , nat

eqlls ...

Notice that both Boolopns and Nat "include" the theory Bool; Bool is a
shared subtheory of Boolopns and Nat. What does this mean formally? And,
how does the semantics of Clear define the theory-combining operations so
that the theory Boo lopns+Na t includes only one copy of Bool?

In [4], shared subtheories are explained by analogy with the EQ predicate
of LISP [21]. The EQUAL function in LISP tests whether two lists look the
same (i.e. whether they contain the same elements in the same order), while EQ
tests whether two lists are the same (occupy the same list cells in s t o r a g e -
note that EQ(a,b) implies EQUAL(a,b) but not vice versa). The important
features of EQ are given by the following examples (a, b and c are arbitrary
lists):

i) EQ(CONS(a,b), CONS(a,b))-- false (but EQUAL(...) = true)
ii) (EQ(I,/) where l=CONS(a,b))=true

iii) EQ(CAR(CONS(a,b)), CDR(CO NS(c,a)))=true

These examples show that

i) Writing down a CONS expression twice gives two different lists.
ii) Two uses of the same variable refer to the same list.

iii) Two different lists can share a common sublist.

Now to complete the analogy, the theory-building operations of Clear act
like CONS and the behaviour of EQ indicates what is meant by "identical" in
the following:

Requirement. The theory-building operations should be defined in such a way
that a theory can never contain two identical subtheories.

This leads (for example) to the following informal constraint on the combine
(+ ~ ooeration:

452 D.T. Sannella

Constraint. If B is a subtheory of A and D is a subtheory of C, then B and D
should be identified when forming A + C iff they are identical.

In order to write a semantics for Clear we must devise some representation
of theories which makes it easy (or at least possible) to determine if two
theories are identical, so that the above constraint can be satisfied. The general
category-theoretic semantics of 15] uses a rather complicated representation of
a theory which shows explicitly how the theory is related to every one of its
subtheories. We can use a much simpler representation because the only way
that a theory and one of its subtheories can be related in ordinary Clear is by
inclusion.

An important observation is the fact that the requirement above is in-
herited by the sorts and operators of a theory (where identity is again by
analogy to EQ in LISP), giving:

Requirement. The theory-building operations should be defined in such a way
that a theory can never contain two identical sorts or operators.

Moreover, if this low-level requirement is satisfied (and the operations are
defined in a reasonable way) then the previous requirement will be satisfied as
well. The above contraint on combine also has a low-level equivalent.

The semantics of EQ in LISP is defined in terms of a model of storage
where lists are stored in addressable cells and EQ simply checks whether its
arguments begin at the same address (see 121]). By associating a unique
address with each non-EQ list cell, the meaning of EQ is reduced to equality of
addresses. By analogy, if we associate an appropriate tag with each sort and
operator we can easily determine whether two tagged sorts or tagged operators
are identical in the sense indicated above. If the name of the theory of origin of
a sort or operator is used as a tag, then the sort or operator name together
with the tag forms a unique and precise name for the object (sort or operator).
Then if (for example) f is an operator belonging to both A and B, f will
appear once in A +B if f has the same tag (theory of origin) in both A and B;
otherwise f of A and f of B are really different operators which just happen to
have the same name, and A + B should include both. The language IOTA [22]
also uses tags (to qualify operator names).

Each theory is therefore represented for the purposes of our semantics as a
tagged theory (a theory where the names are all tagged). The tagged theories
Boolopns and Nat look like this, where tags are shown as subscripts:

Boolopns = Nat =
sorts boolBool
opns truesoo~, falseso.l: boolBo.~

not Booi: boolsoo~ --. bOOIBooi
andsoolop~: bool~.ol, boo1Bool --~ boolso.~

eqns ...

sorts boolsool , natNa t
OlmS true~o 1, false~,.~: bools**l

not so.l: boolso.~ --* bool~,.~
0Na t : natr~at

eqlls ...

A Set-Theoretic Semantics for Clear 453

Boolopns + N a t is simply the set-theoretic union of these two tagged theories:

sor t s booleool, n a t N a t

opns trueeoo~, falsesoo~: booleo,~
not soo~ : boolso,~ ~ boolBoos
andeootop.s: boolsoo t, bools.o~ ---, bOO1Boot
. . .

0 N a t : natN, t

eqns ...

The particular tags used are not important ; all that matters is that the tags
for two different sorts (or operators) which have the same name, are different.
Thus, X146 and Y27 would serve as well as Bool and Nat above. Also (for
example) true and false need not have the same tag. This fact will be useful in
the semantics; it turns out to be inconvenient to tag sorts and operators with
the name of their theory of origin.

A problem arises when we consider how to treat the operat ion of applying
a parameterised specification to an argument. Suppose that Set is the para-
meterised specification defined in the last section. I t is natural to regard its
body as a tagged theory:

s o r t s boOlBoo~, elemenhdent, Setse t
opus ~bs, t : Sets~,

singletonsc t : elemenhdcn t --, sets, '

eqns ...

The expressions Set(Nat[element is nat, eq is = =]) and Set(Bool[element is
bool, eq is = =]) will also denote tagged theories. But what should the tags
be? A first a t tempt might be the following:

Set(Nat[element is nat, eq is = =]) =
s o r t s boo1B**l, natlqat , Setse t
o p n s ONat : natNa t

. . .

~ S e t : Setset
singletons~ t : nats~t -- , s e t s e t

eqns ...

Set(Bool[element is bool, eq is = =]) =
s o r t s bOOlBool, Setse t

opns trues**~, falseso.1: boolsoo~

~set: Setset
singletonse t : bool Boo~ ---' Setset

eqns ...

Now consider the theory Set(Nat[...])+Set(Bool[... 'l). We would expect
this theory to contain two sorts with the name set, one from each of the two
theories. But the result contains only one sort named set since in both of the
tagged theories above this sort has the same tag. A similar problem arises with
the operators on sets, al though types serve to distinguish the two singleton
operators.

The solution is to assign new (and distinct) tags to the sort set and the
operators ~, singleton etc. in the process of applying the parameterised specifi-

454 D.T. Sannella

cation. This gives:

Set(Nat[element is nat, eq is = =]) =
sorts boolBoo. , natNat, setNewl
opns 0Na t : natNa t

~bNewl : setN,wl
singletonr~ew 1 : natNat ~ SetNew 1

eqns ...

Set(Bool[element is boo1, eq is = =]) =
sorts booIBool , setNew2
opns trueBo~, false~oo~: boO1Bool

t~New2 : setNew2
singletonNew 2 : boolBool ---> setr~ew 2

eqns

When these two theories are combined, the desired result is produced. Note
that sorts such as bool and nat (and their associated operators) retain their
original tags, so combinations such as Set(NatE.. .])+Nat will contain just one
copy of each.

The problem now is: how do we determine which sorts are to be retagged
during the application of a parameterised specification? In this example, one
possibility would be to retag all sorts and operators having the tag Set but
such a simple approach does not work for more complicated examples.

The solution to this problem which gives the same effect as the semantics of
[5] is to retag in P(A[. . .]) only those sorts and operators of P which do not
originate in a constant subtheory of P, i.e. in a subtheory originally produced
by a declaration const TN (This is not the only possible solution, and in
fact it gives rise to the problem of "proliferat ion" mentioned in [6] - i.e.
Set(Nat[. . .])+Set(Nat[. . .]) will contain two sorts with the name set.) In order
to implement this strategy it is necessary to keep track of all the constant
subtheories of a theory. Since all these subtheories appear in the constant
theory environment (see below) it is sufficient to keep track of their names.
Adding this set of names (called a base) to a tagged theory gives a based
theory. The addition of a base does not complicate the definition of the sum of
two theories; the base of the sum is simply the union of the bases.

Definition. A based theory is a pair (T, B) where T is a theory with tagged sorts
and operators and B (the base) i s a set containing the names of the constant
subtheories of T. (T, B) is normally written T B.

Definition. A based theory morphism tr: T B ~ T ~, (where B~_B') is a theory
morphism a: T ~ T ' such that a restricted to the theories named in B is the
identity.

These based theories should not be confused with the based theories of [-5]
mentioned earlier. Although the definitions are different, bo th kinds of based
theories serve the same purpose so we use the same name to draw attention to
this similarity.

The base of a based theory contains names of theories in the environment
of constant theories, which records declarations of the form eonst TN :

Definition. The constant theory environment p is a function which maps names
to based theories.

A Set-Theoretic Semantics for Clear 455

The constant theory environment is used in the usual way to retrieve the
theory associated with a particular theory name. The semantics also requires
separate metatheory and parameterised specification environments - see
Sect. 8.5.

Note that the constant subtheories of a constant theory include the theory
itself, but the constant subtheories of the theory which appears on the right-
hand side of a declaration do not include the theory being declared. That is, in
the declaration

const TN = expr

the base of the theory which expr denotes (this is the based theory which is
bound to TN in the constant theory environment) will not contain TN, while
subsequent uses of the theory name TN will denote a theory having a base
which includes TN.

A subtle point is the way that the base of a theory influences sharing. In all
contexts which do not include application of a parameterised specification or
declaration, a tagged sort/operator coA will be identified with v z iff c o - v and A
=B. But in general contexts this is only the case if every parameterised
specification and metatheory which includes coA (or vs) has a theory in its base
which includes coA (resp. vB), since otherwise coA and v B are subject to retagging.

6. Metatheories

Metatheories are used in Clear specifications to give the requirements (meta-
sorts) of parameterised specifications. For example (simplifying a fragment
from Sect. 4):

meta Idmeta = enrich Bool by
sorts element
opns eq: element, e lement~bool
eqns all m: element, eq(m, m) = true

proc Set(X: Idmeta)=enrich X by ...

Here, Idmeta is a metatheory "describing" all theories having at least one sort
and an equivalence relation on that sort. Any such theory can be used as an
argument of Set. In this section the relation between metatheories and ordinary
(constant) theories is discussed. The category-theoretic Clear semantics of [5]
did not treat this aspect correctly, using constant theories to give requirements
of parameterised specifications. (A corrected version of this semantics is given
in E24].)

A metatheory is not a new kind of theory, but only an ordinary based
theory used in a special way. A metatheory M described the class containing
those based theories T for which a based theory morphism o': M ~ T exists.
This is the formal equivalent of the condition that an actual parameter theory
must match the corresponding requirement theory with respect to the renam-
ing of sorts and operators given by the fitting morphism. This fitting morphism
(supplied by the user) is used to construct the result of applying a param-

456 D.T. Sannella

eterised specification. But in order for this to work the metatheory M must
be constructed in a slightly different way from a constant theory; this is the
reason why the meta construct is used to define a metatheory. The meta
construct did not appear in previous versions of Clear because (incorrectly) this
distinction was not made.

An easy way to understand the difference between constant theories and
metatheories is to observe what happens when the metatheory Idmeta above is
replaced by a constant theory Idconst as the requirement of a parameterised
specification:

eonst Idconst =enrich Bool by
sorts element
opns eq: element, e lement- ,bool
eqns all m: element, eq(m, m) = true

. . .

proc Setconst(X: Idconst)= enrich X by ...

Idconst yields the following based theory:

sorts boolaooi, elemenhaco, s t
opns trueaool, falseB.ol, ...

eqldconst
eqns ...
base Bool, Idconst

What are the possible actual parameter theories to which Setconst can be
applied? Recall that a based theory morphism is used to fit an actual parame-
ter to its corresponding requirement theory; the morphism goes from the
requirement to the actual parameter. Since the base of the target of a based
theory morphism must include the base of the source (and the morphism
restricted to the base must be the identity), the actual parameter must contain
Idconst as a constant subtheory. In essence, the only theory Setconst can be
applied to is Idconst itself. This is clearly neither intended nor desirable.

The declaration of Idmeta above yields the following based theory:

SOrtS boo1eool, elementldm�9
opns trueeoot, falseBeol, ...

eqldmeta
eqns ...
base Bool

The only difference between Idconst and Idmeta as based theories is that while
Idmeta has a base consisting only of Bool, the base of Idconst contains Idconst
itself as well. This change is all that is necessary to make Idmeta the appropri-
ate requirement for the parameterised specification Set above. Since the base of
Idmeta contains Bool, any actual parameter of Set must include Bool as a
subtheory. But it need only match the rest of Idmeta; that is, it must include a
sort with an equivalence relation. Suitable actual parameter theories and fitting
morphisms are:

Nat[element is nat, eq is = =']
Bool[element is bool, eq is = =]

A Set-Theoretic Semantics for Clear 457

and many others. In general, the difference between constant theories and
metatheories is just that metatheories are not recorded in the bases of theories
which contain them.

In the example above, a constant theory (Bool) was included in a meta-
theory (Idmeta). In general, metatheories can be put together (with each other
and with constant theories) using the same operations as for constant theories,
since they are nothing more than a special kind of based theory. When such a
conglomerate is used as a requirement theory, any matching actual parameter
must include all of the constant subtheories of the requirement as well as sorts
and operators which match those of the metatheories.

The concept of a metatheory in Clear is similar to the notion of a sype in
the language IOTA [22]; there too, a sype is not very different from an
ordinary type, although it can be regarded as a higher order concept.

7. Semantic Operations

In this section the semantic operations which "implement" the theory-building
operations of Clear are defined. This forms the quintessence of Clear's seman-
tics; the semantic equations given in Sect. 8 serve only to attach a syntax to
the operations defined here. The definitions depend heavily upon the special
representation of based theories described in Sect. 5; the objects defined in
Sect. 2 are used as well (signatures, equations, constraints) but their repre-
sentations are not important.

Definition. If Z=(S, f2) and I'=(S',f2') are tagged signatures then the union
of I and Z', written ZwI ' , is (SwS ' , f2w~) (where f2 and ~ are the exten-
sions of f2 and [2' to indexed sets of operators over S w S').

7.1. Combine

This implements the " + " theory-building operation of Clear.

combine: based-theory x based-theory~based-theory

combine((/ , EC)B, (Z' , E C')s,) = (Z u Z', a(EC) w a'(EC'))s~s"
where a and a' are the signature inclusions

1 , 9 I U N

We will sometimes use "+" in the sequel rather than combine; this should
cause no confusion.

The result has the sorts and operators of both theories, the closed union of
the axioms (translated to give Z w/ ' -equa t ions and -constraints), and the union
of the two bases. Since I and I ' are tagged signatures, the union N u I '
respects shared sorts and operators.

458 D.T. Sannella

7.2. Enrich

An enrichment consists of some new sorts, operators (with their types) and
equations. The enrich operation takes a based theory and an enrichment and
produces the enriched based theory. Each new sort and operator must be given
a unique tag, according to the discussion in Sect. 5. This tagging is not done
by the enrich operation itself; we require that new sorts and operators be given
unique tags before they are used to enrich a theory. This is necessary to avoid
complications in cases where the type of a new operator includes both old and
new sorts. The tags are attached by the semantic equations (as part of the
semantics of sort and operator declarations - Sect. 8.3).

enrich: based-theory
x tagged-sort-set x (tagged-operator x type)-set x equation-set

---,based-theory

enrich((S, E C) B , S', f2', E') = (S ~ (S' , f2'), cr(E C) w E ') 8

where f2' is indexed over sorts(Z)w S'
E' is a set of Sw(S ' , t2 ') -equa t ions

and a is the signature inclusion

s ~ z w (s', ~ ')

7.3. Data Enrich

When a theory is enriched by some new data, the axioms of the resulting
theory contain a data constraint describing the enrichment. Moreover, an
equality predicate =---:s, s--*bool for each new sort s is introduced. Otherwise
the result is the same as for ordinary (non-data) enrich. We employ a model-
theoretic approach to obtain the equations which specify the meaning of the
new equality predicates.

Definition. Suppose 2; is a tagged signature which includes the sort boolBoot and
the operators truesoo~, falsesoo~:boolBoo~, A is a S-algebra, E C is a set of S
equations and constraints, x is a new tag, S is a subset of the sorts of S, and
ssS . Then:

- 2;~, is S with an additional operator = =~: s,s~boolB~,t. S s is defined
similarly (i.e., an additional operator = =x for each sort in S).

- A~ is a S~,-algebra just like A but with an operator = =~ satisfying
= =~(a, b)=tru%ool iff a = b , for all a, b~lA[s. A s is defined similarly.

- E C s is the set of SS-equations and constraints given by M*, where M
= {ASIA~EC*}.

If S is the set of new sorts and E C is the set of equations and constraints
already in a theory, then E C s includes E C as well as all the equations needed
to define the new equality predicates on sorts in S.

data-enrich: based-theory
x tagged-sort-set x (tagged-operator x type)-set x equation-set
x t ag~based- theory

A Set-Theoretic Semantics for Clear 459

data-enrich((Z, EC)B, S', g2', E', x) = ((Zenr) s', (ECenr w (F, " s" zcl~,.,))x) B,~,

where (Zenr, E Cenr) 8,n r = enrich((z , E C) n, S', g2', E'>)
and F is the equational theory inclusion

(Z, ~p) ~-%(Zenr, ff~'>

data-enrich gives an error if Zenr does not include booIBoot and trueaoo~,
false Bool : bool nool .

The result is the same as the result of enrich, with the addition of an
operator = = for each new sort, the equations Concerning those operators, and
the data constraint (F, idre~, ~ where F is the equational theory inclusion
describing the enrichment.

7.4. Derive

The derive operation is used to "forget" sorts and operators of a theory,
possibly renaming the ones remaining. The renaming is accomplished by a
signature morphism which takes the new names into the old names. Given a
Z-theory, a Z'-theory and a signature morphism a: Z ~ Z ' , derive produces a
theory with the signature and base of the Z-theory, and all the Z-equations
and constraints which are satisfied in all models of the Z'-theory - that is, the
inverse image under tr of the equations and constraints of the Z'-theory.

derive: based-theory x signature-morphism x based-theory---,based-theory
derive((Z, EC)B, a, (,~,', EC')B,) = (Z , tr- I(EC')) B

where a - I(EC') = {el a(e)eEC'}
derive gives an error if or: (Z , EC)B-- . (Z ' ,EC')n , is not a based theory

morphism.

The result is a theory because of the following fact:

Fact (see I-5]): If EC is closed then a - x (E c) is closed.

Also, E C ~_ a-1 (EC') since a is a theory morphism.

7.5. Apply

Apply defines the meaning of applying a parameterised specification to its
arguments. A parameterised specification is represented as a based theory (the
body) together with a list of based theories (the requirements). This is the first
argument of apply; the second is a list of (based-theory x signature-morphism)-
pairs (actual parameter x fitting morphism). The third argument is a tag to be
attached to the "new" sorts and operators, and the fourth argument is the
present constant theory environment.

apply: (based-theory x based-theory*) [parameterised specification]
x (based-theory x signature-morphism)* [parameters]
x tag
x environment ~ based-theory

460 D.T. Sannella

The definition of apply uses two auxiliary functions. The first applies a
signature morphism a: Z,A---,~B to a theory T with a signature Z which
includes 2~A; the sorts and operators in ~ but not in ZA are not affected. This
is used to apply a fitting morphism to the body of a parameterised specifi-
cation, and is also useful in defining the second auxiliary function.

_ altered by _ : theory x signature-morphism--.theory
Suppose E = (S, f2), 2~A = (SA, f2A), Z,B = (SB, f2B) and (Crso,ts, Cro,,~)

= a : , Y , A ~ B . Then:

(E, EC) altered by a = (27, o-'(EC))
where 27 and a' are constructed as follows:

, faso,~(s) if s~SA
for seS, let a,o,ts(s) = Js

otherwise
let S'= {a'~o,~(s)ls~S}
for w~S*, s~S and f : w---,s in f2,

~(aop.~)w,(f) if f : w--*s is in f2A
let (a'opJw~(f)=~f otherwise

for w'eS'* and s'eS', let f2",~,= U {(#opJw~(f)l f: w ~ s in g2}
<w,s>~J

where J = {(weS*, s~S) [(a'~o,~)*(ws) = w' s'}
then 27 = (S', g2')
and a': Z,~S,' =(a'~o,,~, a'op,~)

an error results if 2~A $

Informally, (Z , ,EC) altered by a just replaces the sorts and operators of 2~
which are in 2~A by their images in $B.

The second auxiliary function attaches a given new tag to all of the sorts
and operators in a theory, excluding those sorts and operators which belong to
a distinguished subsignature.

_ retagged w i t h _ preserving_ : theory x tag x signature--.theory
(Z, E C) retagged with x preserving ,Y,' = (Z, E C) altered by mtag

where mtag is a signature morphism which gives each of the sorts and
operators in E - Z' the tag x

an error results if E' $

Apply is now defined with the help of these two functions. The idea is to first
attach the given new tag to each sort and operator in the body of the
parameterised specification, excluding those belonging to a requirement theory
or base theory. This is necessary so that (for example) the sort set in the theory
Set(Natl . . .]) will always remain distinct from the sort set in Set(Bool[...]) as
discussed in Sect. 5. The fitting morphisms are then applied to change each
reference to the requirement signature into the corresponding reference to a
sort or operator in the signature of the actual parameter, and the base of the
parameterised specification is attached. Finally, the actual parameters are
added using combine to give the result. An error results unless all the fitting
morphisms are based theory morphisms.

A Set-Theoretic Semantics for Clear 461

apply((Pnp,(M1, ..., M ,)) , ((A1 , a~), ..., (A , , en)), x, p)
= A~ + ... + An+((P retagged with x preserving Sold)

altered by al u . . . u an)he

where Sold= sig(M0 u . . . usig(Mn) u U sig(p(TN))
TNEBP

apply gives an error if some ui: Mi~A~ is not a based theory morphism.

This construction is rather more elaborate than any of those given pre-
viously. In order to understand it, consider first the simple case in which
theories contain only sorts (no operators or equations/constraints) and the
parameterised specification has only one argument. For example:

P---- sorts boolsool, m M, natNat, PP base Bool, Nat
M = sorts boolsoo, , m M base Bool
A = sorts boolBool, aA, a~ base Bool , A
a = ['booleoolv'-*boo1Bool, m MV--*aA]

NOW let us evaluate a p p l y ((P , M) , (A , a) , J 3 6 , p) where p is an environment
including (at least) Bool, Nat and A. The "o ld" sorts upon which P was built
(Sold) are:

sorts boolBo.~, mM, natNat
P.etagging P (without its base) while preserving 27oM gives:

sorts boolBoob m M, natNat, PJ 36

This is exactly P except that the sort p (which is "new" in P) is tagged with
J 36 to ensure that it remains distinct from the sort p in the application of P to
some other parameter. Applying the fitting morphism a and reattaching the
base of P gives:

sorts boolBoo,, aA, natNat, PJ36 base Bool, Nat

and combining this with the actual parameter A gives the final result:

sorts boolsool, aA, natNat, PJ36, a~ base Bool, Nat, A

For a more difficult example, consider the specification of Sect. 4. Accord-
ing to the semantic equations (see Sect. 8), the denotation of the expression

Set(Nat[element is nat, eq is = =])

is the result of evaluating a p p l y ((P , M) , (A , u) , J 3 7 , p) , where (P , M) is the
denotation of the parameterised specification Set (P is the body and M is the
requirement Ident), A and a are the denotations of the argument Nat and the
fitting morphism respectively, ./37 is some new tag, and p is the constant
theory environment.

The denotation of Nat is the following based theory (ignoring equations
and constraints):

sorts boolsool, natNa t
opns 0Nat~ SUCCNat, = ~-Nat, trueBoo:, ---

eqn$...
base Bool, Nat

462 D.T. Sanne l l a

Ident has the following denotation:

sorts boolBoo~ , elementlden t
opns eqld�9 , t r u e B o o l , . . .

eqns ...
base Bool

Note that since Ident is a metatheory, it is not recorded in the bases of
theories (like Ident itself) with contain it. The body of Set denotes the follow-
ing based theory:

sorts boolBool, elementldent, Setse t
opns ~bset, singletonset, eq~d,nt, trUeaool, ...
eqns ...
base Bool

The constant theory environment contains Bool and Nat (and Boolopns); Ident
and Set are in the metatheory and parameterised specification environments,
respectively.

Referring to the definition of apply, the value of Sold is:

sorts boO1soot, elementlden t
o p n s e q l d e n t , t r u e B o o l , . . .

Retagging P (without its base) with the new tag J37 while preserving Sold
gives:

sorts boolBoot, elemenhdr setj37
opns ~ba 37, singletonj 37, eqldent, trueBooi, ---
eqns ...

Applying the fitting morphism [elementla,,t~--,nat~at, eqldend "~= =Nat] to this
theory and reattaching the base of Set yields:

sorts boolaoo~, natNat, seta37
opns (~J37 , singletonj37, = =Nat, trueBooi, ...
eqns ...
base Bool

Finally, this is combined with the actual parameter Nat to give the answer:

sorts boolBoo~, natNat, setj37
o p n s (~J37 , singletonj37, 0Nat, SUQCNat, = = N a t , trUeBool, . . .

eqns ...
base Bool, Nat

Note that applying a parameterised specification P with formal parameter
X and requirement M to an argument A using a fitting morphism a is the
same (because of the restriction that P must include M) as rewriting the body
of the parameterised specification, with A substituted for X and all occurrences
of sorts and operators in M translated using tr to the matching bits of A. The
definition of apply simulates this rewriting, using the trick of attaching fresh

A Set-Theoretic Semantics for Clear 463

tags to the sorts and operators which are "new in P " (i.e. not included in the
base or requirement theories) to distinguish them from the corresponding
objects produced in a different application of the same parameterised specifi-
cation.

7.6. Copy

The copy operation is used to make a fresh copy of a theory, preserving a
given set of subtheories.

copy: based-theory x based-theory x tagobased- theory
copy(TB, (~-,', EC')s,, x) =(T retagged with x preserving Z')B,~e,

Given two based theories (the second theory is the combination of the
subtheories to be shared), copy simply gives the new tag x to the sorts and
operators of the first theory which are not in the second theory. The base of
the result is the intersection of the bases of the argument theories.

7.7. Copy-meta

The copy-meta operation is used in the semantics of parameterised specification
declaration. Consider the following declaration:

proc P(X: Ident, Y: Ident) = enrich X + Y by ...

In cases like these (i.e. whenever a multiple-parameter specification has require-
ments which share non-constant subparts) the following operation is used to
make fresh copies of the requirement theories while preserving any constant
subtheories:

copy-meta(T~rNl rsvp, x, p)= copy(T~rN, rN,,~, p(TN1) +... + p(TNm), x)

8. Semantic Equations

Below are the semantic equations which associate the syntactic constructs of
Clear with their semantics. The equations are divided into several levels. Level
I deals with the semantics of sort and operator names, and depends on the
notion of a dictionary. Level IIa contains the semantics of enrichments (sort
and operator declarations, and equations), and level IIb describes signature
changes (used in derive and in application of a parameterised specification).
Finally, level III gives the semantics of Clear's theory-building operations and
declarations, based on levels IIa and IIb and the operations on based theories
defined in Sect. 7. Much of the material in this section is taken from [5],
although there are some corrections and many minor changes.

464 D.T. Sannclla

8.1. Dictionaries

In Clear the notat ion s of TN (where s is a sort name and TN is a theory
name) may be used to refer to a sort which is included in a subtheory TN of
the current theory (similarly o of TN for operators). This may be necessary if
the sort (or operator) name alone is ambiguous. A dictionary gives the cor-
respondence between such an expression and the tagged sort or operator to
which it refers.

Definition. A dictionary is a pair of functions<sd, od> where

sd: sort-name x theory-name~tagged-sor t
od: operator-name x theory-name~tagged-opera tor

The operation dict is used to construct a dictionary from a based theory;
the resulting dictionary interprets sort and operator expressions referring to
sorts and operators in that theory.

diet: based-theory x envi ronment~dic t ionary
dict(TB, p) = <sd, od>

where sd(s, TN)= the unique tagged sort with name s in p(TN)
and od(o, TN)= the unique tagged operator with name o in p(TN)

sd(s, TN) gives an error if TNq~B, or if there is no unique sort called s in
p(TN) (similarly for od(o, TN)).

Note that this definition says that the notation s of TN (similarly o of TN)
may only be used to refer to theories which are in the base of the current
theory.

8.2. Level I: Sorts, Operators and Terms

Syntactic categories

s: sort name
o: operator name
TN: theory name
sex: sort expression
oex: operator expression
x: variable
tex: term expression

Syntax

(lower case identifier)
(identifier or operator symbol)
(capitalised identifier)

(identifier)

sex:: = s Is of TN e.g. element of X
oex:: = o l o of TN e.g. not of Bool
tex:: = x loex(tex~ , tex,) e.g. or(true of Bool, p) (infixes etc. also permitted)

Values

d: dictionary
X: sort-indexed variable set
tm : term

A Set-Theoretic Semantics for Clear 465

Semantic functions

Sex: sort-expression ~ signature ~ dictionary ~ tagged-sort
Oex: operator-expression ~ signature ~ dictionary ~ tagged-operator
Tex: term-expression ~ s i g n a t u r e ~ dictionary ~ sorted-variable-set--* term

Semantic equations

Sexl[s]iZd = t h e unique tagged sort in sorts(Z) with name s
SexEs of T N] Z d = sd(s, TN) where (sd, od) = d

O e x [o] Z d = the unique tagged operator in operators(Z) with name o
Oexl[o of T N ~ Z d = od(o, TN) where (sd, od) = d

T e x [x] Z d X = x (a Z-term on X) if x 6 X else e r r o r

Tex[oex(tex i tex.)] Z d X =
let f = Oex[[oex]lZd in
let tm 1 tm. = Tex [[tex 1]] Z d X , Tex[[teXn] Z d X in
f (tml , tm~) (a Z- term on X)

8.3. Level I l a: Enrichments

Syntactic categories

sd: sort declaration
od: operator declaration
varl: variable list
eq: equation expression
enrb: enrichment body
enr: enrichment

Syntax

s d : : = s
od :: =o: sex1, ..., SeXn-"~ s e x

v a r l : : = x 1 1 , . . . , X l n ~ �9 S e X l , . . . , X m l ~ . . .~Xmnr, , : s e x m

eq:: = all varl. tex i = tex2
enrb:: = sorts sd 1 , sdm opus od l . . . od , eqns eq 1.--e%
enr:: = enrbldata enrb

The operator declaration o: sex is permitted as
o: --,sex. Furthermore, the notation

e.g. nat
e.g. < : nat, n a t ~ b o o l
e.g. i , j :nat, p :bool
e.g. all p:nat , p + 0 = p

an abbreviation for

01 , � 9 Oral s e x l , . . . , SeXn--->sex

is allowed for operator declarations, defined by the obvious expansion into a
sequence of declarations, and the notation texl =tex2 is allowed as an abbre-
viation for all. texl =tex2 (ground equation).

Semantic functions

Sd: sor t -declarat ion- , t ag - . tagged-sort
Od: operator-declaration-~ tag ~ signature ~d ic t ionary

~(tagged-opera tor x type)

466 D.T. Sannella

Var l : var iable- l i s t ~ s ignature ~ d i c t iona ry ~ s o r t e d - v a r i a b l e - s e t
Eq: equa t ion-express ion ~ s igna ture ~ d i c t iona ry ~ equa t ion
Enrb : en r i chmen t -body- - , tag ~ s igna ture ~ d i c t iona ry

~ (t a g g e d - s o r t - s e t x (t agged-ope ra to r x type)-set • equat ion-se t)
Enr : en r i chment ~ t a g - - , based- theory ~ d i c t iona ry ~ based- theory

Semant ic equa t ions

Sd[[s~x = s~,
OdR'o: sex~ , s e x . ~ s e x] l x Z d =

let Sl, . . . , s , , s = Sex[[sexl~Zd, . . . , Sexl[sex,~2~d, Sexl[sex~z~d in
<ox,<<s~ s.>,s))

Varlffxl l x l . , : sexl xm 1 , xm,m:sex~ Zd =
let s 1 s m = Sex[sex l~Zd , . . . , S e x [s e x ~ Z d in
{ < x . , s l) < x l . , , s l) < x . l , s .) < x . . . , s .) }

Eq~al l varl. tex 1 = t ex2]Zd =
let X = V a r l l [v a r l l l Z d in
let tm l, tm 2 = Texl[texl]]ZdX, Texl[tex21]ZdX in
VX. tm~ = t m z (a Z-equa t ion)

E n r b [s o r t s sd~ sdm opns o d x . . . o d , eqns e q ~ . . . e q p] x Z d =
let S ' = {Sd~sdll]x , Sdl]'sd.1]x} in
let 2 7 = Z u (S ' , ~ b) in
let f2 '= {Od[[odt]x27d Od[od.1]xS'd} in
let Z " = Z ' w (q ~ , O ') in
let E ' = {Eql[eql l lZ"d Eql[eqel]Z"d } in
(S',O',E'>

Enr I[enrb~ x Td = enrich(T, E nrbn'enrbl] x sig(T)d)
Enr[[data enrb]xTd = data-enr ich(T, En rb [en rb] lx sig(T)d, x)

8.4. Leve l l i b : Signature Changes

Syntac t ic ca tegor ies

sc: sor t change
oc: o p e r a t o r change
sic: s igna ture change

Syntax

s c : : = S l is sexl , ...,Sn is sex.
o C : : = o 1 is oex l , ..,,On is oexn
sic : : = SC, OC e.g. e lement is nat,

o rde r is < of N a t
Semant ic funct ions

Sc: sor t -change-- , s igna ture ~ signature---, d i c t iona ry
(tagged-sor t ~ tagged-sor t)

Oc : o p e r a t o r - c h a n g e ~ s igna tu re -* s igna ture ~ d ic t iona ry
- - . (t agged-opera to r ~ t agged-opera to r)

Sic: s igna ture-change- - , s igna ture ~ s ignature ~ d ic t iona ry
s i gna tu r e -morph i sm

A Set-Theoretic Semantics for Clear 467

Semantic equations

Scitsl is sexl, ...,sn is sexn]lZ27d' =
{<Sex[slllZd, Sexltsexl]Z'd'> <Sexl[sn~Zd, SexitsexnllZ'd'>}
where d = <~b, q~> (the null dictionary)

Ocitol is oexl, ..., on is oexni2727'd' =
{<Oexi tol~d, Oexitoexln27'd'>, <Oexiton]]Zd, OexB'oexn~27d'> }
where d = (~, ~b> (the null dictionary)

Sicitsc, oc~2727'd' = make-signature-morphism(2Y, Scitsc]]Z,r'd', Ocitoc]2~27d', 27')
where make-signature-morphism(S, a,o,~,, g, 27') is the signature morphism
<a~o,z~,aopn~>: ~ Z ' with (aopn~),~ the set of all pairs < f , f ' > e g such that
f : w ~ s is in/2

8.5. Environments

Reference has already been made in previous sections to an environment of
theories. In that case the reference was to the constant theory environment,
only one of the three environments which will be needed. This is a function
binding names to based theories. The other two environments store metatheory
and parameterised specification bindings; the metatheory environment is again
a function binding names to based theories, while in the parameterised specifi-
cation environment each name is bound to a value consisting of a based theory
(the body) together with a list of based theories (the requirement theories).

Several operations are defined for manipulating these environments. The
operation

bind: name x value x environment--.environment

returns an environment with an added association between the name and value
given (the type of value depends on the environment). Similarly,

bind: name* x value* x environment--*environment

binds a list of names to the corresponding elements in a list of values. These
operations suffice for binding names to values in the metatheory and pa-
rameterised specification environments, but adding bindings to the constant
theory environment involves a slight complication. Recall that the base of a
theory contains the names of its constant subtheories, and that the constant
subtheories of a constant theory include the theory itself. This implies that the
base of every theory in the constant theory environment should include the
name to which the theory itself is bound. This addition to the base is made
when a new binding is added to the constant theory environment using the
following operation:

bind-const: name x based-theory x constant-theory-environment
constant-theory-environment

bind-const(TN, TB, p)= bind(TN, Ts~rN~, P)

There is an analogous operation for binding a list of names to the correspond-
ing elements in a list of based theories:

468 D.T. Sannella

bind-const: name* x based-theory* x constant-theory-environment
constant-theory-environment

bind-const((TNl, ..., TNm), (T I B I , ..., Tmnm), p)=
bind((TN1 , TNm), (T1B1 ~trN ll Tmem~trNm~), P)

Since each of the three environments is a function from names to values,
bindings can be retrieved using function application, i.e. p(TN) is the value
bound to TN in p,

8.6. Level I I I : Theory Building Operations

Let J be a countably infinite list of distinct tags. This is where the tags
required by the representation of based theories discussed in Sect. 5 come
from. The functions

hd: tag-list--.tag
tl: tag-list ~tag-l ist
split: tag-list x nat ~(tag-list)*

are defined by the following axioms:

hd[x lx2 . . .] = x 1
t l [x l x2...] = Ix2.. .]
split ([x l x2. . .] ,n)= ([x l xn+ l x~.+ l.. .], [x2x.+ 2x~.+ z...] [x . x z , xa])

These functions are used in the semantic equations below to provide tags and
lists of tags wherever they are required. All these tags originate from J and are
hence distinct.

Syntactic categories

PN: parameterised specification name (capitalised identifier)
e: expression
spec: specification

Syntax

e:: = TNI theory enr endth
l e l+e2
[enrich e by enr enden
[derive enr using el, ..., e. from e by sic endde
I PN(el [sic1] , e.[sic.])
Ilet T N = e l in e2
Icopy e using ex, . . . , e .

spec:: = e lconst TN = e spec
Imeta TN = e spec
Iproc PN(TNI :e l T N , : e .) = e spec

e.g. const Bool = theory...endth
meta Triv = theory...endth
proc String~X;Triv)= theory...endth
String(Bool[element is bool])

A Set-Theoretic Semantics for Clear 469

Values

T: based theory (sometimes M, P or A for metatheory, parameterised
specification body or actual parameter respectively)

p: constant theory environment (name---,based-theory)
#: metatheory environment (name-,based-theory)
n: parameterised specification environment

(name-,based-theory • based-theory*)
L: tag-list

Semantic functions

E: expression--* constant-theory-environment---,metatheory-environment
---, parameterised-specification-environment ~ tag-list

--.based-theory
Spec: specification-,constant-theory-environment--.metatheory-environment

---, parameterised-specification-environment--, tag-list
--,based-theory

Semantic equations

fp(TN) if TNedomain(p)
E[[TN]p#nL= ~g(TN) if TNedomain(/~)

terror if TN is in neither or both domains

E[[theory enr endth]p#TrL = Enr[enr]hd(L)~dict(~, p)
(4 is the empty based theory)

El[el + e2]]p#rcL =
let L1, L2 = split(L, 2) in
E~[el]p#nL1 + E~e2]]p#rrL2

E[em'ich e by enr eaden]pl~nL=
let T= E[e]p/tr~tl(L) in
Enr[enr] hd(L) Tdict(T, p)

E[derive enr using el, ..., e. from e by sic e u d d e] p g n L =
let L1 , L.+I =split(L, n + 1) in
let T = E[el]]p#nL~ +. . . + El[e~]p/anL, in
let T' = Enr[enr]hd(L,+ 1)Tdict(T, p) in
let T" =E[e]pgr r t l (L .+ 1) in
let a = Sic[sic]lsig(T')sig(T")dict(T", p) in
derive(T', a, T")

EnPN(ei l s ic l] , . . . , e . [s ic .])]pt tnL =
let L 1, ..., L. + 1 = split(L, n + 1) in
let At , A. = E[ea~p#nLl E[e.]p#7~L. in
let (P,, (M1, ..., M~)) = 7r(PN) in
let a l, ..., a. = Sic[[sicl]lsig(M t)sig(A t)dict(A1, p),

~

Sic[sic.]sig(M.)sig(A.Rlict(A., p) in
apply((P, (M1, ..., M .)) , ((A l , a l) , (A. , t r .)) , hd(L.+ l), P)

470 D.T. Sannella

El[let TN = e l in e 2] p # = L =
let L1, L2 = split(L, 2) in
let T=E[el]pI~nL1 in
let p' = bind-const(TN, T, p) in
let Tk=E[[ez]]p' l.trcL2 in
TB-{TN}

E[copy e using e l , . . . , e .] p # 7 ~ L =

let L 1, ---, L. + 2 ~--- split(L, n + 2) in
let T= E[e]]plt~zL1 in
let T '= E[[ei]p#nL2 + . . . + E[e.]p#nL.+ ~ in
copy(T, T', hd(L. + 2))

Specl[e]p/.tnL = El[el p~nL
Spec[[const TN = e spec]pkt•L =

let Lx, L2 = split(L, 2) in
let p' = bind-const(TN, E[[e] p l~nL1, p) in
Spec[[spec]] p' ktlt L2

Spec[[meta TN = e spec]p/~zL =
let L~, L2 = split(L, 2) in
let #' = bind(TN, En'e]p#rcL1, #) in
Specl[spec]]p#'zL2

Spec[proc PN(TN1 : e l , . . . , TNn: e,) = e spec]ppnL =
let L1, ..., L,§ 2 = split(L, n + 2) in
let M1, . . . , M, = copy-meta(E[el]p/~ztl(L1), hd(L1), p),

copy-meta(E[[e,]p#rctl(L,), hd(L,), p) in
let p' =bind-cons t ((TN~ , TN,) , (M ~, ..., M,) , p) in
let Ps= El[e]p' l~nL,+ x in
let ~' =bind(PN, (PB-trs rN.~, (Mx M ,)) ,n) in
Spec[[spec]]p#~z'L,+ 2 /f {TN1, ..., TN.} ~ B else error

The denotat ion of a specification spec in the initial environments p, p, r~ is
then given by the value of Spec[spec]lplznJ (recall that J is a n infinite supply
of distinct tags). The initial constant theory environment p should normally
include a binding of the theory name Bool to a theory containing (at least) the
sort boolnoo~ and operators trUeRoo~ and falsenoo~ with base {Bool}; these exact
names are required by the data-enrich operation.

9. Conclusion

There are a number of algebraic specification languages besides Clear which
have a formal semantics, including CIP-L [2], L O O K [8], ACT O N E 1-7],
ASL [27] and the Larch Shared Language [18]. In comparison with these, the
semantics of Clear in [5] as well as the one given here seem overly complex.
The reason for this is that Clear at tempts to take proper account of shared
subtheories. A number of complications in the semantics are required to
handle this feature, namely the addition of tags to sort and operator names (to
indicate their theory of origin), of bases to theories (to keep track of constant
subtheories) and the distinction between constant theories and metatheories.
Frills like the automat ic addition of an equality predicate for "da t a" sorts
entail some complication as well, but here the effect is more localised.

A Set-Theoretic Semantics for Clear 471

We inherit from the semantics of [5] the problem of "proliferat ion" men-
tioned in Sect. 5 whereby each application of a parameterised specification
gives a fresh copy of the resulting theory, and so e.g. Set(Nat[.. .])
+Set(Nat l . . .]) contains two sorts with the name set. A set-theoretic semantics
of Clear which avoids this problem is given in [24]; the basic idea is to tag
sorts and operators created by application of a parameterised specification
with tags of the form P(A[a]) . Another problem we inherit from [5] concerns
the semantics of derive. Intuitively, we would expect that to every model A of
the specification derive.. .using.. .from T' by a there should correspond a model
A' of T' such that A'Io~--A. This is not the case with the present definition of
derive; the difficulty is that T' might contain data constraints which cannot be
expressed in the signature of T. This situation could be put right by adopting a
more elaborate definition of data constraint similar to the canonical constraints
of [9]. But in the context of an arbitrary institution as in [5] it is necessary to
descend to the level of models as in [27] to give a semantics of derive with the
desired property.

By describing Clear under an arbitrary institution, the semantics of [5] is
more general than the semantics of ordinary Clear given here. But it is easy to
see that our semantics is independent of the definitions of model (algebra and
satisfaction) and - with the exception of level I I a of the semantic equations (as
in [5]) - of axiom (equation), so long as these definitions satisfy the simple
consistency conditions required by an institution. The semantics does depend
on the definitions of signature and signature morphism, as a consequence of
the way tags are used to handle sharing. But (apart from the lower levels of the
semantic equations, as in E5]) the semantics really only relies on the following
essential features of their definitions:

- signatures are n-tuples of sets
- a signature morphism a: 2~--,27 consists of an n-tuple of functions (maps)

between the components of 2; and 27.
In addition, the tagging trick depends on the following:

- enrichments denote theory inclusions (in [5] they may denote arbitrary
theory morphisms)
The semantics could easily be modified to work for any institution satisfying
these conditions. This means that essentially the same semantics works for
(e.g.) Clear with errors [12, 1 i], ordered sorts [13], polymorphism [25], and/or
partial algebras [3]. No institution has been proposed to my knowledge which
does not satisfy the conditions above.

Acknowledgements. 1 am indebted to Rod Burstall and Joseph Goguen for [5] from which much of
the material included here is borrowed. My thanks to Rod Burstall for guidance and encourage-
ment, to David Rydeheard for category-theoretic expertise, and to Brian Monahan, Bill Wadge
and Martin Wirsing for helpful comments. Support was provided by Edinburgh University and the
Science and Engineering Research Council.

10. References
1. Ashcroft, E.A., Wadge, W.W.: R~ for semantics. TOPLAS 4, 283-294 (1982)
2. Bauer, F.L., Broy, M., Dosch, W., Gnatz, R, Geiselbrechtinger, F., Hesse, W., Krieg-Briickner,

B., Laut, A., Matzner, T., M/511er, B., Partsch, H., Pepper, P., Samelson, K., Wirsing~ M.,
W~Sssner, I-I.: (the CIP Language Group) Report on a wide spectrum language for program
specification and development. Report TU M-I 8104, Technische Universit~it MBnchen, 1981

3. Broy, M., Wirsing, M.: Partial abstract types. Acta Informat. 18, 47-64 (1982)

472

4. Burstall, R.M., Goguen, J.A.: Putting theories together to make specifications. Prec. 5th Intl.
Joint Conf. on Artificial Intelligence, Cambridge, pp. 1045-1058, 1977

5. Burstall, R.M., Goguen, J.A.: The semantics of Clear, a specification language. Prec. of
Advanced Course on Abstract Software Specifications, Copenhagen. Springer LNCS 86,
pp. 292-332, 1980

6. Burstall, R.M., Goguen, J.A.: An informal introduction to specifications using Clear. In: The
Correctness Problem in Computer Science. R.S. Boycr, J.S. Moore (eds.). New York: Academic
Press, pp. 185-213, 1981

7. Ehrig, H., Fey, W., Hansen, H.: ACT ONE: an algebraic specification language with two levels
of semantics. Report Nr. 83-03, Institut f'dr Software und Thcoretische Informatik, Technische
Univcrsit~t Berlin, 1983

8. Ehrig, H., Thatcher, J.W., Lucas, P., Zilles, S.N.: Denotational and initial algebra semantics of
the algebraic specification language LOOK Draft report, IBM research, 1982

9. Ehrig, H., Wagner, E.G., Thatcher, J.W.: Algebraic constraints for specifications and canonical
form results (draft version). Report Nr. 82-09, Institut ffir Software und Theoretische Infor-
matik, Technische Universidit Berlin, 1982

I0. Ehrig, H., Wagner, E.G., Thatcher, J.W.: Algebraic specifications with generating constraints.
Prec. 10th ICALP, Barcelona. Springer LNCS 154, pp. 188-202, 1983

1 i. Gogolla, M., Drosten, K., Lipeck, U., Ehrich, H.D.: Algebraic and operational semantics of
specifications allowing exceptions and errors. Fb. 140, Abteilung Informatik, Universitttt
Dortmund, 1982

12. Goguen, J.A.: Abstract errors for abstract data types. Prec. IFIP Working Conf. on the
Formal Description of Programming Concepts, New Brunswick, New Jersey, 1977

13. Goguen, J.A.: Order sorted algebras: exceptions and error sorts, coercions and overloaded
operators. Semantics and Theory of Computation Report No. 14, Dept. of Computer Science,
UCLA, 1978

14. Goguen, J.A., Burstall, R.M.: Introducing institutions. Proc. Logics of Programming Work-
shop. E. Clarke (ed.). Carnegie-Mellon University, 1983

15. Goguen, J.A., Meseguer, J.: An initiality primer. Draft report, SRI International, 1983
16. Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An initial algebra approach to the specification,

correctness, and implementation of abstract data types. IBM research report RC6487, 1976.
Also in: Current Trends in Programming Methodology, Vol. 4: Data Structuring. R.T. Yeh
(ed.). Englewood Cliffs, NJ: Prentice-Hall, pp. 80-149, 1978

17. Guttag, J.V.: The specification and application to programming of abstract data types. Ph.D.
thesis, University of Toronto, 1975

18. Guttag, J.V., Horning, J.J.: Preliminary report on the Larch Shared Language. Report CSL-83-
6. Computer Science Laboratory. Xerox PARC, 1983

19. Guttag, J.V., Horowitz, E., Musser, D.R.: Abstract data types and software validation. CACM
21, 1048-1064 (1978)

20. Kaphengst, H., Reichel, H.: Algebraische Algorithmentheorie. VEB Robotron, Zentrum fdr
Forschung und Technik, Dresden, 1971

21. McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.P., Levin, M.I.: LISP 1.5 Programmer's
Manual. MIT Press, 1962

22. Nakajima, R., Yuasa, T.: The IOTA Programming System. Springer LNCS 160, 1983
23. Reichel, H.: Initially restricting algebraic theories. Proc. 9th MFCS, Rydzyna, Poland. Springer

LNCS 88, pp. 504-514, 1980
24. Sannella, D.T.: Semantics, implementation and pragmatics of Clear, a program specification

language. Ph.D. thesis, Dept. of Computer Science, University of Edinburgh, 1982
25. Sannella, D.T., Burstall, R.M.: Structured theories in LCF. Proc. 8th Colloq. on Trees in

Algebra and Programming, L'Aquila, Italy. Springer LNCS 159, pp. 377-391, 1983
26. Sannella, D.T., Wirsing, M.: Implementation of parameterised specifications. Report CSR-103-

82, Dept. of Computer Science, University of Edinburgh; extended abstract in: Proc. 9th
ICALP, Aarhus, Denmark. LNCS 140, pp. 473-488, 1982

27. Sannella~ D.T., Wirsing, M.: A kernel language for algebraic specification and implementation.
Report CSR-131-83, Dept. of Computer Science, University of Edinburgh; extended abstract
in: Proc. Intl. Conf. on Foundations of Computation Theory, Borgholrn, Sweden. Springer
LNCS 158, pp. 413---427, 1983

Received August 23, 1984

