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Abstract 

A new notion is given for the implementation of one specification by another. 

Unlike most previous notions, this generalises to handle parameterised specifications 

as well as loose specifications (having an assortment of non-isomorphic models). 

Examples are given to illustrate the notion. The definition~.~f implementation is 

based on a new notion of the simulation of a theory by an algebra. For the bulk of 

the paper we employ a variant of the Clear specification language [BG 77] in which 

the notion of a data constraint is replaced by the weaker notion of a hierarchy 

constraint. All results hold for Clear with data constraints as well, but only under 

more restrictive conditions. 

We prove that implementations compose vertically (~wo successive implementation 

steps compose to give one large step) and that they compose horizontally under 

application of (well-behaved) parameterised specifications (separate implementations 

of the parameterised specification and the actual parameter compose to give an 

implementation of the application). 

1. Introduction 

Algebraic specifications can be viewed as abstract programs. Some specifications 
are so completely abstract that they give no hint of a method for finding an answer. 
For example, the function inv:matrix->matrix for inverting an nxn matrix can be 
specified as follows: 

inv(A) x A = I 
A x inv(A) = I 

(provided that matrix multiplication and the identity nxn matrix have already been 
specified). Other specifications are so concrete that they resemble programs. For 
example: 

reverse(nil) = nil 
reverse(cons(a,l)) = append(reverse(1),cons(a,nil)) 

(this specification of the reverse function on lists amounts to an executable program 
in the HOPE functional programming language [BMS 80]). 

It is usually easiest to specify a problem at a relatively abstract level. We can 
then work ~radually and systematically toward a low-level 'program' which satisfies 
the specification. This will normally involve the introduction of auxiliary 
functions, particular data representations and so on. This approach to program 

development is related to the well-known programming discipline of stepwise 
refinement advocated by Wirth [Wit 71] and Dijkstra [Dij 72]. 

*The full version of this paper is available as Report CSR-I03-82, Department of 
Computer Science, University of Edinburgh. 
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A formalisation of this programming methodology depends on some precise notion of 
the implementation of a specification by a lower-level specification. Previous 
notions have been given for the implementation of non-parameterised ([GTW 78], 
[Nou 79], [Hup 80], [EKP 80], [Ehr 82]) and parameterised ([Gan 81], [Hup 81])*~ 
specifications, but none of these approaches deals fully with 'structured' algebraic 
specifications (as in Clear [BG 77] or CIP-L [Bau 81]) which may be constructed in a 
hierarchical fashion and may be loose (with an assortment of non-isomorphic models). 
We present a definition of implementation which agrees with our intuitive notions 
built upon programming experience and which handles such loose hierarchical 
specifications, based on a new (and seemingly fundamental) concept of the simulation 
of a theory by an algebra. We show how this definition extends to give a definition 
of the implementation of parameterised specifications. An example of an 
implementation is given and several other examples are sketched. 

We work within the framework of the Clear specification language [BG 77] which 
allows large specifications to be built from small easy-to-understand bits. For most 
of the paper we employ a variant of Clear in which the notion of a data constraint is 
replaced by the weaker notion of a hierarchy constraint. The result is still a 
viable specification language, although specifications tend to be somewhat longer 
than in ordinary Clear. We later show that all results hold for 'ordinary' Clear 
(with data constraints), but only under more restrictive conditions. 

The 'putting-together' theme of Clear and the ideas incorporated in CAT [GB 80] (a 
proposed system for systematic program development using Clear) lead us to wonder if 
implementations can be put together as well. We prove that if P is implemented by P' 
(where P and P' are 'well-behaved' parameterised specifications) and A is implemented 
by A', then P(A) is implemented by P'(A'). 

We prove that implementations compose in another dimension as well. If a high- 
level specification A is implemented by a lower-level specification B which is in 
turn implemented by a still lower-level specification C (and an extra compatibility 
condition is satisfied), then A is implemented by C. These two results allow large 
specifications to be refined in a gradual and modular fashion, a little bit at a 
time. 

2. Preliminaries -- Clear and data/hierarchy constraints 

This section is devoted to a very brief review of the notions underlying Clear 
along with a discussion of data and hierarchy constraints. See [BG 77] for an 
informal description of Clear, [San 81] and [BG 80] for its formal semantics, and 
[WB 81] for more about hierarchy constraints. For the usual notions of signature ~, 
signature morphism (inclusion) ~=<f,g> (f maps sorts, g maps operators), E-algebra 
A=<A,~> (A~ is the carrier for sort s, ~(~) is the function associated with operator 
~), homomorphlsm, ~-equatlon, and satisfaction of a set of ~-equations by a ~-algebra 
see [BG 80]. The following less conventional definitions are taken (with minor 
changes) from the same source. 

Def: If ~=<f,g> is a signature morphism ~:~--~' and A'=<A',~'> is a ~'-algebra, 

then the E-restriction of A' (along ~), written A'I~ is--the ~-algebra <A,~> where 

A =At.. a-~~;~g(~))~ Normally ~ is obvious Trom context, in which case the 
s Its) 

notation ~'I~ may b e used. 

Def: A simple E-theory presentation is a pair <~,E> where ~ is a signature and E 

is a set of ~-equations. This is simple because no constraints (see below) are 
included. 

Def: A ~-algebra A satisfies a simple theory presentation <~,E> if A satisfies E. 

Then A is called a model of <~,E>. A theory presentation T specifies a set of 

**Also [EK 82] which we discovered while writing the final version. 
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algebras, namely the set of its models denoted Models(T). A theory is called 

sati__sfiable if it has at least one model. 

Def: If E is a set of ~-equations, let E* be the set of all ~-algebras which 

satisfy E. If M is a set of ~-algebras, let M* be the set of all ~-equations which 

are satisfied by each algebra in M. The closure of a set E of ~-equations is the set 

E , written E. E is closed if E=E. 

Def: A simple ~-theory T is a simple theory presentation <~,E> where E is closed. 

The simple ~-theory presented by the presentation <~,E> is <~,E>. 

Def: A simple theory morphism (inclusion) ~ : <~,E> ---> <~',E'>, where <~,E> and 

<~',E'> are simple theories, is a signature morphism (inclusion) ~:~--~' such that 
~(e)gE' for each ecE. 

Note that any algebra satisfying a simple theory (presentation) is a model of that 
simple theory. This is in contrast to the 'initial algebra approach' of ADJ [GTW 78] 
in which only the initial algebra of a theory is accepted as a model. Clear permits 
us to write loose specifications such as the following: 

const ApproxSqrt : enrich Nat b__yy 
opns sqrt : nat -> nat 
eqns x - (sqrt(x)) 2 < x/2 + I = true enden 

m 

This specifies an approximate square-root function on the natural numbers. Any 
function with at least the specified accuracy will do (for example, sqrt(100) may be 
7, 8, 9 or 10). Under the initial algebra approach such a specification yields a 
single model with extra values of sort nat. 

Even in Clear, we often want to restrict the class of models. For instance, if no 
restriction is present in the above example then trivial models (where all natural 
numbers are equal to 0) and models with extra values of sort nat (other than succn(o) 
for n>0) are allowed. This facility is provided by Cleat's data operation, which may 
be applied when enriching a theory by some new sorts, operators and equations. Each 
application of the data operation contributes a data constraint to the theory which 
results from the enrichment. Unfortunately, implementations (section 3) do not seem 
to have nice properties in the presence of data constraints. Accordingly we use for 
the bulk of this paper a variant of Clear in which data constraints are replaced by 
hierarchy constraints, contributed by the 'data' operation (see [BDPPW 79] and 
[WB 81]). Hierarchy constraints are weaker than data constraints so specifications 
tend to be somewhat longer than in ordinary Clear (as in the terminal algebra 
approach, it is sometimes necessary to add extra operators to avoid trivial models). 
We show later that all results hold for Clear with data constraints, but only under 
more restrictive conditions. We now give some definitions Concerning data and 
hierarchy constraints; note that in most respects the two kinds of constraints are 
identical�9 

Def: A ~-data (hierarchy) constraint c is a pair <i,~> where i:TC-->T ' is a simple 
theory inclusion and ~:signature(T')-->~ is a signature morphism. 

A data (hierarchy) constraint is a description of an enrichment (the theory 
inclusion goes from the theory to be enriched to the enriched theory) together with a 
signature morphism 'translating' the constraint to the signature ~. 

A signature morphism from ~ to another signature ~' can be applied to a 
I-constraint, translating it to--a ~'-constraint, just as--it can be applied to a 
~-equation to give a ~'-equation. 

Def: If ~':~-->~' is a signature morphism and <i,~> is a E_-data (hierarchy) 
constraint, then ~' applied to <i,~> gives the ~'-data (hierarchy) constraint 
<i,~ ~,> 

A data (hierarchy) constraint imposes a restriction on a set of ~-algebras, just 
as an equation does. The only difference between a data constraint and a hierarchy 
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constraint is in this restriction; compare the "no confusion" and "no crime,, 
conditions in the following definitions. 

Def: A ~--algebra A satisfies a ~--data. constraint <i:TC-->T',~:sig(T')-->~> 
O" 1.0" 

(letting Atarget = Alsig(T, ) and Asource : Alsig(T)) Atarget is a model of T' and: 

"No " �9 
- confuszon". Atarget does not satisfy any sig(T')-equation e with 

variables only in sorts of T for any injective assignment of variables to 

A_~ourc e values unless e is in eqns(T')IJAsource. 

- "No junk": Every element in Atarget is the value of a T'-term which has 

variables only in sorts of T, for some assignment of ~ource values. 

if 

Without loss of generality we assume that every theory contains the theory BOol 
(with sort tool and constants true and false) as a primitive subtheory. 

Def: A 7=-algebra A satisfies a F-hierarchy constraint <i:Tr if 
(with Atarget and ~source as above) ~target is a model of ~' and: 

- "No crime": A ~ true,false. 

- "No junk": As above. 

Since data (hierarchy) constraints behave just like equations, they can be added 
to the equation set in a simple theory presentation to give a data (hierarchical) 
theory presentation. 

Def: A data (hierarchical) Y-theory presentation is a pair <~,EC> where Z is a 
signature and EC is a set of Z-equations and F-data (hierarchy) constraints. 

The notions of data (hierarchical) theory, satisfaction (of a data or hierarchical 
theory), closure and data (hierarchical) theory morphism follow as in the 'simple' 
case. The denotation of a (hierarchical) Clear specification is a data 
(hierarchical) theory <~,EC>, specifying all ~-algebras which satisfy the equations 
and data (hierarchy) constraints in EC. For the remainder of the paper (except where 
noted at the end of section 5) all discussion will concern only hierarchical Clear. 
We will use terms like 'theory' in place of longer terms like 'hierarchical theory'. 

Def: A sort or operator of a theory is called constrained if it is in 
~(sig(~')-sig(~)) for some constraint <i:TC-->T',~:sig(T')~> in that theory. 

Lack of space permits only a single brief example to illustrate data and hierarchy 
constraints. Consider the following specification: 

const Triv = enrich Bool by 
sorts element enden 

const T : enrich Triv by 
data sorts newelem 

opns f : element -> newelem enden 

T includes a data constraint <Triv~-->T,id>. Given a sig(T)-algebra, we can check if 
it satisfies this constraint. For example: 

Aelemen t = {0,I,2} Anewele m = {a,b,c} f(0)=a f(1)=b f(2)=a 

~th the usual interpretation of Bool). This fails to satisfy the "no confusion" 
con~k~tion (consider the equation f(x)=f(y) under the injective assignment [xr-~0, 
y~->2~)~ It also violates the "no junk" condition (the element c is not the value of 
any term)~ But if the function f is altered so that f(2)=c then the constraint is 
satisfied. In general, any algebra satisfying this data constraint will have both 
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carriers of the same cardinality with f I-I and onto. 

Changing data above to 'data' changes the data constraint to a hierarchy 
constraint. The following algebra is then a model of T, although it does not satisfy 
the "no confusion" condition: 

Aelemen t : {0,I,2} Anewele m : {a} f(O) : f(1) : f(2) : a 

(again with the usual interpretation of Bool). It is necessary to add some new 
operators (e.g. ==:element,element->bool and ==:newelem,newelem->bool) and equations 
(e.g. f(x)==f(y) = x==y) to retain the original class of models. 

The data constraints described here are a special case of those discussed in 
[BG 80], where the theory inclusion is replaced by an arbitrary theory morphism; 
essentially the same concept is described by Reichel [Rei 80] (cf. [KR 71]). General 
data constraints never actually arise in Clear. The definition of data constraint 
setisfaction given above is an attempt to capture, in this special case, the 
definition of [BG 80] using a different approach. 

A consequence of the inclusion of data or hierarchy constraints in Clear theories 
is that no complete proof system can exist for Clear (see [MS 82]). This means that 
the model-theoretic closure of a set of equations and constraints (as defined above) 
is not always the same as its proof-theoretic closure. 

For later results we need a generalisation of Guttag's notion of sufficient 
completeness [GH 78] and of the classical notion of conservativeness from logic: 

Def: A theory T is sufficiently complete with respect to a set of operators ~, 
sorts S, a subset ~' of ~, and variables of sorts X (where S,X~sorts(T), ~gopns(T)) 
if for every term t of an S sort containing operators of ~ and variables of X sor~s, 
there exists a term t' with variables of X sorts and operators of ~' such that 
!Ft:t'. 

Def: A theory T is conservative with respect to a theory T'gT if for all 
equations e containing operators only of T', T~e ~ T' ~e. 

Sufficient completeness means that T does not contain any new term of an old sort 
which is not provably equal to an old term (where 'new' and 'old' depend on ~, S, ~' 
and X). Conservativeness means that old terms (from T') are not newly identified in 
T. Instances of these general notions guarantee thas models of a theory possess 
a convenient hierarchical structure. 

3. A n o t i o n  o f  i m p l e m e n t a t i o n  

A formal approach to stepwise refinement of specifications must begin with some 
notion of the implementatio__n of a specification by another (lower level) 
specification. Armed with a precise definition of this notion, we can prove the 
correctness of refinement steps, providing a basis for a methodology for the 
systematic development of programs which are guaranteed to satisfy their 
specifications. But first we must be certain that the definition itself is sound and 
agrees with our intuitive notions built upon programming experience. 

Suppose we are given two theories T=<~,EC> and T'=<~',EC'>. We want to implement 
the theory T (the abstract specification) using the sorts and operators provided by 
T' (the eon~ete specification). Previous formal approaches (see [GTW 78], [Nou 79], 
~Hup 80], [EKP 80], [Gan 81], [Ehr 82]) agree that T' implements T if there is some 
way of deriving sorts and operators like those of T--from the sorts and operators of 
T'. Each approach considers a different way of making the 'bridge' from T' to T. We 
will require that there be a more or less direct correspondence between the sorts and 
operators of T and those of T'. Each sort or operator in ~ must be implemented by a 
sort or opera--tor in ~' ----this correspondence will be=embodied by a signature 

morphism ~:~-->~'. Note that two different sorts or operators in ~ may map to the 
Same ~' sort or operator, and also that there may be some (auxiliary) sorts and 
operators in ~' which remain unused. This is a simplification over previous 
approaches, which generally allow some kind of restricted enrichment of !' to T~" 
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before matching T with T". But the power is the same; we would say that T" 
implements T and leave the enrichment from T' to T" to the user. As a consequence ~f 
a later theorem (see section 5) our results extend to more complex notions. 

Given a signature morphism ~:~-->~', what relationship must hold between T and T' 
before we can say that T' implements T? One might suspect that ~(EC) ~EC, Ys 
required -- i.e. that for--any model A' o~ T', A'[~ Models(T) -- but this condition 
is too strong. Roughly speaking, T' implements T~f the ;-restriction of each model 
of T' simulates T. A (~-restricted) T' model need not be a model of ~, but need Only 
have the appearance of a model of T. In particular, values of the T' model must 
'represent' the values of the corresponding ~-terms, but the carriers o~ the T' model 
need not match the carriers of any T model. Some flexibility is necessary ~n order 
to approximate our intuitive notion ~f an implementation: 

- A subset of the values of a T' sort may be used to represent all the values 
of a T sort. Example: implementing the natural numbers using the integers 
-- the negative integers are not needed. 

- More than one T' value may be used to represent the same T value. Example: 
implementing sets by strings -- the order does not matter, so 
"1.2.3" = "3.2.1" (as sets). 

Now T' implements T if (and only if) the ~-restriction of any model of T' is a model 
of T after these two considerations have been taken into account. This ensures that 
corr-esponding operators will yield the same result (modulo data representation) which 
is intuitively the decisive criterion for a correct implementation. 

Our definition of implementation will proceed in two steps. First we define the 
simulation of a theory by an algebra, making precise the vague and informal ideas 
outlined above. The notion of simulation is then used to give a simple definition of 
implementation. We chose to highlight the notion of simulation because it seems to 
be a fundamental concept which may be useful outside the present context. The 
following diagram shows how the definitions given below fit together to give notions 
of simulation and implementation: 

X (a ~ - ~ y )  cr . T '  Ca E ' - t h e o r y )  

V A T, model 

An implementation T---~T'  

For the definition of simulation we need an auxiliary notion. As mentioned above, 
a subset of the available 'concrete' values may be used to represent all 'abstract' 
values. Restricting the carriers of the concrete algebra to the values which are 
actually used yields an intermediate algebra which plays an important role in the 
definition of simulation. We do not want to restrict the carrier for every sort, but 
only for those sorts of Z which are constrained by hierarchy constraints in T (for 
unconstrained sorts we do not know which values are unused). This is where we depart 
from the usual practice of restricting to 'reachable' values (see for example 
[EKP 80]). We want the subalgebra which has been reduced just enough to satisfy the 
"no junk" condition for each of these constraints. 

Def: If ~ is a signature, A is a i--algebra and T is a i-theory, then restrictT(~) 

is the largest subalgebra A' of A satisfying the "no junk" condition (section 2)-for 

every hierarchy constraint<i:T'~-->~",~:sig(~")-->~> in ~. 
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Note that the subalgebra A' does not always exist. Consider the following 

example: 
const T = let Nat : enrich Bool by 

-- 'data' sort--s nat 
opns 0 : nat 

succ : nat -> nat enden in 
enrich Nat by 

opns neg : nat enden 

Let Z be the signature of T. Suppose A is the Z-algebra with carrier {-I,0,1 .... }, 
the usual interpretation for the operators 0 and succ, and neg=-1. Now restrictT(A) 
does not exist because every subalgebra of A must contain -I (the value of neg)-and 
hence fails to satisfy the "no junk" condition for the constraint of T. 

A i_-algebra A simulates a ~__-theory T if it satisfies the equations and constraints 
of T after allowing for unused carrier elements and multiple representations. 

Def: If ~ is a signature, A is a ~_-algebra and T:<~,EC> is a ~__-theory, then 
simmul---ates T if restrictT(A)/mEC (call this RI(A)) exists and is a model of ~. 

[ m=c is the ~-eongr~ence generated by EC -- i.e. the least E-congruence on 
res~rictT(~) containing the relation determined by the equations in EC--] 

RI stands for restrict-identify, the composite operation which forms the heart of 
this definition. To determine if a ~-algebra A simulates a Z-theory f, we restrict 
A, removing those elements from the carrier which are not used to represent the value 
of any ~=-term, for constrained sorts; the result of this satisfies the "no junk" 
condition for each constraint in T. We then identify multiple concrete 
representations of the same abstract value by quotienting the result by the 
Z-congruence generated by the equations of T, obtaining an algebra which (of course) 
satisfies those equations and also continues to satisfy the "no junk" condition of 
the constraints. If this is a model of T (i.e. it satisfies the "no crime" condition 
for each constraint in T) then A simulates T. Note that any model of T simulates T. 
It has been shown in-- [EKP 80] that the-- order restrict-identify gives greater 
generality than identify-restrict. 

Most work on algebraic specifications concentrates on the specification of 
abstract data types, following the lead of ADJ [GTW 78] and Guttag et al [GH 78]. As 
pointed out by ADJ, the initial model (in the category of all models of a theory) 
best captures the meaning of "abstract" as used in the term "abstract data type", so 
other models are generally ignored (there is some disagreement on this point -- other 
authors prefer e.g. final models [Wan 79] -- but in any case some particular model is 
singled out for special attention). This is not the case in Clear (the ordinary 
version or our variant); although the 'data' operation may be used to restrict the 
set of models as discussed in section 2, no particular model is singled out so in 
general a theory may have many nonisomorphie models (as in the Munich approach). 
Such a loose theory need not be implemented by a theory with the same broad range of 
models. A loose theory leaves certain details unspecified and an implementation may 
choose among the possibilities or not as is convenient. That is: 

- A loose theory may be implemented by a 'tighter' theory. Example: 
implementing the operator choose:set->integer (choose an element from a 
set) by an operator which chooses the smallest. 

This is intuitively necessary because it would be silly to require that a program 
(the final result of the refinement process) embody all the vagueness of its original 
specification. This kind of flexibility is already taken into account by the 
discussion above, and is an important feature of our notion of implementation. 
Previous notions do not allow for it because they concentrate on implementation of 
abstract data types and so consider only a single model for any specification. 

Now we are finally prepared to define our notion of the implementation of one 
theory by another. This definition is inspired by the notion of [EKP 80] but it is 
not the same; they allow a more elaborate 'bridge' but otherwise their notion is more 
restrictive than ours. Our notion is even closer to the one of Broy et al [BMPW 80] 
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but there the 'bridge' is less elaborate than ours. It also bears some resemblance 
to a ~ore programming-oriented notion due to Schoett [Sch 81]. 

Def: If T=<~,EC> and T'=<~',EC'> are satisfiable theories and v:~-->:;' is a 
signs---ture morphism, then T' implements T (via ~), written T c~ .~T', if for any model 
A' of T', A'I~ simulates_T. -- - -- 

Note that any theory morphism ~:T--~T' where T' is satisfiable is an implementation 

T~ >T '. In particular, if T' is an enrichment of T (e.g. by equations which 
TtighEen' a loose theory) then ~ :~T'. 

A simple example will show how this definition works (other implementation 
examples are given in the next section). Consider the theory of the natural numbers 
modulo 2, specified as follows: 

const Natmod2 = enrich Bool b__yy 
'data' sorts natmod2 

opns O, I : natmod2 
suec: natmod2 -> natmod2 
iszero : natmod2 -> bool 

eqns succ(O) : I succ(1) = 0 
iszero(O) = true iszero(1) = false enden 

Can this be implemented by the following theory? 

const Fourvalues = enrich Bool by 
'data' sorts fourvals 

opns zero, one, zero', extra : fourvals 
succ : fourvals-> fourvals 
iszero : fourvals-> bool 
eq : fourvals, fourvals -> bool 

eqns succ(zero) = one succ(one) = zero' 
suet(zero') = one succ(extra) = zero 
iszero(zero) = true iszero(one) = false 
iszero(zero') = true iszero(extra) = false 
eq(zero,one) = false eq(zero,zero') = false 

o �9 �9 �9 

eq(p,q)'='eq(q,p) eq(p,p) = true enden 

The iszero operator of Natmod2 and the eq operator of Fourvalues are needed to avoid 
trivial models. 

All models of Fourvalues have a carrier containing 4 elements, and all models of 
Natmod2 have a 2-element carrier. Now consider the signature morphism 
~:sig(Natmod2)-->sig(Fourvalues) given by [natmod2~->fourvals, O~->zero, I ~-->one, 
suec~-~succ, iszero~->iszero] (and everything in Bool maps to itself)�9 Intuitively, 

Natmod2 ~ >Fourvalues (zero and zero' both represent O, one represents I and extra is 
unused) but is this an implementation according to the definition? Consider any 
model of Fourvalues (e.g. the term model -- all models are isomorphic). 'Forgetting' 
to the signature sig(Natmod2) eliminates the operators zero', extra and eq. Now we 
check if this algebra (call it A) simulates Natmod2. 

- 'Restrict' removes the Value of extra from the carrier. 

- 'Identify' identifies the values of the terms "succ(1)" (=zero') and "0" (:zero). 

The "no crime" condition of Natmod2's constraint requires that the values of true 
and false remain separate; this condition is satisfied, so A simulates Natmod2 and 
Natmod2:V~>Fourvalues is an implementation. 

Suppose that the equation succ(zero')=one in Fourvalues were replaced by 
suec(zero')=zero. Forget (producing an algebra B) followed by restrict has the same 
effect on any model of Fourvalues, but now identify collapses the carrier for sort 
natmod2 to a single element (the closure of the equations in Natmod2 includes the 
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equation succ(succ(p))=p, so "succ(succ(O))" (=zero') is identified with "0" (=zero), 
and ,,suet(suet(1))" (=zero) is identified with "I" (=one)). Furthermore, the carrier 
for sort tool collapses; "iszero(succ(succ(1)))" (=true) is identified with 
,iszerO(1)" (=false). The result fails to satisfy the "no crime" condition of the 

constraint, so B does not simulate Natmod2 and Natmod2 -~ ~Fourvalues is no longer an 
implementation. 

impl___ementation of parameterised theories 

Farameterised theories in Clear are like functions in a programming language; they 
take zero or more values as arguments and return another value as a result. In Clear 
these values are theories. Here is an example of a parameterised theory (usually 
called a theory 2rocedure in Clear): 

meta Ident = enrich Bool by 
sorts element 
opns eq : element,element -> tool 
eqns eq(a,a) = true 

eq(a,b) = eq(b,a) 
eq(a,b) and eq(b,c) --> eq(a,c) = true enden 

proc Set(X:Ident) = 
let SetO = enrich X by 

'data' sorts set 
opns ~ : set 

singleton : element -> set 
U : set,set -> set 
is in : element,set -> tool 

eqns ~ U S = S 
SUS=S 
SUT=TUS 
S U (T U V) : (S U T) U V 
a is in 0 = false 
a is--in singleton(b) = eq(a,b) 
a is--in S U T = a is in S or a is in T enden in 

enrich SetO by 
opns choose : set -> element 
eqns choose(singleton(a) U S) is_in (singleton(a) U S) = true enden 

Ident is a metatheory; it describes a class of theories rather than a class of 
algebras. Ident describes those theories having at least one sort together with an 
operator which satisfies the laws for an equivalence relation on that sort. 

Ident is used to give the 'type' of the parameter for the procedure Set. The idea 
is that Set can be applied to any theory which matches Ident. Ident is called the 
metasort or requirement of Set. When Set is supplied with an appropriate actual 
parameter theory, it gives the theory of sets over the sort which matches element in 
Ident. For example 

Set(Nat[element i_ss nat, eq is ==]) 

gives the theory of sets of natural numbers (assuming that Nat includes an equality 
operator :=). Notice that a theory morphism (called the fitting morphism) must be 
provided to match Ident with the actual parameter. The result of an application is 
defined using pushouts as in [Ehr 82] (see [San 81] and [BG 80] for this and other 
aspects of Cleat's semantics) but it is not necessary (for now) to know the details. 
In this paper we will consider only the single, parameter case; the extension to 
multiple parameters should pose no problems. 

Note that parameterised theories in Clear are different from the parameterised 
Specifications discussed by ADJ [TWW 78]. An ADJ parameterised specification works 
at the level of algebras, producing an algebra for every model of the parameter. A 
Clear parameterised theory produces a theory for each parameter theory. The result 

P(A) may have 'more' models than the theory A (this is the case when Set is applied 
to Nat, for example). Since ADJ parameterised specifications are a special case of 
Clear parameterised theories, all results given here hold for them as well. 
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Since a parsmeterised theory Rc--.>P (that is, a procedure with requirement theory R 
and body P -- R will always be included in P) is a function taking a theory A as a~ 
parameter and producing a theory P(A) as a result, an implementation R'~-->[' of RC-~p 
is s function as well which takes any parameter theory A of P as argument and 
produces a theory P'(A) which implements P(A) as result. But this does not specify 
what relation (if any) must hold between the theories R and R'. Since every actual 
parameter A of R~-->P (which must match R) should he an--actua~ parameter of R'c-->p, 

it must match R' as well. This requires a theory morphism ~:R'-->R (then a fitting 
morphism ~:R-->A gives a fitting morphism ~.@:R'-->A). 

Def: If Rr"-'~P and R'c-->P' are parameterised theories, ~:R'-->R is a theory morphism 
and ~:sig(P)-->sig(P') is a signature morphism, then R'c-->P' implements R~-->P (via 

and ~), written RC-~p ~ R'c-->p', if for all theories A with fitting morphism 

~:R-->A, P(A[@])=~:4P'(A[~.~]) where ~ is the extension of ~ from P to P(A[~]) by the 

identity id (i.e. ~Isig(P)-sig(R)= ~ and &Isig(A)= id). 

Ordinarily R and R' will be the same theory, or at least the same modulo a change 
of signature. --Other~se R' must be weaker than R. 

Sometimes it is natural to split the implementation of a parameterised theory into 
two or more cases, implementing it for reasons of efficiency in different ways 
depending on some additional conditions on the parameters. For example: 

- Sets: A set can be represented as a binary sequence if the range of 
possible values is small; otherwise it must be represented as a sequence 
(or tree, etc) of values. 

- Parsing: Different algorithms can be applied depending on the nature of 
the grammar (operator precedence, LR, context sensitive, etc). 

- Sorting: Distribution sort can be used if the range of values is small; 
otherwise quicksort. 

In each instance the cases must exhaust the domain of possibilities, but they need 
not be mutually exclusive. 

Our present notion of implementation does not treat such cases. We could extend 
it to give a definition of the implementation of a parameterised theory RL-->P by a 

R +R e__>p collection of parameterised theories R'+R~e--~P~ ..... --' ~n' --n' (where for every 
theory A with a theory morphism ~:R-->A there must exlst some i>I such that 
~':R'+R~.-~A exists). But we force the case split to the abstract level, rather than 
entang[~ it--with the already complex transition from abstrac-tt--oc-onerete: 

R ~-->p R_+RIr--->PI = ~ ( R + R 1 )  " 

R._+RRnC---~Pn : P(R._+Rn) 

This collection of n parameterised theories is equivalent to the original R~-->P, in 
the sense that every theory P(A[~]) with ~:R-->A is the same as the theory Pi(A[~']) 
with ~':R+R.-->A for some 5>I. (A theory of the transformation ~--Clear 
specifications is needed to discuss this matter in a more precise fashion; no such 
theory exists at present.) Now each case may be handled separately, using the normal 
definition of parameterised implementation: 

R_+_RI~-~_P I ~ > R,+R~P_~ 

R+R c__>p ~ R,+RVc__~pt 
- -  - ' 1 1  - - n  - -  - - n  - - n  
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~. Examples 

Sets (as defined in the last section) can be implemented using sequences. We must 
define sequences as well as operators on sequences corresponding to all the operators 
in Set. We begin by defining everything except the choose operator: 

meta Triv = theory sorts element endth 

proc Sequence(X:Triv) = 
enrich X + Bool by 

'data' sorts sequence 
opns empty : sequence 

unit : element -> sequence 
�9 : sequence,sequence -> sequence 
head : sequence -> element 
tail : sequence -> sequence 

eqns empty.s = s 
s.empty = s 
s.(t.v) = (s.t).v 
head(unit(a).s) = a 
tail(unit(a).s) = s enden 

pr,o,c SequenceOpns(X:Ident) = 
enrich Sequence(X) by 

opns is in : element,sequence -> bool 
add : element,sequence -> sequence 
U : sequence,sequence -> sequence 

eqns a is in empty = false 
-- a is--in unit(b) : eq(a,b) 

a is--in s.t = a is in s or a is in t 
add(a,s) = s if a--is in s -- 
add(a,s) = unit(a).s if not(a is in s) 
empty U s = s 
unit(a).t U s = add(a,t U s) enden 

The head and tail operators of Sequence and their defining equations are needed to 
avoid trivial models; they serve no other function in the specification. 

Before dealing with the choose operator, we split Set into two cases: 

meta TotalOrder = enrich Ident b__yy 
opns < : element,element -> bool 
eqns a<a : true 
-- a~b and b<a --> eq(a,b) = true 

a<b and b<c --> a<c = true 
a~b or b<a = true- enden 

Id ent r~-->Set ~ Ident r~->Se t 

"~ TotalOrderc-->Set' = Set(TotalOrder) 

These two cases may be handled separately. The choose operator can select the 
minimum element when the element type is totally ordered; otherwise we can leave the 
precise choice unspecified as before. 

proc SequenceAsSet(X:Ident) = 
enrich SequenceOpns(X) by 

opns choose : sequence -> element 
eqns choose(unit(a).t) is__in (unit(a).t) : true enden 

~roc SequenceAsSet'(X:TotalOrder) = 
enrich SequenceOpns(X) b_! 

opns choose : sequence -> element 
eqns choose(unit(a)) = a 

choose(unit(a).unit(b).s) = choose(unit(a).s) if a<b 
else choose(unit(b).s) enden 
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Now Ident~-->Set m~@ Identa-->SequenceAsSet and TotalOrdera-->Set ' -~0 
TotalOrder=-->SequenceAsS#t', where ~ = [element~->element, eq~->eq, set wOsequen~e, 
Ow->empty, singleton~->unit, U~->U, is__in~->is_in, choose~->choose] (and everything in 
the signature of Bool maps to itself), and ~ and ~' are the identity morphisms on 
Ident and TotalOrder respectively. Note that choose is not specified for empty sets 
and sequences -- although the same notion of implementation should work for error 
theories and algebras, we prefer to avoid the issue of errors for now. Also note 
that an incorrect implementation results if choose in SequenceAsSet is changed to 
select the first element; Set contains an equation 
choose(singleton(x) U singleton(y))=choose(singleton(y) U singleton(x)), so the 
identify step would collapse the parameter sort (and consequently bool). 

This example illustrates all of the features of our notion of implementation. Not 
all sequences are needed to represent sets -- sequences with repeated elements are 
not used. Each set is represented by many sequences, since the sequence 
representation of a set keeps track of the order in which elements were inserted. 
Set is split into two theories before implementation, and finally SequenceAsSet' is 
'tighter' than Set' because the choose operator (select an element) is implemented by 
an operator which chooses the minimum element. 

A nonparameterised example is obtained by applying Set or Set' and SequenceAsSet 
or SequenceAsSet' to an argument, for example: 

Set(Nat[element i__ssnat, eq i__ss==])~>SequenceAsSet(Nat[element i_~snat, eq is==]) 

where ~ is the same as ~ above except that element~->element is replaced by 
nat~->nat. 

Two additional examples: 

- Lists can be implemented using arrays of (value,index) pairs, where the 
index points to the next value in the list (and where some distinguished 
index value denotes nil). There are many representations for the same list 
(the relative positions of cells in the array are irrelevant, for example) 
and circular structures are not needed to represent the value of any list. 

- The specification of matrix inversion in the ;ntroduction can be 
implemented by a specification of matrix inversion using the Gauss-Seidel 
method. Conversely, this specification can be implemented by the 
specification in the Introduction (enriched by some auxiliary functions). 

The matrix inversion example shows that the expectation that A-- ~B should imply that 
B is 'lower level' than A is not always justified. This is because the definition of 
implementation is concerned with classes of models rather than with the equations 
used to describe those classes. In this case both theories will have the same class 
of models except that the Gauss-Seidel method will probably require auxiliary 
operators. 

5. Horizontal and vertical composition 

Large specifications are needed to solve large problems. But a large monolithic 
specification of a compiler (for example) would be impossible to understand because 
of the sheer numbers of interacting operators and equations. The value of a 
specification depends on the ease with which it was written and can be understood; a 
large number of pages full of equations are not of much use to anybody. 

The Clear [BG 77] and CIP-L [Bau 81] specification languages were invented to 
combat just this problem. Clear and CIP-L are languages for writing structured 
specifications; that is, they provide facilities for combining small theories in 
various ways to make large theories. A large specification can thus be built from 
small easy-to-understand bits. Following [GB 80] this shall be called horizontal 
structure. 
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Likewise, the implementation of a large specification is not done all at once; it 
is good programming practice to implement and test pieces of the specification 
separately and then construct a final system from the finished components. If the 
theories which make up a Clear or CIP-L specification are implemented separately, it 
should be possible to put together (horizontally compose) the implementations in the 
same way that the theories themselves are put together, yielding an implementation of 
the entire specification. 

Although the problem of developing a program from a specification is simplified by 
dividing it into smaller units, the step from specification of a component to its 
implementation as a program is still often uncomfortably large. A way to conquer 
this is to break the development of a program into a series of consecutive refinement 
steps. That is, the specification is refined to a lower level specification, which 
is in turn refined to a still lower level specification, and so on until a program is 
obtained. Again following [GB 80], this is called the vertical structure (of the 
development process). If a specification A is implemented by another specification 
B, and B is implemented by C, then these implementations should vertically compose to 
give an implementation of A by C. Goguen and Burstall [GB 80] propose a system 
called CAT for the structured development of programs from specifications by 
composing implementations in both the horizontal and vertical dimensions. 

The vertical composition of two implementations is not always an implementation. 
For example, consider the following theories: 

eonst T = enrich Bool b_ Z 
opns extra : bool enden 

cons, T' = enrich Bool by 
opns extra : bool 
eqns extra = true enden 

const T" = theory 'data' sorts three 
opns tt, ff, extra : threevals endth 

Now T-- >T' and T' >T" but T-?I:~T " (consider the model of T" where tt~ffMextra). 
The theories must satisfy an extra condition. 

Def: A theory T is reachably complete with respect to a parameterised theory R~-->P 
with P~ ~ if T is sufficiently complete with respect to opns(P), 
constrained-sorts(P~ constrained-opns(P), and variables of 
sorts(R)Uunconstrained-sorts(P). A theory T is reachably complete with respect to a 
nonparameterised theory A if it is reachably--complete with respect to Om-->A. 

In the example above T" is not reachably complete with respect to T because extra 
is not provably equal to either tt or ff. 

Vertical composition theorem 

I. [Reflexivity] T i -~d  To 

2. [Transitivity] If T--q~->~ ' and T'-~T" and T" is reachably complete with 
respect to ~.~'(~, then T-~'~ ". 

Corollar[ 

I. [Reflexivity of parameterised implementations] R c-->P1-1i~-dd~Rr 

2. [Transitivity of parameterised implementations] If Rc-->P -~ R,c-->p, and 

R'~-->P' ~R"~-->P" and P" is reachably complete with respect to 
, 

~.~'(R)~-->~.~'(P), then Rc-->P ~ R"~-->[". 

In the absence of constraints (as in the initial algebra [GTW 78] and final 
algebra [Wan 79] approaches), reachable completeness is guaranteed so this extra 
condition is unnecessary. 
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To prove that implementations of large theories can be built by arbitrary 
horizontal composition of small theories, it is necessary to prove that each of 
Clear's theory-building operations (combine, enrich, derive and apply) preserves 
implementations. We will concentrate here on the application of parameterised 
theories and the enrich operation. Extension of these results to the remaining 
operations should not be difficult. 

For the apply operation our object is to prove the following property of 
implementations: 

Horizontal Composition Property: R~-->P ..... > R'~-->P' and A .... ~A' implies 
p(A)--~->p'(A'). 

But this is not true in general; in fact, P'(A') is not even always defined. 
Again, some extra conditions must be satisfied for the desired property to hold. 

Def: Let R~-->P be a parameterised theory. 

- Rc-->P is called structurally complete if P is sufficiently complete with respect to 
opns(P), sorts(R)Uconstrained-sorts(P), opns(R) Uconstrained-opns(P), and 
variables of sorts(R) Uunconstrained-sorts(P). A nonparameterised theory A is 
called structurally complete if ~c-->A is structurally complete. 

- R~-->P is called parameter consistent if ~ is conservative with respect to R. 

If R'c-->P ' is structurally complete, parameter consistent and reachably complete, 
and A' is structurally complete and a valid actual parameter of R'~-->P', then the 
horizontal composition property holds. 

Horizontal composition theorem: If Rc--->P and R,c__>p, are parameterised theories 

with R'c--->P ' structurally complete and parameter consistent, P' is reachably complete 

with respect to E(R)c__>~(p), R~__>p ~R,g_~[, and A--q~A' are implementations with 

.R --->A are A' structurally complete, and e:R-->A and '" ' ' theory morphisms where 

~'=~.~.~' , then ZCA[e]): ~'~P' (A' [e' ]), where ~'Isig(P (A[@]))_sig(A) = id and 

Corollary (Horizontal composition for enrich): If A::~A' is an implementation, 

B = enrich A by <stuff> and B' = enrich A' by ~<stuff>, A,c_->B, is structurally 

complete and parameter consistent, B' is reachably complete with respect to 

then B ..... ~B', where ~Isig(B)_sig(A):id ~(A)C__>~(B) and A' is structurally complete, 

and &]sig(A): ~. 

A consequence of this corollary is that our vertical and horizontal composition 
theorems extend to more elaborate notions of implementation such as the one discussed 
in [EKP 80]. Again, reachable completeness is guaranteed in the absence of 
constraints. 

The vertical and horizontal composition theorems give us freedom to build the 
implementation of a large specification from many small implementation steps. The 
correctness of all the small steps guarantees the correctness of the entire 
implementation, which in turn guarantees the correctness of the low-level 'program' 
with respect to the high-level specification. This provides a formal foundation for 
a methodology of programming by stepwise refinement. CAT's 'double law' [GB 80] is 
an easy consequence of the vertical and horizontal composition theorems. This means 
that the order in which parts of an implementation are carried out makes no 
difference, and that our notion of implementation is appropriate for use in CAT. 

Our notions of simulation and implementation extend without modification to 
ordinary Clear (with data constraints rather than hierarchy constraints); all of the 
results in this paper then remain valid except for the horizontal composition theorem 
and its corollary. These results hold only under an additional condition. 
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Def: A data theory ~ is hierarchical submodel consistent if for every model M of 
and every hierarchical submodel M- of M (i.e. every submodel of M satisfying the 
constraints of T when viewed as hierarchy constraints), M- satisfies the data 
constraints of ~. 

Horizontal composition theorem (with data): In Clear with data, if Re-->P and 

R,c-->P' are parameterised theories with R,a__>p, structurally complete and parameter 

consistent, P' is hierarchical submodel consistent and reachably complete with 

respect to ~(R)c_->~(p), Re.__>p _~R,e._@p, and ~ A '  are implementations with ~' 

structurally complete, and ~:R_-->A and ~':R'-->A' are theory morphisms where 

~,=p.~.~', then P(A[@])~'~I>P'(A'[~']). 

The horizontal composition theorem for enrich extends analogously. 

This result is encouraging because ordinary Clear is easier to use than our 
,hierarchical' variant. However, the extra condition on the horizontal composition 
theorem is rather strong and it may be that it is too restrictive to be of practical 
use. 
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