
On normal forms for structured specifications
with generating constraints?

Donald Sannella1 and Andrzej Tarlecki2

1 Laboratory for Foundations of Computer Science, University of Edinburgh
2 Institute of Informatics, University of Warsaw

Abstract. Hartmut Ehrig and others in [EWT83] studied normal form
results for complex generating constraints imposed on basic specifica-
tions. Since then this work has been followed by subsequent results con-
cerning normal forms for structured specifications, typically built from
basic specifications using union, translation and hiding. We consider gen-
erating constraints as additional specification-building operations and
follow and extend the results concerning normal forms for the resulting
specifications with various forms of generating constraints.

1 Introduction

Hartmut Ehrig and others in [EWT83] studied normal form results for com-
plex generating constraints imposed on basic specifications. Although from to-
day’s point of view the results were somewhat restricted in their generality, they
spurred a line of work on normal forms of structured specifications, notably in
[BHK90] and in the current general version in [Bor02], which turned out to be
crucial in the study of proof systems for consequences of structured specifica-
tions, and in the analysis of completeness properties of such proof systems. But
the more recent normal form results largely disregarded generating (or reacha-
bility) properties as imposed by the constraints studied in [EWT83]. Our aim
here is to fill this gap, by generalising the results of [EWT83] as follows.

First, as has been standard since the introduction of institutions [GB84,GB92]
to free algebraic specifications from dependency on a specific logical system, we
abstract away from the specifics of the underlying logical system and present
our results in the framework of a rather arbitrary logical system formalised as
an institution with minimal extra structure and assumed properties.

Then, we consider a normal form of specifications that is somewhat more
restrictive than the canonical constraints in [EWT83], giving a normal form
result that is a bit sharper than the corresponding result in [EWT83].

Finally, and most crucially, Ehrig et al. [EWT83] studied generating con-
straints that impose generation requirements within models of a “flat” basic
specification (presentation) only. We study generating constraints imposed by a
more general specification building operation, which may be mixed with other

? This work has been partially supported by the (Polish) National Science Centre,
grant 2013/11/B/ST6/01381 (AT).

specification-building operations in an arbitrary way, so that generating require-
ments may be imposed in multiple “layers” within models of an arbitrarily com-
plex specification. This makes the study more delicate, and in fact the normal
form result one might expect does not carry over to this more general case.

Dedication: This study is dedicated to the memory of Hartmut Ehrig. We are
grateful to Hartmut for his kindness and generosity over the years. We repre-
sented different “schools” of thought on algebraic specification, but Hartmut was
always friendly and willing to explain his ideas and to try to understand our
point of view.

2 Constraints in the standard algebraic framework

We begin with a summary of [EWT83].
As was usual at the time, the investigation was carried out in the context

of the standard algebraic framework [EM85]. Specifications are presentations
〈Σ,Φ〉 where Σ is a standard many-sorted signature and Φ is a set of Σ-axioms,
usually equations. The category of Σ-algebras Alg(Σ) is defined as usual, with
the notion of satisfaction between algebras and axioms yielding the obvious
semantics of presentations: [[〈Σ,Φ〉]] = {A ∈ |Alg(Σ)| | A |= Φ}.

The category of algebraic signatures AlgSig with standard signature mor-
phisms σ : Σ → Σ′ is cocomplete. For each signature morphism σ : Σ → Σ′, we
have a σ-reduct functor Uσ : Alg(Σ′)→ Alg(Σ). A signature morphism σ : Σ →
Σ′ is a presentation morphism σ : 〈Σ,Φ〉 → 〈Σ′, Φ′〉 if Uσ([[〈Σ′, Φ′〉]]) ⊆ [[〈Σ,Φ〉]].
Colimits lift from the category of signatures to the category of presentations. The
crucial satisfaction condition and amalgamation properties hold as expected —
see Sect. 3 for more general formulations, or check for instance [ST12].

For each presentation PRES , the authors of [EWT83] introduce constraints
on PRES , which are built from the empty constraint ∅, with semantics [[∅]] =
[[PRES]], using union, with [[C1 +C2]] = [[C1]]∩ [[C2]], and the following construc-
tors, for any presentation morphisms σ : PRES ′ → PRES , σ′ : PRES → PRES ′

and constraint C ′ on PRES ′:

– translation TRAσ: [[TRAσ(C ′)]] = {A ∈ [[PRES]] | Uσ(A) ∈ [[C ′]]}
– reflection REFσ′ : [[REFσ′(C ′)]] = {Uσ′(A′) | A′ ∈ [[C ′]]}
– generating constraint GENσ: [[GENσ(C ′)]] = {A ∈ [[PRES]] | Uσ(A) ∈ [[C ′]]

and A is Uσ-generated in [[PRES]]}, where A ∈ [[PRES]] is Uσ-generated in
[[PRES]] if in [[PRES]] there is no proper subalgebra of A with the same
σ-reduct as A.

A constraint on PRES of the form REFσ3(TRAσ2(GENσ1(∅))) is called
canonical. Such constraints might be easier to read in the diagrammatic no-
tation of [EWT83]:

PRES 1
σ1−→

GEN
PRES 2

σ2−→
TRA

PRES 3
σ3←−

REF
PRES

for presentations PRES i and presentation morphisms σi, i = 1, 2, 3.
The key result in [EWT83] is the following normal form theorem:

2

Theorem 2.1 ([EWT83]). For each constraint on PRES an equivalent canon-
ical constraint may be constructed. ut

We found the result very interesting and analysed it in detail already at the
time [Tar83]. One observation was that the above form of canonical constraints
is the only one possible for Thm. 2.1 to hold — that is, no other order of generat-
ing constraints, translation and reflection would work. Another was that some of
the assumptions in [EWT83] are either misleading or unnecessary. For instance,
the authors require reduct functors to lift isomorphisms, which in the standard
algebraic framework excludes presentation morphisms that are not injective on
sorts. Even if we could accept this as a reasonable restriction, it turns out that
this property cannot be maintained under the constructions used in the proof of
Thm. 2.1. Fortunately, such details did not prove to be crucial for the correct-
ness of the proof, and the paper and the above theorem influenced subsequent
developments, most notably the simpler normal form results for specifications
without generating constraints in [BHK90] and [Bor02] and much work based in
turn on those results.

3 Institutions with model inclusions

To capture in a very general way the concept of a submodel, we will require our
model categories to come with inclusions.

A class of morphisms in a category is called a class of inclusions if it imposes
a partial order on the objects of the category; to be precise, we require that

– all identities are inclusions
– inclusions are closed under composition
– between any two objects there is at most one inclusion (in either direction,

i.e., for objects A, B, either there is no inclusion between A and B, or there
is a unique inclusion from A to B, or from B to A, but not both unless A
and B coincide).

In other words, a category with inclusions is a pair C = 〈C, I〉 such that C is
a category and I is a wide thin skeletal subcategory of C; the morphisms of I
are called inclusions. If there is an inclusion ι : A → B then we say that A is a
subobject of B and write A ⊆ B.

When no confusion may arise, we use the standard categorical terminology
and notation in C to refer to the corresponding concepts in C. So, for instance,
we write |C| for the class |C| of objects in C, by a diagram in C we mean a
diagram in C, by (co)limits in C we mean (co)limits in C, etc.

A functor between categories with inclusions F : 〈C, I〉 → 〈C′, I ′〉 is a functor
F : C → C′ that preserves inclusions, F (I) ⊆ I ′. Clearly, such functors compose,
and so this yields the (quasi-)category ICat of categories with inclusions.

These are extremely mild requirements concerning the subcategory of inclu-
sions. For instance, in contrast to some other work, e.g. [DGS93], [CR97], [GR04]
and [CMST17], we have no need to assume that inclusions form part of a (strict)
factorisation system for C, or that they admit intersections and unions, etc.

3

An institution with model inclusions INS consists of:

– a category SignINS of signatures;
– a functor SenINS : SignINS → Set, giving a set SenINS(Σ) of Σ-sentences

for each signature Σ ∈ |SignINS|; and a function SenINS(σ) : SenINS(Σ)→
SenINS(Σ′) which translates Σ-sentences to Σ′-sentences for each signature
morphism σ : Σ → Σ′;

– a functor ModINS : Signop
INS → ICat, giving a category ModINS(Σ) of Σ-

models with model inclusions for each signatureΣ ∈ |SignINS|; and a functor
ModINS(σ) : ModINS(Σ′) → ModINS(Σ) which translates Σ′-models to
Σ-models and Σ′-morphisms to Σ-morphisms, preserving model inclusions,
for each signature morphism σ : Σ → Σ′; and

– a family 〈|=INS,Σ ⊆ |ModINS(Σ)| × SenINS(Σ)〉Σ∈|SignINS| of satisfaction
relations

such that for any signature morphism σ : Σ → Σ′ the translations ModINS(σ)
of models and SenINS(σ) of sentences preserve the satisfaction relation, that
is, for any ϕ ∈ SenINS(Σ) and M ′ ∈ |ModINS(Σ′)| the following satisfaction
condition holds:

M ′ |=INS,Σ′ SenINS(σ)(ϕ) iff ModINS(σ)(M ′) |=INS,Σ ϕ

Note that institutions with model inclusions are not “inclusive institutions”
in the sense of [DGS93], [GR04] and [CMST17]: we require inclusion structure
on models, not on signatures.

Examples of institutions with model inclusions abound. The institution EQ
of equational logic has many-sorted algebraic signatures as signatures, many-
sorted algebras as models with the usual notion of subalgebra determining the
model inclusions and (explicitly quantified) equations as sentences. The insti-
tution FOPEQ of first-order predicate logic with equality has signatures that
add predicate names to many-sorted algebraic signatures, models that extend
algebras by interpreting predicate names as relations with inclusions that are
required to preserve these relations, and sentences that are all closed (no free
variables) formulae of first-order logic with equality. See [ST12] for detailed def-
initions of these and many other institutions, which often can be enriched with
the obvious concept of a submodel, to yield institutions with model inclusions.

We will freely use standard terminology, and say that a Σ-model M satisfies
a Σ-sentence ϕ, or that ϕ holds in M , whenever M |=INS,Σ ϕ. We will omit the
subscript INS, writing INS = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉. Similarly, the
subscript Σ on the satisfaction relations will often be omitted. For any signature
morphism σ : Σ → Σ′, the translation function Sen(σ) : Sen(Σ)→ Sen(Σ′) will
be denoted by σ : Sen(Σ) → Sen(Σ′), the coimage function w.r.t. Sen(σ) by
σ−1 : P(Sen(Σ′))→ P(Sen(Σ)), and the reduct functor Mod(σ) : Mod(Σ′)→
Mod(Σ) by σ : Mod(Σ′) → Mod(Σ). Thus, the satisfaction condition may

be re-stated as: M ′ |= σ(ϕ) iff M ′ σ |= ϕ.

An institution with inclusions INS is (finitely) exact if its category Sign of
signatures is (finitely) cocomplete, and the functor Mod : Signop → ICat maps

4

(finite) colimits of signatures to limits of model categories with inclusions in
ICat. This adjusts the usual notion of exactness [ST12] to the framework where
model inclusions are considered. In particular, the following stronger form of the
amalgamation property [EM85] holds:

Lemma 3.1. Given a finitely exact institution with model inclusions INS, con-
sider a pushout of signatures

Σ

Σ1 Σ2

Σ′

@
@
@I

�
�
��

�
�
��

@
@
@I

σ1 σ2

σ′1 σ′2

Then, for any M1 ∈ |Mod(Σ1)| and M2 ∈ |Mod(Σ2)| such that M1 σ1 = M2 σ2 ,

there exists a unique M ′ ∈ |Mod(Σ′)| such that M ′ σ′
1

= M1 and M ′ σ′
2

= M2.
Moreover, for any submodels N1 ⊆ M1 and N2 ⊆ M2 such that N1 σ1

= N2 σ2

(hence N1 σ1 = N2 σ2 ⊆M1 σ1 = M2 σ2) the unique N ′ ∈ |Mod(Σ′)| such that

N ′ σ′
1

= N1 and N ′ σ′
2

= N2 is a submodel of M ′, N ′ ⊆M ′. ut

The standard institutions with model inclusions mentioned above (EQ, FOPEQ,
etc.) are exact, hence enjoy the amalgamation property captured by Lemma 3.1.

Given a signature morphism σ :Σ → Σ′ and classM′⊆|Mod(Σ′)| of models,
we say that a model M ′ ∈ |Mod(Σ′)| is σ-generated inM′ if M ′ ∈M′ and it has
no proper submodels inM′ with the same σ-reduct: for any submodel M ′′ ⊆M ′
if M ′′ ∈ M′ and M ′′ σ = M ′ σ then M ′′ = M ′. By taking M′ = |Alg(Σ′)| we

obtain the standard definition of σ-generated model, which requires M ′ to be
generated by the set of all its elements in the carriers of M ′ σ. But note that

whenM′ |Alg(Σ′)| — in particular, whenM′ is not closed under submodels
— models that are generated inM′ need not be generated in the standard sense,
exactly as in [EWT83]. For this reason a better terminology might be “minimal”,
as in [ST88], but we retain the terminology of [EWT83] to avoid confusion.

4 Structured specifications in institutions with model
inclusions

Taking an institution as a starting point for talking about specifications, each
signature Σ captures static information about the interface of a software system
with each Σ-model representing a possible realisation of such a system, and with
Σ-sentences used to describe properties that a realisation is required to satisfy.
As a consequence, it is natural to regard the meaning of any specification SP
built in an institution INS = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉 as given by its
signature Sig [SP] ∈ |Sign| together with a class Mod [SP] of Sig [SP]-models.
Specifications SP with Sig [SP] = Σ are referred to as Σ-specifications.

5

The semantics of specifications yields the obvious notion of specification
equivalence: two specifications SP1 and SP2 are equivalent, written SP1 ≡ SP2,
if Sig [SP1] = Sig [SP2] and Mod [SP1] = Mod [SP2].

Specifications we will consider are built from basic specifications (presenta-
tions in INS) using specification-building operations [ST12]. Specification for-
malisms differ in the choice of these operations, but typically all share a ker-
nel introduced in ASL [SW83,ST88], where specifications are built from basic
specifications using union, translation, and hiding. Following [EWT83], we add
generating contraints to this repertoire, to capture constraints as studied there
via a more general specification-building operation. We use a syntax inspired by
that of Casl [BM04].

basic specifications: For any signature Σ ∈ |Sign| and set Φ ⊆ Sen(Σ) of
Σ-sentences, a basic specification 〈Σ,Φ〉 is a specification with:

Sig [〈Σ,Φ〉] = Σ
Mod [〈Σ,Φ〉] = {M ∈Mod(Σ) |M |= Φ}

union: For any signature Σ ∈ |Sign|, given Σ-specifications SP1 and SP2,
their union SP1 ∪ SP2 is a specification with:

Sig [SP1 ∪ SP2] = Σ
Mod [SP1 ∪ SP2] = Mod [SP1] ∩Mod [SP2]

translation: For any signature morphism σ : Σ → Σ′ and Σ-specification SP ,
SP with σ is a specification with:

Sig [SP with σ] = Σ′

Mod [SP with σ] = {M ′ ∈ |Mod(Σ′)| |M ′ σ ∈ Mod [SP]}
hiding : For any signature morphism σ : Σ → Σ′ and Σ′-specification SP ′,

SP ′ hide via σ is a specification with:

Sig [SP ′ hide via σ] = Σ
Mod [SP ′ hide via σ] = {M ′ σ |M ′ ∈ Mod [SP ′]}

generating constraints: For any signature morphism σ : Σ → Σ′, Σ-specifi-
cation SP and Σ′-specification SP ′, generate by σ from SP in SP ′ is a
specification with:

Sig [generate by σ from SP in SP ′] = Σ′

Mod [generate by σ from SP in SP ′] =
{M ′∈|Mod(Σ′)| |M ′ is σ-generated in Mod [SP ′],M ′ σ∈Mod [SP]}

The above specification-building operations may be arbitrarily combined to
derive additional specification-building operations that capture some common
patterns of their use. For instance:

enrichment : For any specification SP and a set Φ ⊆ Sen(Sig [SP]) of sentences,
SP then Φ abbreviates SP ∪ 〈Sig [SP], Φ〉.

5 Algebraic properties of specification-building
operations

We start by recalling some easy facts concerning the standard specification-
building operations [ST12]:

6

Proposition 5.1. In any institution, under the obvious requirements on speci-
fication signatures, sentences and signature morphisms involved to ensure well-
formedness of the specifications concerned:

1. 〈Σ,Φ1〉 ∪ 〈Σ,Φ2〉 ≡ 〈Σ,Φ1 ∪ Φ2〉
2. 〈Σ,Φ〉 with σ : Σ → Σ′ ≡ 〈Σ′, σ(Φ)〉
3. SP with idSig[SP] ≡ SP ≡ SP hide via idSig[SP]

4. (SP with σ) with σ′ ≡ SP with σ;σ′

5. (SP hide via σ) hide via σ′ ≡ SP hide via σ′;σ
6. (SP ∪ SP ′) with σ ≡ (SP with σ) ∪ (SP ′ with σ) ut

The following easy fact follows directly from Prop. 5.1(4 and 6):

Proposition 5.2. In any institution INS, consider the following commuting
diagram of signatures:

Σ1 Σ0 Σ2

Σ

- �
�
�
�
�
�� 6

@
@

@
@
@I

i1 i2

σ1 σ σ2

Then for any Σ1-specification SP1 and Σ2-specification SP2,

(SP1 with σ1) ∪ (SP2 with σ2) ≡ ((SP1 with i1) ∪ (SP2 with i2)) with σ

ut

Proposition 5.3. In any finitely exact institution INS, given a pushout of sig-
natures

Σ

Σ1 Σ2

Σ′

@
@
@I

�
�
��

�
�
��

@
@
@I

σ1 σ2

σ′1 σ′2

1. (SP1 hide via σ1) with σ2 ≡ (SP1 with σ′1) hide via σ′2, for any Σ1-
specification SP1, and

2. (SP1 hide via σ1) ∪ (SP2 hide via σ2) ≡
((SP1 with σ′1) ∪ (SP2 with σ′2)) hide via σ1;σ′1,

for any Σ1-specification SP1 and Σ2-specification SP2.

Proof. See Props. 5.6.5 and 5.6.7 in [ST12]. ut

We can also derive algebraic properties for derived specification-building op-
erations; for instance the following property follows directly from Prop. 5.1(6
and 2):

7

Proposition 5.4. For any specification SP, set Φ ⊆ Sen(Sig [SP]) of sentences
and signature morphism σ : Sig [SP]→ Σ′,

(SP then Φ) with σ ≡ (SP with σ) then σ(Φ) ut

In generate by σ from SP in SP ′, both the “source” specification SP and
the “target” specification SP ′ may be arbitrarily complex, built using any com-
bination of specification-building operations, including generating constraints.
This is considerably more general than the constraints considered in [EWT83],
where in particular the “target” specification, within which we select the gener-
ated models, was taken to be a basic specification.

To begin with, let us note that the complexity of the source specification in a
generating constraint may easily be removed. The source specification does not
affect the generation property of the models within the target specification, and
so it may be moved out of the scope of the constraint and imposed separately:

Proposition 5.5. In any institution with model inclusions INS, for any signa-
ture morphism σ : Σ → Σ′, Σ-specification SP and Σ′-specification SP ′,

generate by σ from SP in SP ′ ≡
(generate by σ from 〈Σ, ∅〉 in SP ′) ∪ (SP with σ)

Proof. From the definition of the semantics of the specification-building opera-
tions involved. ut

The following property will be used to combine generating constraints:

Lemma 5.6. Consider two constraints generate by σ1 from SP1 in SP ′1 and
generate by σ2 from SP2 in SP ′2, where Sig [SP1] = Σ1, Sig [SP ′1] = Σ′1,
Sig [SP2] = Σ2, Sig [SP ′2] = Σ′2. Let Σ0 be a coproduct of Σ1 and Σ2 with
injections i1 : Σ1 → Σ0 and i2 : Σ2 → Σ0, and Σ′0 be a coproduct of Σ′1 and
Σ′2 with injections i′1 : Σ′1 → Σ′0 and i′2 : Σ′2 → Σ′0, and let σ0 : Σ0 → Σ′0 be the
unique signature morphism such that i1;σ0 = σ1;i′1 and i2;σ0 = σ2;i′2.

Σ1 Σ0 Σ2

Σ′1 Σ′0 Σ′2

- �

6 6 6

- �

i1 i2

σ1 σ0 σ2

i′1 i′2

Then for any model M ′∈|Mod(Σ′0)|, M ′ is σ0-generated in Mod [(SP ′1 with i′1)∪
(SP ′2 with i′2)] iff both M ′ i′1 is σ1-generated in Mod [SP ′1] and M ′ i′2 is σ2-

generated in Mod [SP ′2].

Proof. For the “only if” part, consider a model M ′ ∈ |Mod(Σ′0)| such that M ′

is σ0-generated in Mod [(SP ′1 with i′1) ∪ (SP ′2 with i′2)]. Consider a submodel
N ′1 ⊆ M ′ i′1 such that N ′1 ∈ Mod [SP ′1] and N ′1 σ1

= (M ′ i′1) σ1
. Let N ′ ∈

|Mod(Σ′0)| be (the unique model) such that N ′ i′1 = N ′1 and N ′ i′2 = M ′ i′2 . Then

8

N ′ ⊆ M ′ (by Lemma 3.1), N ′ ∈ Mod [(SP ′1 with i′1) ∪ (SP ′2 with i′2)] (from
the definition of the semantics of structured specifications), and N ′ σ0

= M ′ σ0

(since (N ′ σ0) i2 = (N ′ i′2) σ2 = (M ′ i′2) σ2 = (M ′ σ0) i2 , and (N ′ σ0) i1 =

(N ′ i′1) σ1
= (M ′ i′1) σ1

= (M ′ σ0
) i1). Hence N ′ = M ′, and so N ′1 = M ′ i′1 ,

which shows that M ′ i′1 is σ1-generated in Mod [SP ′1]. By symmetry, M ′ i′2 is

σ2-generated in Mod [SP ′2].

For the opposite implication, suppose both M ′ i′1 is σ1-generated in Mod [SP ′1]

and M ′ i′2 is σ2-generated in Mod [SP ′2]. Consider a submodel N ′ ⊆ M ′ such

that N ′ ∈ Mod [(SP ′1 with i′1) ∪ (SP ′2 with i′2)] and N ′ σ0
= M ′ σ0

. Then

N ′ i′1 ∈ Mod [SP ′1] is a submodel of M ′ i′1 such that (N ′ i′1) σ1
= (N ′ σ0

) i1 =

(M ′ σ0
) i1 = (M ′ i′1) σ1

. Therefore N ′ i′1 = M ′ i′1 . By symmetry, N ′ i′2 = M ′ i′2 .

Hence N ′ = M ′, which shows M ′ is indeed σ0-generated in Mod [(SP ′1 with i′1)∪
(SP ′2 with i′2)]. ut

Corollary 5.7. Under the notation of Lemma 5.6:((
(generate by σ1 from SP1 in SP ′1) with i′1

)
∪(

(generate by σ2 from SP2 in SP ′2) with i′2
)) ≡

generate by σ0 from

(
(SP1 with i1) ∪

(SP2 with i2)

)
in

(
(SP ′1 with i′1) ∪

(SP ′2 with i′2)

)
Proof. Let SP l be the specification on the left-hand side of the equivalence, and
let SPr be the specification on its right-hand side.

Consider M ′0 ∈ Mod [SP l]. Then M ′0 i′1
is σ1-generated in Mod [SP ′1] and

M ′0 i′2
is σ2-generated in Mod [SP ′2]. Hence, by Lemma 5.6, M ′0 is σ0-generated

in Mod [(SP ′1 with i′1) ∪ (SP ′2 with i′2)]. Moreover, (M ′0 i′1
) σ1 = (M ′0 σ0) i1 ∈

Mod [SP1] and (M ′0 i′2
) σ2

= (M ′0 σ0
) i2 ∈ Mod [SP2], hence we have M ′0 σ0

∈
Mod [(SP1 with i1) ∪ (SP2 with i2)]. Thus, M ′0 ∈ Mod [SPr].

Consider now M ′0 ∈ Mod [SPr]. M
′
0 is σ0-generated in Mod [(SP ′1 with i′1)∪

(SP ′2 with i′2)], hence by Lemma 5.6, M ′0 i′1
is σ1-generated in Mod [SP ′1] and

M ′0 i′2
is σ2-generated in Mod [SP ′2]. Moreover, M ′0 σ0 ∈ Mod [(SP1 with i1) ∪

(SP2 with i2)], hence (M ′0 i′1
) σ1

= (M ′0 σ0
) i1 ∈ Mod [SP1] and (M ′0 i′2

) σ2
=

(M ′0 σ0
) i2 ∈Mod [SP2]. Thus M ′0 i′1

∈Mod [generate by σ1 from SP1 in SP ′1]

and M ′0 i′2
∈ Mod [generate by σ2 from SP2 in SP ′2], which shows that M ′0 ∈

Mod [SP l]. ut

6 Normal form results

We now come to the presentation of so-called normal-form results for struc-
tured specifications, whereby we show that all specifications of a certain kind
are equivalent to a specification in a certain simple “normal form”.

The first such result is easy:

9

Theorem 6.1. In any institution INS, for every specification SP built from
basic specifications using union and translation, there is an equivalent (basic)
specification of the form 〈Σ,Φ〉 (where Φ is finite provided the basic specifications
involved in SP are finite).

Proof. By induction on the structure of specifications, using Prop. 5.1(1 and 2).
ut

Then, using Props. 5.1 and 5.3, one can show the following normal form result
by an easy induction on the structure of specifications:

Theorem 6.2. Let INS be a finitely exact institution. For every specification
SP built from flat specifications using union, translation and hiding, there is an
equivalent specification of the form 〈Σ,Φ〉 hide via σ (where Φ is finite provided
the basic specifications involved in SP are finite).

Proof. See Theorem 5.6.10 in [ST12]. ut

The above key result may be derived from the normal form result for constraints
in [EWT83] (see Thm. 2.1 above). It was given in a very similar form in [BHK90]
for the standard institution of first-order logic, and then generalised in [Bor02] to
an arbitrary exact institution. The result proved crucial for a number of further
foundational developments, notably in the study of completeness of standard
logical systems for proving consequences of structured specifications.

However, unlike the normal form result in [EWT83], Thm. 6.2 does not ad-
dress specifications with generating constraints. The key problem is to reduce
the complexity of the specifications involved in the generating constraints.

A generating constraint generate by σ from SP in SP ′ is source-trivial if
SP is a basic specification with no axioms, i.e., is of the form 〈Sig [SP], ∅〉. A
constraint generate by σ from SP in SP ′ is basic if SP ′ is a basic specification.

As already mentioned, the complexity of the source specifications in gener-
ating constraints is not a problem:

Corollary 6.3. In any institution INS with model inclusions, any structured
specification built from basic specifications using union, translation, hiding and
generating constraints is equivalent to a specification built from basic specifica-
tions using union, translation, hiding and source-trivial generating constraints.

Proof. Follows from Prop. 5.5 by induction on the structure of specifications. ut

We are now ready for a direct generalisation of Thm. 2.1, the main normal
form result in [EWT83].

As recalled in Sect. 2, the canonical constraints of [EWT83] are of the form:

〈Σ1, Φ1〉
σ1−→

GEN
〈Σ2, Φ2〉

σ2−→
TRA

〈Σ3, Φ3〉
σ3←−

REF
〈Σ,Φ〉

In terms of the specification-building operations introduced in Sect. 4, this may
be written as follows:

((((generate by σ1 from 〈Σ1, Φ1〉 in 〈Σ2, Φ2〉) with σ2) then Φ3)
hide via σ3) then Φ

10

with further requirements to ensure that the signature morphisms involved are
in fact presentation morphisms. We will show below that the above form may
be considerably simplified, by collecting all of the axioms involved in one place:

〈Σ1, ∅〉
σ1−→

GEN
〈Σ2, Φ2〉

σ2−→
TRA

〈Σ3, ∅〉
σ3←−

REF
〈Σ, ∅〉

A specification is in basic normal form if it has the form:

((generate by σ from 〈Σ, ∅〉 in 〈Σ′, Φ′〉) with σ′) hide via δ

where the signatures and signature morphisms are as in the following diagram:

Σ
σ−→ Σ′

σ′

−→ Σ′′
δ←− Σ̂

This makes Thm. 6.4 below stronger, even in the standard algebraic framework,
than Thm. 2.1.

Theorem 6.4. In any finitely exact institution INS with model inclusions, any
structured specification built from basic specifications using union, translation,
hiding and basic generating constraints is equivalent to a specification in basic
normal form.

Proof. First, by Cor. 6.3 (and Prop. 5.5) it is enough to consider structured
specifications built from basic specifications using union, translation, hiding and
source-trivial basic generating constraints. For those, we proceed by induction
on the structure of specifications concerned, considering the last specification-
building operation involved and assuming that its arguments, if any, are in basic
normal form:

basic specifications:

〈Σ,Φ〉
≡ (directly by the semantics)

((generate by idΣ from 〈Σ, ∅〉 in 〈Σ,Φ〉) with idΣ) hide via idΣ

union: The following diagram in Sign may help to follow the equivalences be-
low:

Σ1 Σ0 Σ2

Σ′1 Σ′0 Σ′2

Σ′′1 Σ′′0 Σ′′2

Σ̂

- �

6 6 6

- �

6 6 6

- �

�
�
�

��	 ?

@
@
@
@@R

i1 i2

σ1 σ0 σ2

i′1 i′2

σ′1 σ′0 σ′2

δ′1 δ′2

δ1 δ0 δ2

11

(((generate by σ1 from 〈Σ1, ∅〉 in 〈Σ′1, Φ′1〉) with σ′1) hide via δ1)

∪
(((generate by σ2 from 〈Σ2, ∅〉 in 〈Σ′2, Φ′2〉) with σ′2) hide via δ2)

≡ (by Prop. 5.3(2), taking a pushout Σ′′1
δ′1−→ Σ′′0

δ′2←− Σ′′2 of the span

Σ′′1
δ1←− Σ̂ δ2−→ Σ′′2 and δ0 = δ1;δ′1 = δ2;δ′2) (((generate by σ1 from 〈Σ1, ∅〉 in 〈Σ′1, Φ′1〉) with σ′1) with δ′1)

∪
(((generate by σ2 from 〈Σ2, ∅〉 in 〈Σ′2, Φ′2〉) with σ′2) with δ′2)


hide via δ0

≡ (by Prop. 5.1(4)) ((generate by σ1 from 〈Σ1, ∅〉 in 〈Σ′1, Φ′1〉) with σ′1;δ′1)
∪
((generate by σ2 from 〈Σ2, ∅〉 in 〈Σ′2, Φ′2〉) with σ′2;δ′2)

 hide via δ0

≡ (by Prop. 5.2, taking a coproduct Σ′1
i′1−→ Σ′0

i′2←− Σ′2 and σ′0 :Σ′0 → Σ′′0
such that i′1;σ′0 = σ′1;δ′1 and i′2;σ′0 = σ′2;δ′2) ((generate by σ1 from 〈Σ1, ∅〉 in 〈Σ′1, Φ′1〉) with i′1)

∪
((generate by σ2 from 〈Σ2, ∅〉 in 〈Σ′2, Φ′2〉) with i′2)

 with σ′0


hide via δ0

≡ (by Cor. 5.7, taking a coproduct Σ1
i1−→ Σ0

i2←− Σ2 and σ0 : Σ0 → Σ′0
such that i1;σ0 = σ1;i′1 and i2;σ0 = σ2;i′2, and by Prop. 5.1(2 and 1))((

(generate by σ0 from 〈Σ0, ∅〉 in 〈Σ′0, i′1(Φ′1) ∪ i′2(Φ′2)〉)
)

with σ′0
)

hide via δ0

translation:

(((generate by σ from 〈Σ, ∅〉 in 〈Σ′, Φ′〉) with σ′) hide via δ) with τ

≡ (by Prop. 5.3(1), taking a pushout Σ′
τ ′

−→ • δ′←− Σ̂′ of the span

Σ′
δ←− Σ̂ τ−→ Σ̂′)

(((generate by σ from 〈Σ, ∅〉 in 〈Σ′, Φ′〉) with σ′) with τ ′) hide via δ′

≡ (by Prop. 5.1(4))
((generate by σ from 〈Σ, ∅〉 in 〈Σ′, Φ′〉) with σ′;τ ′) hide via δ′

hiding :

(((generate by σ from 〈Σ, ∅〉 in 〈Σ′, Φ′〉) with σ′) hide via δ) hide via δ′

≡ (by Prop. 5.1(5))
((generate by σ from 〈Σ, ∅〉 in 〈Σ′, Φ′〉) with σ′) hide via δ′;δ

source-trivial basic generating constraints:

generate by σ from 〈Σ, ∅〉 in 〈Σ′, Φ′〉
≡ (by Prop. 5.1(3))

((generate by σ from 〈Σ, ∅〉 in 〈Σ′, Φ〉) with idΣ′) hide via idΣ′

ut

12

One might expect that Thm. 6.4 can be generalised to cover arbitrary speci-
fications built from basic specifications using union, translation, hiding and (not
necessarily basic) generating constraints. Unfortunately, in general this need not
be the case, as the following counterexample shows.

Counterexample 6.5. Consider a very simple institution INS0 with three sig-
natures Σ∅, Σ1 and Σ2, and signature morphisms σ : Σ∅ → Σ1, δ : Σ1 → Σ2 (and
identities and the composition σ;δ). This defines the signature category, which is
finitely cocomplete. Let Mod0(Σ∅) be a singleton. Then let Mod0(Σ1) contain
three distinct models K1, N1 and M1 such that K1 ⊆ N1 ⊆M1. Let Mod0(Σ2)
have two distinct models N2 and M2 with no inclusions other than identities.
We also put N2 δ = N1 and M2 δ = M1. Finally, let Sen(Σ∅) = Sen0(Σ1) =

Sen0(Σ2) = ∅.
Consider

generate by σ from 〈Σ0, ∅〉 in (〈Σ2, ∅〉 hide via δ)

Clearly, N1 is the only model of the above specification. By a simple analysis of
all possible cases, no Σ-specification in basic normal form has N1 as the only
model: {N1} cannot be the model class of a specification without generating
constraints, since N1 and M1 cannot be distinguished in such a specification. All
basic generating constraints here admit all models of their target specifications,
except for the following one:

generate by σ from 〈Σ∅, ∅〉 in 〈Σ1, ∅〉

which does not have N1 as a model, since it has a proper submodel K1. Hence,
no specification in basic normal form built on this constraint has N1 as a model.

Unfortunately, the above construction is not quite right: the institution we
defined does not satisfy our assumptions, since the model functor is not continu-
ous. For instance, the coproduct of Σ1 and Σ2 is Σ2, but the class of its models
is not a product of the model classes of Σ1 and Σ2. The overall idea of the
counterexample works, but the following more complex construction is needed.

Consider a category C0 with two objects Σ1 and Σ2 and a morphism δ : Σ1 →
Σ2, with model categories, reduct functor, and sets of sentences defined as above.

Let the category of signatures in INS′0 be the category Set→ of morphisms
in Set, i.e. signatures now consist of two sets and a function between them,

written X2
f→X1, and signature morphisms σ : (X2

f→X1)→ (X ′2
f ′

→X ′1) are pairs
of functions σ1 : X1 → X ′1 and σ2 : X2 → X ′2 such that f ;σ1 = σ2;f ′. It is well-
known that Set→ is cocomplete. In fact, this is a special case of the construction
of a free cocomplete category generated by any category C, given by the Yoneda
embedding of C into the category SetC

op

of presheaves on C, see e.g. [Awo06]
(Example 9.15 and Prop. 9.16). This also justifies the following choice of rep-
resentation of the original signatures here: we identify Σ1 with ∅→{idΣ1

} and
Σ2 with {idΣ2

}→{δ}, and δ with the unique morphism between them. We may
write Σ∅ for the initial signature ∅→∅.

13

In Set→, the signature X2
f→X1 is a colimit of a diagram with nodes X2]X1,

where Σ2 is the object in each node in X2 and Σ1 is the object in each node
in X1, with edges from f(s) to s labelled by δ for each node s ∈ X2. Now,

extend the model functor so that the category Mod′0(X2
f→X1) is the limit in

ICat of the image of this diagram w.r.t. Mod0 (as defined above on Σ1, Σ2

and δ). This means in particular that a model P over a signature X2
f→X1 is

a pair of functions P1 : X1 → {K1, N1,M1} and P2 : X2 → {N2,M2} such that
for x2 ∈ X2, P1(f(x2)) = P2(x2) δ. Such a model P is a submodel of P ′ iff

P2(x2) = P ′2(x2) for x2 ∈ X2, and P1(x1) ⊆ P ′1(x1) for x1 ∈ X1. Model reducts
are given by (pre)composition with signature morphisms. Then for the sentence

functor we set Sen0(X2
f→X1) = ∅.

Now, the institution so sketched is exact, and the counterexample works: the
specification

generate by σ from 〈Σ∅, ∅〉 in (〈Σ2, ∅〉 hide via δ)

has no equivalent Σ1-specification in basic normal form. To see this, just note

that for any basic generating constraint C with Sig [C] = (X2
f→X1), for any P ∈

Mod [C], if for x1 ∈ (X1 \ f(X2)), P (x1) = N1 then there are P ′, P ′′ ∈ Mod [C]
such that P ′(x1) = K1 and P ′′(x1) = M1, and if for x2 ∈ X2, P (x2) = N2

then there is P ′ ∈ Mod [C] such that P ′(x2) = M2. Moreover, this property of
specifications is preserved under translation w.r.t. any signature morphism. It
follows then that no Σ1-specification in basic normal form has N1 (or rather, P
such that P1(idΣ1

) = N1) as its unique model. ut
The source of the trouble is the use of hiding within the target specifications

for generating constraints. One might suppose that when hiding is forbidden,
the normal form result holds even if other specification-building operations are
permitted within the target specifications used in generating constraints. Unfor-
tunately, this is not the case: nested generating constraints may yield a similar
effect as captured by Counterexample 6.5.

Counterexample 6.6. Consider a very simple institution INS1 with three sig-
natures Σ, Σ1 and Σ2 and non-identity morphisms σ1 : Σ1 → Σ and σ2 : Σ2 →
Σ. Mod1(Σ1) has three distinct models K1, LN 1 and M1 with K1 ⊆ LN 1 ⊆M1,
Mod(Σ2) has two distinct models KL2 and NM 2 with KL2 ⊆ NM 2, and
Mod(Σ) has four distinct models K, L, N and M with K ⊆ L ⊆ N ⊆ M . We
put K σ1

= K1, L σ1
= N σ1

= LN 1 and M σ1
= M1, and K σ2

= L σ2
= KL2

and N σ2 = M σ2 = NM 2. Finally, we assume that there are no sentences in

INS1, i.e., Sen1(Σ) = Sen1(Σ1) = Sen1(Σ2) = ∅.
Then Mod [generate by σ1 from 〈Σ1, ∅〉 in 〈Σ, ∅〉] = {K,L,M}, and so

the constraint

generate by σ2 from 〈Σ2, ∅〉 in (generate by σ1 from 〈Σ1, ∅〉 in 〈Σ, ∅〉)

has K and M as its only models. It is easy to check though that no basic
generating constraint, and no specification in basic normal form, has {K,M} as
its model class.

14

As in Counterexample 6.5, the above does not quite give a counterexample:
the defined institution is not exact. Therefore, a construction of a new institution
INS′1 analogous to that in Counterexample 6.5 has to be carried out.

Let C1 be the category with three signatures and morphisms as defined
above. Take its free cocomplete closure via the Yoneda embedding into the
category of presheaves over C1, Y : C1 → SetC

op
1 . More explicitly, the result-

ing new category of signatures has objects of the form X1
f1←X f2→X2, where

X1, X and X2 are sets and f1 : X → X1 and f2 : X → X2 are functions.

A morphism h : (X1
f1←X f2→X2) → (X ′1

f ′
1←X ′ f

′
2→X ′2) consists of three functions

h1 : X1 → X ′1, h0 : X → X ′ and h2 : X2 → X ′2 such that h0;f ′1 = f1;h1 and
h0;f ′2 = f2;h2. We identify Σ1 with {idΣ1

}←∅→∅, Σ2 with ∅←∅→{idΣ2
}, Σ

with {σ1}←{idΣ}→{σ2}, and the morphisms σ1 : Σ1 → Σ and σ2 : Σ2 → Σ
with unique morphisms between them. We do not add any sentences, so that
the sentence functor Sen′1 yields the empty set on every signature.

A signature X1
f1←X f2→X2 is a colimit of a diagram with nodes X1]X]X2,

where nodes in X1 carry Σ1, nodes in X carry Σ and nodes in X2 carry Σ2, and
edges from f1(x) to x are labelled by σ1 and from f2(x) to x are labelled by σ2,

for all x ∈ X. We define the model functor Mod′1 so that Mod′1(X1
f1←X f2→X2)

is the limit in ICat of the image of this diagram under Mod1 (as defined above

for C1). That is, any model P ∈ |Mod′1(X1
f1←X f2→X2)| consist of three functions

P1 : X1 → {K1,LN 1,M1}, P0 : X → {K,L,N,M} and P2 : X2 → {KL2,NM 2}
such that for x ∈ X, P0(x) σ1

= P1(f1(x)) and P0(x) σ2
= P2(f2(x)). Such a

model is a submodel of P ′ ∈ |Mod(X1
f1←X f2→X2)| if for all x1 ∈ X1, P1(x1) ⊆

P ′1(x1), and similarly for X and X2. Model reducts are given by (pre)composition

with signature morphisms. For a class of models P ⊆ |Mod′1(X1
f1←X f2→X2)| and

x ∈ X, we write P(x) = {P0(x) | P ∈ P}.

Consider now a signature morphism h : (X1
f1←X f2→X2)→ (X ′1

f ′
1←X ′ f

′
2→X ′2) and

constraint C ′ = generate by h from 〈X1
f1←X f2→X2, ∅〉 in 〈X ′1

f ′
1←X ′ f

′
2→X ′2, ∅〉.

We analyse the class of the models of C ′. Let x′ ∈ X ′.

– For some x ∈ X, x′ = h0(x) (and so f ′1(x′) = h1(f1(x)) and f ′2(x′) =
h2(f2(x))). Then Mod [C ′](x′) = {K,L,N,M}, since informally, the cor-
responding component of the signature morphism is the identity on this
“occurrence” of Σ.

– x′ is not in the image of h0; then we have the following subcases.

• For some x1 ∈ X1 and x2 ∈ X2, h1(x1) = f ′1(x′) and h2(x2) = f ′2(x′).
Then Mod [C ′](x′) = {K,L,N,M}, since informally, the corresponding
component of the signature morphism is the map from the coproduct of
Σ1 and Σ2 to this “occurrence” of Σ given by σ1 and σ2, and the reducts
w.r.t. σ1 and σ2 do not jointly identify any models from {K,L,N,M}.

• For some x1 ∈ X1, h1(x1) = f ′1(x′) but f ′2(x′) is not in the image of
h2. Then Mod [C ′](x′) = {K,L,M}, since informally, the corresponding

15

component of the signature morphism is σ1, and the reduct w.r.t. σ1
glues L and N together.

• For some x2 ∈ X2, h2(x2) = f ′2(x′) but f ′1(x′) is not in the image of
h1. Then Mod [C ′](x′) = {K,N}, since informally, the corresponding
component of the signature morphism is σ2, and the reduct w.r.t. σ2
glues K and L as well as N and M together.

• Neither is f ′1(x′) in the image of h1 nor is f ′2(x′) in the image of h2. Then
Mod [C ′](x′) = {K}, since informally, the corresponding component of
the signature morphism is the unique morphism from the initial signature
to Σ, and the reduct w.r.t. this morphism glues all models together.

Consequently, for any basic generation constraint C ′ as above, for x′ ∈ X ′, the
class Mod [C](x′) is in the family F = {{K,L,N,M}, {K,L,M}, {K,N}, {K}}.
Moreover, this property is preserved under translation of specifications, since the
family F is closed under intersection, and under hiding (reducts w.r.t. signature
morphisms). Therefore, no specification in basic normal form may have {K,M}
is its class of models. ut

The above counterexamples show that in general we cannot avoid nesting of
structured specifications within generation constraints. We say that a specifica-
tion is in nested normal form if either it is a basic specification, or it is built as
follows:

((generate by σ from 〈Σ, ∅〉 in SP ′) with σ′) hide via δ

where SP ′ is a specification in nested normal form.

Corollary 6.7. In any finitely exact institution INS with model inclusions, any
structured specification built from basic specifications using union, translation,
hiding and generating constraints is equivalent to a specification in nested normal
form.

Proof. As in the proof of Thm. 6.4, we first use Cor. 6.3 to allow us to deal
with source-trivial generating constraints only. Then the proof proceeds by dou-
ble induction, on the maximal depth of nesting of generating constraints in the
specifications, and then on the structure of specifications. When the depth of
nesting is at most 1, the result follows by Thm. 6.4. Otherwise, we proceed by
induction on the structure of specification, assuming the thesis for all specifica-
tions with a smaller depth of nesting of generating constraints. The case of basic
specifications is trivial. The cases for translation and hiding follow much as in
the proof of Thm. 6.4. For generating constraints, the thesis follows by the in-
ductive assumption, since the specification used within the generating constraint
has a smaller depth of nesting of generating constraints. For the case of union,
we get by an argument analogous to that in the proof of Thm. 6.4 for the case

16

of union:

(((generate by σ1 from 〈Σ1, ∅〉 in SP ′1) with σ′1) hide via δ1)

∪
(((generate by σ2 from 〈Σ2, ∅〉 in SP ′2) with σ′2) hide via δ2)
≡((
(generate by σ0 from 〈Σ0, ∅〉 in ((SP ′1 with i′1) ∪ (SP ′2 with i′2)))

)
with σ′0) hide via δ0

Now, the thesis follows by the inductive assumption, since the depth of nesting
of generating constraints in (SP ′1 with i′1)∪ (SP ′2 with i′2) is lower than in the
original specification. ut

7 Final remarks

We started with the normal form result for constraints as studied in [EWT83] in
the standard algebraic framework. We have shown that this result carries over
to the more general setting of an arbitrary institution with some minimal extra
structure: the notion of a submodel needed to capture the definition of generated
model used in [EWT83]. Moreover, we sharpened the result somewhat via the
use of a more restrictive definition of normal form.

We then considered the more general problem of normalising specifications
where generating constraints are imposed in a class of models of an arbitrary
specification, not just a presentation as in [EWT83]. Unfortunately, two coun-
terexamples show that the normal form result does not carry over to this more
general situation. Some nesting of generating constraints must be allowed, lead-
ing to a considerably weaker normal form result for this more general case.

The difficulties we encountered are linked to the definition of generated model
in [EWT83], which we retained here. A standard alternative would be to free
the concept of generated model from its dependency on the class of models of
the specification at hand, and consider generation in the class of all models over
the given signature. In the standard algebraic framework this leads to the usual
notion of generated algebra, where all elements are values of terms with variables
taking values in the indicated carriers, with the usual connection to structural
induction, as in Casl [BCH+04]. For specifications with generating constraints
of this special form, by easy adaptation of Thm. 6.4 and its proof one can build
an equivalent normal form of the following shape:

(((generate by σ from 〈Σ, ∅〉 in 〈Σ′, ∅〉) then Φ) with σ′) hide via δ

Restricting to this special case would considerably limit the power of generat-
ing constraints as considered here. For instance, in AI applications, McCarthy’s
notion of circumscription [McC80] used to impose a “closed world assumption”
could not be captured in general, since no predicate ever holds in generated
models over a first-order signature without any axioms or constraints imposed

17

on the class of models considered. It is worth mentioning that a similarly gen-
eral construct was introduced in DOL, the Distributed Ontology, Modeling and
Specification Language [MCNK15].

One issue we did not touch on here at all is the development of proof systems
for structured specifications. This is well-studied in the context of specifications
built from basic specifications using union, translation and hiding, with a stan-
dard compositional proof system for consequences of specifications given in the
framework of an arbitrary institution already in [ST88]. Completeness results
follow under additional assumptions about the institution (most notably, inter-
polation is needed) where the proof of completeness heavily relies on the normal
form result [Bor02]. It is well-known that once generating constraints are added,
there is no hope for completeness [MS85]. However, in [ST14] we showed that the
compositional proof system for structured specification built from basic speci-
fications using union, translation and hiding is the best sound compositional
proof system possible. It would be interesting to see how to carry this over to
specifications with generating constraints, with some sound approximate tech-
niques for proving consequences of generating constraints. Perhaps the normal
form results studied here could be used to “concentrate” the necessary incom-
pleteness at specific points in the structure of specifications, linked to the use of
generating constraints in the normal forms.

Acknowledgements: Thanks to the anonymous referees for their constructive
comments.

References

[Awo06] Steve Awodey. Category Theory. Oxford University Press, 2006.
[BCH+04] Hubert Baumeister, Maura Cerioli, Anne Haxthausen, Till Mossakowski,

Peter D. Mosses, Donald Sannella, and Andrzej Tarlecki. Casl semantics.
In [Mos04]. 2004.

[BHK90] Jan A. Bergstra, Jan Heering, and Paul Klint. Module algebra. Journal of
the Association for Computing Machinery, 37(2):335–372, 1990.

[BM04] Michel Bidoit and Peter D. Mosses, editors. Casl User Manual, volume
2900 of Lecture Notes in Computer Science. Springer, 2004. See also http:

//www.informatik.uni-bremen.de/cofi/index.php/CASL.
[Bor02] Tomasz Borzyszkowski. Logical systems for structured specifications. The-

oretical Computer Science, 286(2):197–245, 2002.
[CMST17] Mihai Codescu, Till Mossakowski, Donald Sannella, and Andrzej Tarlecki.

Specification refinements: calculi, tools, and applications. Science of Com-
puter Programming, 144:1–49, 2017.

[CR97] Virgil Emil Căzănescu and Grigore Roşu. Weak inclusion systems. Mathe-
matical Structures in Computer Science, 7(2):195–206, 1997.

[DGS93] Rǎzvan Diaconescu, Joseph A. Goguen, and Petros Stefaneas. Logical sup-
port for modularisation. In Gérard Huet and Gordon Plotkin, editors,
Logical Environments, pages 83–130. Cambridge University Press, 1993.

[EM85] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specifica-
tion 1, volume 6 of EATCS Monographs on Theoretical Computer Science.
Springer, 1985.

18

[EWT83] Hartmut Ehrig, Eric G. Wagner, and James W. Thatcher. Algebraic spec-
ifications with generating constraints. In Proceedings of the 10th Interna-
tional Colloquium on Automata, Languages and Programming, volume 154
of Lecture Notes in Computer Science, pages 188–202. Springer, 1983.

[GB84] Joseph A. Goguen and Rodney M. Burstall. Introducing institutions. In
Proceedings of the Workshop on Logics of Programs, volume 164 of Lecture
Notes in Computer Science, pages 221–256. Springer, 1984. Many revised
versions were widely circulated, with [GB92] as the endpoint.

[GB92] Joseph A. Goguen and Rodney M. Burstall. Institutions: Abstract model
theory for specification and programming. Journal of the Association for
Computing Machinery, 39(1):95–146, 1992.

[GR04] Joseph A. Goguen and Grigore Roşu. Composing hidden information mod-
ules over inclusive institutions. In From Object-Orientation to Formal Meth-
ods. Essays in Memory of Ole-Johan Dahl, volume 2635 of Lecture Notes
in Computer Science, pages 96–123. Springer, 2004.

[McC80] John McCarthy. Circumscription — A form of non-monotonic reasoning.
Artificial Intelligence, 13(1–2):27–39, 1980.

[MCNK15] Till Mossakowski, Mihai Codescu, Fabian Neuhaus, and Oliver Kutz. The
Distributed Ontology, Modeling and Specification Language — DOL. In
Arnold Koslow and Arthur Buchsbaum, editors, The Road to Universal
Logic, volume 2, pages 489–520. Birkhäuser, 2015.

[Mos04] Peter D. Mosses, editor. Casl Reference Manual, volume 2960 of Lecture
Notes in Computer Science. Springer, 2004.

[MS85] David MacQueen and Donald Sannella. Completeness of proof systems
for equational specifications. IEEE Transactions on Software Engineering,
SE-11(5):454–461, 1985.

[ST88] Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary insti-
tution. Information and Computation, 76(2–3):165–210, 1988.

[ST12] Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Speci-
fication and Formal Software Development. Monographs in Theoretical
Computer Science. An EATCS Series. Springer, 2012.

[ST14] D. Sannella and A. Tarlecki. Property-oriented semantics of struc-
tured specifications. Mathematical Structures in Computer Science,
24(2):e240205, 2014.

[SW83] Donald Sannella and Martin Wirsing. A kernel language for algebraic
specification and implementation. In Proceedings of the 1983 International
Conference on Foundations of Computation Theory, volume 158 of Lecture
Notes in Computer Science, pages 413–427. Springer, 1983.

[Tar83] Andrzej Tarlecki. Remarks on ”Algebraic Specifications with Generation
Constraints” by H. Ehrig, E.G. Wagner, J.W. Thatcher (ICALP’83, LNCS
154, 188-202). Unpublished note, Dept. of Computer Science, University of
Edinburgh, 1983.

19

