
INFORMATION AND COMPUTATION 76, 165-210 (1988)

Specifications in an Arbitrary Institution*

DONALD SANNELLA AND ANDRZEJ TARLECKI~

Department of Computer Science, University of Edinburgh,
Edinburgh, EH9 3JZ Scokmd

A formalism for constructing and using axiomatic specifications in an arbitrary
logical system is presented. This builds on the framework provided by Goguen and
Burstall’s work on the notion of an institution as a formalisation of the concept of a
logical system for writing specifications. We show how to introduce free variables
into the sentences of an arbitrary institution and how to add quantitiers which bind
them. We use this foundation to define a set of primitive operations for building
specifications in an arbitrary institution based loosely on those in the ASL kernel
specification language. We examine the set of operations which results when the
definitions are instantiated in institutions of total and partial tirst-order logic and
compare these with the operations found in existing specification languages. We
present proof rules which allow proofs to be conducted in specifications built using
the operations we define. Finally, we introduce a simple mechanism for defining and
applying parameterised specifications and briefly discuss the program development
process. 1 1988 Academic Press. Inc.

1. INTRODUCTION

Much work has been done on algebraic specifications in the past 10
years. Although much has been accomplished, there is still no general
agreement on the definitions of many of the basic concepts, e.g., signature
and algebra, and on which kinds of axioms should be used. The dis-
agreement arises partly because different definitions are required to treat
various special issues in specification, such as errors [Gog 77, GDLE 821,
coercions [Gog 781 and partial operations [BrW 821; partly because some
specification methods such as the initial algebra approach [GTW 761 only
work under certain restrictions on, e.g., the form of axioms in
specifications; and partly because of disagreements over matters of style or
taste. These fundamental differences lead to difficulty in comparing the
results achieved by different approaches and in building upon the work of
others.

The notion of an institution [GB 84a] provides a tool for unifying all

* This is an essentially revised and extended version of (Sannella and Tarlecki, 1984).
+ Present address: Institute of Computer Science, Polish Academy of Sciences, Warsaw.

165
0890-5401/M $3.00

Copyright s(1988 by Academic Press. Inc.
All rights of reproduction in any form reserred

166 SANNELLA AND TARLECKI

these different approaches to specification by formalising the concept of a
logical system for writing specifications. An institution comprises
definitions of signature, model, sentence (i.e., axiom), and satisfaction
which obey a few internal consistency conditions (details in Section 2).
Although it is often not obvious, much of the work which has been done
on algebraic specification turns out to be independent of the particular
definitions of these four notions. In such cases it would be highly desirable
to make the generality explicit by basing everything on an arbitrary
institution. This was done in the semantics of the Clear specification
language [BG SO] (where an institution was called a “language”).
Sometimes additional assumptions about the base institution are necessary,
as in Clear where use of the initial algebra approach requires the
assumption that the institution is liberal (forgetful functors induced by
theory morphisms have left adjoints).’ Instantiating the base institution in
different ways (and changing the low-level syntax accordingly) yields a
family of specification languages: equational Clear, error Clear, continuous
Clear, and so on.

In early work on algebraic specification (e.g., [GTW 761) it was shown
how a collection of algebras could be specified by a theory, i.e., a signature
together with a set of axioms. For small specifications such an approach is
adequate, but it is more convenient to build large and complex
specifications in a structured way by putting together small specifications.
Several specification languages in addition to Clear support such a struc-
tured approach to specification. These include UP-L [Bau 811. Look
[ZLT 82, ETLZ 821, ASL [Wir 82, SW 83, Wir 831, the constraint
language of [EWT 831, and the Larch Shared Language [GH 831. None
of these other languages were based on an arbitrary institution (although
the possibility of a similar such generalisation was considered in [SW 831
and [EWT 831) and so they are not general in the sense that Clear is.
However, since they include features which seem desirable but which are
not included in Clear, they are more useful as tools for writing
specifications in the particular institutions they treat. Most useful of all
would be an institution-based specification approach which incorporates
the good ideas of all these languages. That is the goal of this paper. We
define and carefully analyse a set of general specification-building
operations based loosely (but not exclusively) on those in ASL.

One novel feature of ASL is a specification-building operation abstract
which can be used to hehaoiourall?~ abstract from a specification, closing its
collection of models under behavioural equivalence [GGM 76, Rei 811.
This allows abstract model specifications [LB 773, cf. [Suf 821, in which
the desired behaviour is described in some concrete way, e.g., by giving a

’ On this point, see the “technical digression” in Section 5

SPECIFICATIONS IN AN ARBITRARY INSTITUTION 167

simple model which exhibits it. Such an operation is a necessary ingredient
in an algebraic specification language since the specification of, e.g., an
abstract data type is supposed to describe a behaviour (an input/output
relation) without regard to the particular representation used and therefore
ufl algebras which realise the desired behaviour should be permitted as
models. However, this operation was defined in [SW 831 in such a way
that it is not obvious how to generalise it to an arbitrary institution. (There
are some remarks in [SW 831 which suggest how this might be done, but
the proposed generalisation does not lit smoothly into the institutional
framework and anyway the technical details are wrong.)

The key to the institution-based definition of abstract turns out to be the
introduction of free variables into the sentences of the institution. We show
in Section 3 how this may be accomplished. Free variables are necessary
because they provide a way of naming unreachable elements of models
which cannot be referred to using the operations of the model alone. Such
elements play an important role in the definition of behavioural abstrac-
tion. Having introduced free variables into the sentences of an institution,
we digress in the second part of Section 3 and show how to add quantifiers
which bind them. This gives a construction for introducing quantified
variables into the sentences of an arbitrary institution.

Building on this foundation, we then define a set of primitive operations
for building specifications in an arbitrary institution (Section 4). The set of
operations we provide is based on those present in ASL; however, there are
a number of significant differences. These derive both from difficulties in
generalising some of the operations of ASL to an arbitrary institution (for
example, since we cannot easily form the union of signatures in this setting
the + operation is not generalised directly) and from extensions which
arose naturally in the process of generalisation. A feature of ASL which
remains is the expressive power and flexibility necessary to provide a kernel
for building high-level specification languages. The convenient-to-use
specification-building operations of the high-level language would be
defined by composing these low-level operations (as for example in PLUSS
[Gau 841 built over ASL, and in Extended ML [ST 851 built over the
specilication-building operations presented here). It is natural for such
high-level languages to hide some of the raw power of the primitives from
the user.

It is worth noting that specifications may themselves be viewed as logical
sentences, written in a (more expressive) logical system developed over the
underlying institution. In fact, it is easy to see that specifications built using
our specification-building operations form an institution.

In Section 5 we examine the set of operations which results when the
general definitions are instantiated in an institution of first-order logic with
equality as the only predicate and in an institution of partial first-order

168 SANNELLA ANDTARLECKI

logic. These operations are compared with those found in existing
specification languages.

In Section 6 we consider the problem of theorem proving in the context
of specifications built using the operations defined in Section 4. Following
[SB 831, we present an approach which enables the structure of proofs to
reflect and exploit the structure of specifications. For each of the
specification-building operations we provide inference rules which are
independent of the particular institution in use, show that they are sound,
and analyse their completeness. This is another case were, due to the quest
for generality via institutions, something (part of a theorem prover) may be
built once and for all.

In Section 7 we introduce a mechanism for defining and applying
parameterised specifications. In contrast to the usual way in which
parameterised specifications are dealt with based on a pushout construc-
tion (see, e.g., [BG SO] and [Ehr 79]), we adopt a different approach
based on the mechanism of macro-expansion (B-conversion in the
I-calculus). Finally, Section 8 concludes with remarks concerning the
development of programs from specifications by stepwise refinement in this
framework and the generality of our approach.

We assume some familiarity with a few notions from basic category
theory, although no use is made of any deep results. See [AM 75,
MacL 711 for the definitions which we omit here.

2. INSTITUTIONS

Any approach to algebraic specification must be based on some logical
framework. The pioneering papers [GTW 76, Gut 75, Zil743 used many-
sorted equational logic for this purpose. Nowadays, however, examples of
logical systems in use include first-order logic (with and without equality),
Horn-clause logic, higher-order logic, inlinitary logic, temporal logic, and
many others. Note that all these logical systems may be considered with or
without predicates, admitting partial operations or not. This leads to dif-
ferent concepts of signature and of model, perhaps even more obvious in
examples like polymorphic signatures, order-sorted signatures, continuous
algebras, or error algebras.

There is no reason to view any of these logical systems as superior to the
others; the choice must depend on the particular area of application and
may also depend on personal taste. Another reason for choosing a par-
ticular logical system to work in might be because useful tools are available
which only work in that framework (e.g., the availability of a -Knuth-Ben-
dix theorem prover might be an argument for working in equational logic).

The informal notion of a logical system has been formalised by Goguen

SPECIFICATIONS IN AN ARBITRARY INSTITUTION 169

and Burstall [GB 84a], who introduced for this purpose the notion of an
institution. An institution consists of a collection of signatures together with
for any signature C a set of C-sentences, a collection of C-models, and a
satisfaction relation between C-models and C-sentences. Note that
signatures are arbitrary abstract objects in this approach, not necessarily
the usual “algebraic” signatures used in many standard approaches to
algebraic specification (see, e.g., [GTW 761). The only “semantic”
requirement is that when we change signatures, the induced transiations of
sentences and models preserve the satisfaction relation. This condition
expresses the intended independence of the meaning of a specification from
the actual notation. Formally:

DEFINITION [GB 84a]. An institution INS consists of

- a category Sign,,, (of signatures),

~ a functor Sen,,,: Sign,,, -+ Set (where Set is the category of all
sets; Sen,,, gives for any signature C the set of C-sentences and for any
signature morphism 0: Z -+ C’ the function Sen,,,(a): Sen,,,(C) +
Sen,,,(2’) translating Z-sentences to Z-sentences),

~--- a functor Mod,,,: Sign,,, -+ CaP (where Cat is the category of
all categories;* Mod INS gives for any signature Z the category of q-models
and for any signature morphism (T: Z -+ E’ the a-reduct functor Mod,,,(a):
Mod,,,(Z) + Mod,,,(S) translating Z-models to C-models), and

- a satisfaction relation k z,INS G IMod,,d~)I x S%d~) for each
signature Z

such that for any signature morphism CJ: C -+ Z’ the translations ModINs
of models and Sen,,,(o) of sentences preserve the satisfaction relation; i.e.,
for any cp E Sen,,,(Z) and M’ E jMod,,,(L’)l

M’ t=r,1N~ SenlNs(o)(v) ifl Mod,,s(~)(M’) kZ,INS(P

(Satisfaction condition).

To be useful as the underlying institution of a specification language, an
institution must provide some tools for “putting things together.” Thus, in
this paper we additionally require that the category Sign has pushouts and
initial objects (i.e., is finitely cocomplete) and moreover that Mod preserves
pushouts and initial objects (and hence finite colimits), i.e., that Mod trans-

z Of course. some foundational difficulties are connected with the use of this category, as
discussed in [MacL 711. We do not discuss this point here. and we disregard other such
foundational issues in this paper; in particular, we sometimes use the term “collection” to
denote “sets” which may be too large to really be sets.

170 SANNELLA AND TARLECKI

lates pushouts and initial objects in Sign to pullbacks and terminal objects
(respectively) in Cat.

In [GB 84a] the category Sign is not required to be cocomplete, but this
is required there of any institution to be used as the basis of a specification
language (as in Clear [BG SO]). Mod is not required there to preserve
colimits; however, we feel that this is a natural assumption to make the
semantics of specification-building operations consistent with our
intuitions. A similar condition is required in [EWT 831. Note that both of
these requirements are entirely independent of the “logical” part of the
institution, i.e., of sentences and the satisfaction relation, and the fact that
all standard examples of institutions (including all those in [GB 84a])
satisfy them indicates that they are not very restrictive in practice.

The work of [Bar 741 on abstract model theory is similar in intent to the
theory of institutions but the notions used and the conditions they must
satisfy are more restrictive and rule out many of the examples we would
like to deal with.

Notational Conventions

~ The subscript INS is omitted when there is no danger of con-
fusion.

~ We will write k instead of kz when Z is obvious.

- For any signature morphism U: C + Z’, Sen(o) is denoted just by
r~ and Mod(a) is denoted by -I,, (i.e., for cp~Sen(C), a(cp) stands for
Sen(a)(cp), and for M’ E (Mod(Z’)(, M’(. stands for Mod(a)(M’)).

~ For any signature C, @ sSen(C) and ME [Mod(C we write
Ml=@ to denote that Mkq for all cp E @.

All of the examples of logical systems mentioned at the beginning of this
section (e.g., first-order logic, temporal logic) fit into the framework of an
institution. The following simple example serves to illustrate this. Note that
we can define institutions which diverge from logical tradition and have,
for example, sentences expressing constraints on models which are not
usually considered in logic, e.g., data constraints as in Clear [BG 801,
which may be used to impose the requirement of initiality (cf. [Rei 87,
EWT 831).

Example: The institution GEQ of ground equations

An algebraic signature is a pair (S, Sz), where S is a set (of sort names)
and Q is a family of sets {Q,,,} WE S.,se s (of operation names). We write
f’: M, -+ s to denote w E S*, s E S, f E Sz,.,,. An algebraic signature morphism O:

SPECIFICATIONS IN AN ARBITRARY INSTITUTION 171

(S, Q) -+ (S’, Q’) is a pair (osorts, gOpns) where gsorts : S -+ S’ and oOpns is
a family of maps {(T...,: sZ,:,Y + SZb*(M.,,~(J)},,,ESt,,,ES, where a*(sl, sn)
denotes rrsorts(.rl), gsorts(.rn) f or $1, sn E S. We will write o(s) for
c~~~,~(s), (T(U)) for a*(~,), and a(f) for a,,,,(f), where f~ Q.:,.

The category of algebraic signatures AlgSig has algebraic signatures as
objects and algebraic signature morphisms as morphisms; the composition
of morphisms is the composition of their corresponding components as
functions. (This obviously forms a category.)

Let ,!I= (S, ~2) be an algebraic signature.
A C-a/g&a A consists of an S-indexed family of carrier sets IAl =

((A(S],ES and for each f: sl , sn -+s a function fA: IAIS, x . . x IAl,5, +
/Al,,. A C-homomorphism from a C-algebra A to a Z-algebra B, h: A -+ B,
is a family of functions {h,,},~es, where h,,: IAl.,+ lBl,y, such that for any
f’~ sl,VZ -+ s and CI, E [A[,,,,..., a,,~ /Al,,,

The category of C-algebras Alg(E) has C-algebras as objects and
.Z-homomorphisms as morphisms; the composition of homomorphisms is
the composition of their corresponding components as functions. (This
obviously forms a category.)

For any algebraic signature morphism cr: 2 + 2’ and Z-algebra A’, the
o-ueduct of A’ is the C-algebra A’/, detined as follows:

For JES, IA’IA, =def IA’I,,,,.

For f: MI -+ s in C, fA9,, = del cam,.

Similarly, for a Z-homomorphism h’: A’ -+ B’, where A’ and B’ are
Z’-algebras, the a-reduct of h’ is the Z-homomorphism h’l, : A’[,, -+ B’I,
defined by (h’l,), = def h&, for s E S.

The mappings A’c, A’(,, h’ t-+ h’(, form a functor from Alg(Z’) to
AM-0

For any algebraic signature 2, Alg(C) contains an initial object r,
which is (to within isomorphism) the algebra of ground Z-terms; i.e., the
carriers Ir,(contain terms of the appropriate sorts which are constructed
using the operation symbols of Z (without variables) and the operations in
T, are defined in the natural way (see, e.g., [GTW 763). A ground
Z-equation is a pair (t, t’) (usually written as t = r’) where t, t’ are ground
C-terms of the same sort; i.e., r, r’ E) If,/, for some sort s of C.

By definition, for any E-algebra A there is a unique Z-homomorphism h:
T, + A. For any ground term t E I r,l, (for s in the sorts of C) we write r,
rather than h,(t) to denote the value of t in A. For any Z-algebra A and
ground Z-equation t = r’ we say that t = r’ holds in A (or A satisfies r = r’)
written A+ t = t’, if r, = r;.

172 SANNELLA ANDTARLECKI

Let 0: Z + C’ be an algebraic signature morphism. The unique
C-homomorphism h: T, + T,.I, determines a translation of Z-terms to
Z-terms. For a ground Z-term t of sort s we write a(t) rather than /zY(t).
This in turn determines a translation (again denoted by a) of ground
C-equations to ground Y-equations: o(t = t’) = def a(t) = a(t’).

All the above notions combine to form the institution of ground
equations GEQ:

SignGEQ is the category of algebraic signatures AlgSig.

~ For an algebraic signature C, Sen,&C) is the set of all ground
Z-equations; for an algebraic signature morphism cr: C-t C’, SenGEQ(o)
maps any ground C-equation t = t’ to the ground Z/-equation a(t) = a(t’).

- For an algebraic signature Z:, ModGEQ(C) is Alg(C); for an
algebraic signature morphism cr: C -+ Z’, ModGEQ(o) is the functor -lU:
Al&Z’) + Alg(C).

~ For an algebraic signature C, +=-,oEQ is the satisfaction relation
as defined above.

It is easy to check that GEQ is an institution (the satisfaction condition
is a special case of the satisfaction lemma of [BG SO]). The category
AlgSig is finitely cocomplete (see [GB 84b, Prop. 51) and ModGEQ :
AlgSig + CaP translates finite colimits in AlgSig to finite limits in Cat (see
[SW 851).

3. FREE VARIABLES IN INSTITUTIONS

In logic, formulae may contain free variables (such formulae are called
open). To interpret an open formula, we must provide not only an inter-
pretation for the symbols of the underlying signature (a model) but also an
interpretation for the free variables (a valuation of variables into the
model). This provides a natural way to deal with quantifiers. The need for
open formulae also arises in the study of specification languages. In fact, we
will need them to define one of the specification-building operations
(abstract) in the next section. But for this we need institutions in which
sentences may contain free variables.

Fortunately we do not have to change the notion of an institution-we
can provide open formulae in the present framework (this idea was influen-
ced by the treatment of variables in [Bar 741). Note that we use here the
term “formula” rather than “sentence,” which is reserved for the sentences
of the underlying institution.

Consider the institution GEQ of ground equations. Let Z = (S, Sz) be
an algebraic signature. For any S-indexed family of sets, X= {X,},, S,
define Z(X) to be the extension of C by the elements of X as new constants
of the appropriate sorts.

SPECIFICATTONS IN AN ARBITRARY INSTITUTION 173

Now, any sentence over Z(X) may be viewed as an open formula over C
with free variables X. Given a C-algebra A, to determine whether an open
C-formula with variables X holds in A we must first fix a valuation of
variables X into IA 1. Such a valuation corresponds exactly to an expansion
of A to a X(X)-algebra, which additionally contains an interpretation of
the constants X.

Given a translation of sentences along an algebraic signature morphism
CJ: C + C’ we can extend it to a translation of open formulae. Roughly, we
translate an open Z-formula with variables X, which is a Z(X)-sentence, to
the corresponding Z’(X)-sentence, which is an open Y-formula with
variables x’. Here x’ results from X by an appropriate renaming of sorts
determined by o (we also must avoid unintended “clashes” of variables and
operation symbols).

The above ideas generalise to an arbitrary institution INS.
Let Z be a signature.
Any pair (cp, O), where 0: C + Z’ is a signature morphism and

cp ~Sen(z’), is an open C-formula with variables “C’- O(C)“. (Note the
quotation marks--since z” - O(C) makes no sense in an arbitrary
institution, it is only meaningful as an aid to our intuition.) When we use
open formulae in specifications we will omit H if it is obvious from the
context.

If M is a Z-model, ME IMod(Z)[, then a valuation of variables
“Z“ - O(Z)” into M is a Z-model M’ E IMod(C’)(which is a O-expansion of
44, i.e., M’I (, = M.

Note that in the standard logical framework there may be no valuation
of a set of variables into a model containing an empty carrier. Similarly,
here a valuation need not always exist (although there may be more
reasons for that). For example, in GEQ if 0 is not injective then some
models have no O-expansion.

If 0: C + Zl is a signature morphism and (cp, 8) is an open Z-formula
then we define the translation of (cp, 0) along f~ as
d<m 0)) =def (a’(so), O’>, where

C’ --L ,?J ’

H T T H’
c- Cl 0

is a pushout in the category of signatures.
There is a rather subtle problem we must point out here: pushouts are

defined only up to isomorphism, so strictly speaking the translation of
open formulae is not well-defined. Fortunately, from the definition of an
institution one may easily prove that whenever I: Cl’ -+ Cl” is an

174 SANNELLA AND TARLECKI

isomorphism in Sign with inverse r - ’ then Sen(l): Sen(Z1’) + Sen(C1”) is a
bijection, Mod(z): Mod(Z1”) --t Mod(C1’) is an isomorphism in Cat, and
moreover for any 23 ‘-sentence $ E Sen(Z1’) and any Cl ‘-model
A41’~ IMod(Z1’)1,

This shows that (at least for semantic analysis) we can pick out an
arbitrary pushout to define the translation of open formulae and so we may
safely accept the above definition of translation.

Note that sometimes we want to restrict the class of signature
morphisms which may be used (as second components) to construct open
formulae. In fact, in the above remark sketching how free variables may be
introduced into GEQ we used only algebraic signature inclusions I: C -+ 2”)
where the only new symbols in Z’ were constants. To guarantee that the
translation of open formulae is defined under such a restriction, we con-
sider only restrictions to a collection A?’ of signature morphisms which is
closed (at least) under pushing out along arbitrary signature morphisms,
i.e., for any signature morphism G: C + Cl if 0: C -+ C’ E A then there is a
pushout in Sign

e
I I

H’

z-----+ Cl 0

such that 8’ E A!.
Examples of such collections A’ in AlgSig include the collection of all

algebraic signature inclusions, the restriction of this to inclusions 8: Z -+ 2”
such that C’ contains no new sorts, the further restriction of this by the
requirement that C’ contains new constants only (as above), the collection
of all algebraic signature morphisms which are onto w.r.t. sorts, the collec-
tion of all identities, and the collection of all morphisms. Note that most of
these permit variables denoting operations or even sorts.

In the rest of this section we briefly sketch how to existentially close the
open formulae introduced above (the construction is based on the notion
of a syntactic operation in [Bar 741). It is therefore a bit peripheral to the
main concern of this paper but we would like to add some logical meat to
our treatment of free variables.

Let A? be a collection of signature morphisms which is closed under
pushing out along arbitrary morphisms in Sign. Let Z be a signature and
let (cp, 0) be an open Z-formula such that 0 E A!. Consider the existential
closure of (cp, 8), written 3((p, f3), as a new Z-sentence. The satisfaction

SPECIFICATIONS IN AN ARBITRARY INSTITUTION 175

relation and the translation of sentences 3(cp, 0) along a signature
morphism are defined in the expected way:

~ A C-model satisfies 3 (cp, 8) if it has a &expansion which satisfies
cp; i.e., for any ME JMod(C)I,

Mk3(q,O) iff thereexistsM’E (Mod(such that M’I,= MandM’+q.

-- For any signature morphism 0: C + Cl, a(3(cp, 0)) = del
3o(((p, O)), where a((~, 8)) = (o’(q), 0’) is the translation of (cp, 0) as
an open Z-formula (with 0’ E JY).

Note that in the above we have extended our underlying institution INS.
Formally, we can define the extension of INS by existential closure w.r.t.
.H, INS3(,&‘), to be the following institution:

-- For any signature C, Sen,,s+,,(C) is the disjoint union of
Sen,,s(L) with the collection of all existential closures 3((p, 0) of open
C-formulae, where OE.N; for a signature morphism CJ: C-t El,
Sen ,NSJ,,NJ(~) is the function induced by Sen,,,(o) on Sen,,,(Z) and by the
notion of translation of existentially closed open formulae as defined above.

~ Mod,,,+,, is Mod,,,.

~ The satisfaction relation in INS3(,&‘) is induced by the satisfaction
relation of INS for INS-sentences and the notion of satisfaction for existen-
tially closed open formulae as defined above.

The following theorem guarantees that INS3(.k) is in fact an institution
(modulo the above remark about translations of open formulae).

THEOREM (Satisfaction condition for INS3(c N)). For any signature
morphism fs: Z + Xl, open ZTformula (cp, 0) and Cl-model

Ml E IMod(C1)I,

Proqf: Recall that a(3((p, 0)) = 3(a’((p), W), where

is a pushout in Sign.
In the proof we need the following lemma, which is a consequence of our

176 SANNELLA AND TARLECKI

assumption that the functor Mod translates pushouts in Sign to pullbacks
in Cat (we omit the obvious proof based on the construction of pullbacks
in Cat).

LEMMA. For anal two models Ml E lMod(Z1)I and M’E [Mod(L”)I such
that MlI,=M’l, there is a unique model M~‘E lMod(Cl’)l such that
Ml’l,. = M’ and Ml’l,,, = Ml.

The proof of the theorem is now straightforward:

(3): Assume that Ml I0 b=3(cp, 0). Thus, by the definition of the
satisfaction relation for 3((p, t?), there exists M’ E IMod(such that
WI,, = Ml I0 and M’kcp. By the above lemma, there is a Cl’-model Ml’
such that Ml ‘I U, = M’ and Ml ‘1 B9 = Ml. Now, by the satisfaction condition
we have Ml ‘+ C’(P). Hence, Ml has a P-expansion which satisfies a’(q),
i.e., Mll=!l(a’(cp), 0’).

(e): Assume that M1+=3(a’(cp),fY). Thus, there is Ml’e
IMod(Cl’)l such that Ml/I,,= Ml and Ml’+=o’(cp). By the satisfaction
condition, Ml’l,.+~. Hence, Mll,,l=3(cp,0) since M1l,=M1’l,C,C=
Ml’In:,,= (~1’l,*)l,. I

Obviously, other quantifiers (for all, for almost all, there exists a unique,
there exist infinitely many, . . .) may be introduced to institutions in the same
manner as we have just introduced existential quantifiers. In particular, in
[Tar 861 it is shown in detail how to build over an arbitrary institution
INS the institution of universally closed sentences, INS’(JLt) (for any class
~2’ of signature morphisms as in the above construction of INS3(~)). It is
also worth mentioning that one may similarly introduce logical connectives
(cf. [Bar 741). By iterating these ideas we can, for example, derive the
institution of first-order logic from the institution of ground atomic for-
mulae.

EXAMPLE. Let ,Y be the collection of morphisms r: C + C’ in AlgSig
such that z is an algebraic signature inclusion and C’ contains new
constants only. The institution GEQ3(.F) (resp. GEQ’(.Y)) is the
institution of existentially quantified equations (resp. universally quantified
equations--cf. [GB 84a]). If we additionally allow Z’ to contain new
operation names (not just constants) then quantification along morphisms
in 9 leads to a version of second-order logic.

4. BUILDING SPECIFICATIONS

Institutions provide an adequately general framework for dealing with
basic problems such as what specifications are and how they may be built.

SPECIFICATIONS IN AN ARBITRARY INSTITUTION 177

In attacking these problems below we assume that we are working in the
framework of a fixed but arbitrary institution INS.

There are various levels at which specifications may be dealt with. We
can consider

- textual level, a sequence of characters on paper (or some other
storage medium);

-- presentation level, a signature and a set of sentences (axioms)
over this signature (required to be finite or at least recursive or recursively
enumerable);

~ theory level, a signature and a set of axioms over this signature
closed under logical consequence;

-- model level, a signature and a class of models over this signature.

Each approach to specification needs the textual level for actually writing
down specifications. The meaning of a specification text is determined by
giving a mapping from the textual level to one of the other levels. For
example, specifications are mapped in Clear to theories, in ASL to classes
of models, and in ACT ONE [EFH 831 to both presentations (the “first-
level” semantics) and to classes of models (the “second-level” semantics).
There are natural mappings from presentations to theories and from
theories to classes of models (a presentation maps to the smallest theory
containing it, and a theory maps to the class of models satisfying its
axioms); the second-level semantics of ACT ONE is actually redundant
since it is just the composition of the first-level semantics with these natural
mappings, as proved in [EFH 831. However, not every class of models is
the class of models of a theory, and not every theory has a (finite, recur-
sive, or recursively enumerable) presentation. For example, Clear has no
presentation-level semantics and neither ASL nor the set of specification
building operations presented below has a presentation- or theory-level
semantics.

However, one thing which is certain is that each specification is a textual
object describing a signature and a class of models over that signature
(called the models of the specificution). And this is in the end all that really
matters since the purpose of a specification is not to describe a presentation
or a theory but rather to describe a class of models (actually, to describe a
class of programs, but models are just what you get when you abstract
away from the syntactic and algorithmic details of programs).

To formalise this, for any specification SP we define its signature
Sig[SP] E ISign and the collection of its models Mod[SP] G
IMod(Sig[SP])l. If Sig[SP] = .Z then we call SP a Z-specification.

We will not put any restrictions on the class of models described by a
specification. Thus, specifications may be loose (having non-isomorphic
models), so as to avoid premature design decisions. In contrast to many

178 SANNELLA AND TARLECKI

approaches (e.g., CIP-L [Bau 811) we do not require models to be
reachable (in the standard framework, an algebra is reachable if every
element is the value of some ground term; for the generalisation to an
arbitrary institution see [Tar 851). We do not even assume that the class of
models of a specification is closed under isomorphism. On the other hand,
these restrictions are not ruled out, and in fact we provide mechanisms to
allow such restrictions to be included in specifications when required.

In order to make big specifications easy to understand and use, we build
them in a structured way from small bits using spec$cation-building
operations. The semantics of each of these operations is a function on
classes of models. A specification language may be viewed as a set of such
operations, together with some syntax. Some operations correspond to
functions at the presentation or theory level, but in general this need not be
so-in any case they are described by functions at the model level.

In choosing the set of operations there is a trade-off between the
expressive power of the language and the ease of understanding and deal-
ing with the operations. One way to circumvent this problem is to first
develop a kernel language which consists of a minimal set of very powerful
operations. Such a kernel language is difficult to use directly. We can build
higher-level languages on top of the kernel, so that each higher-level con-
struct corresponds to a kernel-language expression. This is analogous to
the way that high-level programming languages are defined in terms of
machine-level operations.

In the rest of this section we describe a set of simple operations for
building specifications in an arbitrary institution. Our intention is to
provide low-level operations which collectively give sufficient power and
flexibility to constitute a kernel for building high-level specification
languages in any institution. In fact, we have already defined a high-level
specification language called Extended ML [ST 851 on top of the
operations described below. Another experiment of this kind is the
language PLUSS [Gau 843 built on top of ASL.

We do not claim that the notion of a kernel is mathematically well-
defined in any sense. In referring to the operations defined below as form-
ing a kernel we wish only to convey that we regard them as low-level
operations which are not necessarily convenient to use, and which form an
appropriate foundation for building higher-level specification languages in
the manner just described. It would be interesting to look for some way of
evaluating the “kernelness” of a set of specification-building operations.
This would presumably be based on the number of different specilication-
building operations which can be expressed using those in the kernel. Some
work in this direction appears in [Wir 831 in which it is shown that (in the
standard algebraic framework) ASL can be used to define any computable
transformation of classes of algebras.

SPECIFICATIONS IN AN ARBITRARY INSTITUTION 179

We intentionally do not define a formal specification language here but
only the specification-building operations behind such a language. The dif-
ference is mainly one of syntax; although we provide a suggestive notation
for our operations, this is not a complete syntax yet because without fixing
a particular institution the syntax of signatures, signature morphisms, and
sentences cannot be fixed. We also do not care to define a notation for
describing sets. This attitude admits a certain informality in the presen-
tation below. However, we do take care to formally define the semantics of
all our operations. In [Wir 833 a complete syntax for ASL in the standard
algebraic framework is developed.

4.1, Specification- Building Operations

The operations we provide are the following:

- Form a basic specification given a signature 2 and set @ of
Z-sentences. This specifies the collection of Z-models that satisfy @.

~ Form the union of a family of C-specifications {SP,}iE,, specify-
ing the collection of C-models satisfying SP, for all i E I.

- Translate a C-specification to another signature 2” along a
signature morphism 0: C -+ Z’. This together with union allows large
specifications to be built from smaller and more or less independent
specifications.

~ Derive a Y-specification from a specification over a richer
signature ,E using a signature morphism g: Z’ + C. This allows details of a
constructive specification to be hidden while essentially preserving its
collection of models.

- Given a Z-specification restrict models to only those which are
minimal extensions of their a-reducts for a given g: Z’ -+ C. This imposes
on the models of a specification an additional constraint which excludes
models which are “larger” than necessary.

- Close the collection of models of a specification under
isomorphism.

~ Abstract away from certain details of a specification, admitting
any models which are equivalent to a model of the specification w.r.t. some
given set of properties (defined using sentences of the institution).

We defer discussion of the abstract operation to the next subsection.
Here is a more formal description of the other operations (we discuss their
instantiations in two typical institutions at a more intuitive level in
Section 5).

Basic specifications. Let .Z;E ISign/ be a signature and @ E Sen(Z) a set

180 SANNELLA AND TARLECKI

of z-sentences. The pair (C, ~0) is then a specification with semantics
defined as

Sig[(C, @)I = C

Mod[(C, @)I = {ME IMod(C)I JM~@}.

When the signature C is obvious from the context, we will sometimes write
CD instead of (C, @).

The union of a family of specifications. If (SPi}i,, is a family of
z-specifications (so Sig[SP;] =z for all iEI) then ui.,SPi is a
specification with the following semantics,

(where n denotes set-theoretic intersection). Note that if each of the
specifications SP, for in I is a basic specification (L’, Qi) then their union
has the same collection of models as (C, lJie, Oj) (this time u denotes the
usual set-theoretic union). As usual, when Z is finite we may use the usual
infix notation; e.g., we may write SP, u . u SP, if I= { 1, n}.

Translating a specijication along a signature morphism. If SP is a
C-specification and cr: C -+ L” is a signature morphism then translate SP by
cr is a specification with semantics defined as

Sig[translate SP by a] = L”

Mod[translate SP by a] = {M’E JMod(C’)I IM’I,EMod[SP]}.

If SP is a basic specification (,E, @) then translate SP by o has the same
collection of models as (27, a(@)), where r~(@) is the image of @ under (T
(i.e., Sen(D)).

Note again that using union we can only “put together” specifications
with the same signature. To combine specifications with different signatures
we must form a “union signature” (renaming some of the signature symbols
if necessary), translate the specifications into this “union signature” (using
translate w.r.t. appropriate signature injections), and then form the union
of the translated specifications. All this may be combined into one
operation using an appropriate category of “signature inclusions” to form
the “union signature” as a coproduct (R. Burstall, private communication;
cf. also a remark in [GB 84a, Sec. 6.11). However, we decided to keep two

SPECIFICATIONS IN AN ARBITRARY INSTITUTION 181

simple, more elementary operations (which gives slightly more flexibility)
rather than provide a single higher-level operation.

Deriving one specification from another. If rs: C’ -+ C is a signature
morphism and SP is a C-specification then derive from SP by c is a
specification with the semantics

Sig[derive from SP by a] = C’

Mod[derivefromSPbya]=(M1,1MEMod[SP]}.

For @sSen(C), Mod[derive from (C, @) by a] c Mod[(C’, 0 -‘(@))I,
where (T ~ ’ (@) is the coimage of @ under u (i.e., Sen(o)). Note however that
this inclusion may be proper, since sometimes not all the properties of
models of the derived specification are expressible using just Z-sentences.
Although the semantics of our derive is different from the semantics of the
derive operation in Clear [BG SO] (which produces the model class on the
right-hand side of the above inclusion provided that Cp is closed under con-
sequence) we have chosen to use the same name. The difference between
the two will be explored further in the next section.

Restricting to the minimal models oj’a specification. To define restriction
to the minimal models of a specification we need the following notion:

Let 0: 2” -+ C be a signature morphism and KG IMod(be a collection
of C-models. We say that a model A4 is a-minimal in K if ME K and if M
contains (to within isomorphism) no proper submodel from K with an
isomorphic a-reduct, which we formalise as follows: for every Ml E K, any
monomorphism m: Ml -+ M (in Mod(C)) such that ml0 is an isomorphism
from MlI, to MI, (in Mod(Z)) is in fact an isomorphism (in Mod(C)).

Now, for any signature morphism D: Z’ -+ C and C-specification SP,
minimal SP wrt g is a specification describing the models of SP which are
minimal extensions of their cr-reducts:

Sig[minimal SP wrt C] = L

Mod[minimal SP wrt o] = (MI M is a-minimal in Mod[SP]}.

Closing the model class of a spec(fication under isomorphism. If SP is a
C-specification then iso close SP is a specification with semantics defined by

Sig[iso close SP] = C

Mod[iso close SP] = (ME /Mod(1 Mis isomorphic
to some model Ml E Mod[SP]}.

Observe that there is no guarantee in the definition of an institution that

182 SANNELLA AND TARLECKI

the satisfaction relation is preserved under isomorphism of models. Thus,
even the collection of models of a basic specification need not be closed
under isomorphism. Also note (see Section 5) that the collection of models
of derive from SP by g need not be closed under isomorphism even if the
collection of models of SP is.

4.2. Observational Abstraction

A concept which has (not) been extensively (enough) studied in the con-
text of algebraic specifications is that of the behaviour of a program or
model. Intuitively, the behaviour of a program is determined just by the
answers which are obtained from computations the program may perform.
Switching for a while to the usual algebraic framework, we may say infor-
mally that two C-algebras are behaviourally equivalent with respect to a set
OBS of observable sorts if it is not possible to distinguish between them by
evaluating Z-terms which produce a result of observable sort. For example,
suppose C contains the sorts nat, bool, and bunch and the operations
empty: --t bunch, add nat, bunch + bunch, and E : nat, bunch + boo1 (as well
as the usual operations on nat and boo!), and suppose A and B are
C-algebras with

IA bunch I = the set of finite sets of natural numbers

IB bunch(= the set of finite lists of natural numbers

with the operations and the remaining carriers defined in the obvious way
(but B does not contain operations like cons, car, and cd). Then A and B
are behaviourally equivalent with respect to { bool) since every term of sort
boo1 has the same value in both algebras (the interesting terms are of the
form m E add(a,, add(a,, empty)...)). Note that A and B are not
isomorphic. Different notions of behavioural equivalence have been studied
in [GGM 76, BM 81, Rei 81, GM 82, Sch 82, Kam 83, GM 83, SW 831
and elsewhere; the idea goes back (at least) to work on automata theory in
the 1950s [Moore 563.

Behavioural equivalence seems to be a concept which is fundamental to
programming methodology. For example:

Data abstraction. A practical advantage of using abstract data types in
the construction of programs is that the implementation of abstractions by
program modules need not be fixed. A different module using different
algorithms and/or different data structures may be substituted without
changing the rest of the program provided that the new module is
behaviourally equivalent to the module it replaces (with respect to the non-
encapsulated types). ADJ [GTW 761 have suggested that “abstract” in

SPECIFICATIONS IN AN ARBITRARY INSTITUTION 183

“abstract data type” means “up to isomorphism”; we suggest that it really
means “up to behavioural equivalence.“3

Program specification. One way of specifying a program is to describe
the desired input/output behaviour in some concrete way, e.g., by con-
structing a very simple program which exhibits the desired behaviour. Any
program which is behaviourally equivalent to the sample program with
respect to the primitive types of the programming language satisfies the
specification. This is called an abstract model specl$cation [LB 771 or
specification by example [Sad 841. In general, specifications under the
usual algebraic approaches are not abstract enough; it is either difficult, as
in Clear [BG SO], or impossible, as in the initial algebra approach of
[GTW 761 and the final algebra approach of [Wand 793 to specify sets of
natural numbers in such a way that both A and B above are models of the
specification. One way to do specification by example in our framework is
to use a behavioural abstraction operation which when applied to a
specification SP relaxes interpretation to all those algebras which are
behaviourally equivalent to a model of SP. We want to stress that although
the phrase “specification by example” suggests sloppiness, this is not the
case; in this approach it is a precisely defined, convenient, and intuitive
way to write specifications, and it is also an established technique in
software engineering.

In the above we assume that the only observations (or experiments) we
are allowed to perform are to test whether the results of computations are
equal. In the context of an arbitrary institution we can generalise this and
abstract away from the equational bias by allowing observations which are
arbitrary sentences (logical formulae). This yields an institution-based
notion of observational equivalence. Two models are observationally
equivalent if they both give the same answers to any observation from a
prespecitied set. Based on this general notion of observational equivalence
we can define an institution-based specification-building operation for
observational abstraction (the behaviouial abstraction operation men-
tioned above is actually only a special case of observational abstraction in
the standard algebraic framework). One complication is that in order to

’ It is not our intention to quibble over terminology here. We only wish to suggest that the
use of the word “abstract” in “abstract data type,” meaning “independent of representation”
according to [GTW 761, is more accurately reflected by the notion of behavioural equivalence
than by isomorphism as was suggested there. This seems to be consistent with the use of the
term in languages like CLU [Lis St] (where abstract data types are called clusters). In
[GM 82, 831 it has been suggested that “abstract data type” is an appropriate term for an
isomorphism class of algebras while “abstract machine” refers to a behavioural equivalence
class of algebras. Then a CLU cluster would correspond to an abstract machine. Since the
motivation is really to capture algebraically the idea embodied in CLU clusters, we are in
agreement with Goguen and Meseguer although we choose to use a different terminology.

184 SANNELLA AND TARLECKI

deal with non-reachable models we must be able to express the obser-
vations we want to make as open formulae; the free variables provide a
way of naming unreachable elements.

Formally, for any signature C, signature morphism 8: C + .L”, set
@’ c Sen(L”) of open C-formulae with variables “C’ - 0(Z)” and Z-models
Ml, M2 E [Mod(C)/, we say that Ml is observationally reducible to M2
M’.Y. t. @’ via 6, written Ml 6 “,, M2, if for every (valuation)
Ml’e IMod(C’)I with Ml’l, = Ml there exists (a valuation)
A42’~ IMod(C’)I with M2’l,=M2, such that for all cp E@‘, Ml’j=cp iff
M2’t==(p. A41 is observationally equivalent to M2 w.r.t. CD’ via 6, written
Ml = “,, M2, if Ml d $,, M2 and M2 6 “,, Ml.

Now, for any C-specification SP, signature morphism 8: C -+ L”, and set
@‘E Sen(Z’) of open C-formulae with variables “C’- e(C),” the
specification abstract SP wrt @’ via 8 (intuitively) ignores the properties
specified in SP as much as possible without affecting @‘; i.e., it admits any
model @‘-equivalent via 6’ to a model of SP:

Sig[abstract SP wrt @’ via O] = Z

Mod[abstract SP wrt @’ via 0]= (Ml E [Mod(I Ml E $, M2
for some M2 E Mod[SP]}.

In Section 5 we describe how observational abstraction may be applied
to give the effect of the behavioural abstraction operation mentioned
above.

It is worth noting that specifications in a given institution INS them-
selves form an institution. This institution has the same signatures and
models as INS. Sentences over a signature C are C-specifications as defined
in Sections 4.1 and 4.2, and the translation of a Z-“sentence” along a
signature morphism 0: C + C’ is defined in the obvious way using the
translate operation. Note, however, that in order for this to form a functor
we must “normalize” specifications so that they have at most one translate
operation outside, i.e., we must identify translate (translate SP by a) by CJ’
with translate SP by o; 0’. The satisfaction relation is determined by the
semantics of specifications: a Z-model M satisfies a Z-“sentence” SP iff
ME Mod[SP]. The satisfaction condition follows from the semantics of
translate and the satisfaction condition for INS.

4.3. (No) Data Constraints

Our specification-building operations do not provide the possibility to
explicitly require initially or freeness. This is in contrast to languages like
Clear and Look but in accord with ASL and CIP-L. We could easily add
such an operation (see below). That we do not do this is really just a mat-
ter of taste, strongly supported by some results on the power of

SPECIFICATIONS IN AN ARBITRARY INSTITUTION 185

specification methods which indicate that no expressive power is lost by
excluding such an operation, as long as some operation like our minimal is
available and specifications may be built in a hierarchical fashion (in the
standard algebraic framework, for monomorphic specifications-see
[BBTW 811 for details). We could also set forth the (somewhat
demagogic) argument that after all one can get exactly the same effect by
including axioms like data constraints [GB 84a] in the underlying
institution.

An operation which imposes freeness requirements (like data as defined
below) has the technical disadvantage that it is not monotonic with
respect to inclusion of model classes, unlike all the specification-building
operations introduced above. This does not apply to the use of data con-
straints as sentences in basic specifications. Monotonicity turns out to be
crucial both in defining recursive parameterised specifications (Section 7)
and in composing implementation steps (Section 8).

It is worth noting that data constraints were originally introduced under
the rather serious restriction that the underlying institution be liberal,
which essentially excludes axioms more powerful than inlinitary Horn for-
mulae (see [MM 84, Mak 85, Tar 84) for an analysis of this problem in
the standard case, and [Tar 85, 863 for its generalisation to an arbitrary
institution). The device of duplex irzstitzrtions allows one to relax this
restriction in such a way that it applies only to that part of the institution
which is actually used in data constraints (see [GB 84a] for all the ‘details).
The construction below shows that formally even this is not necessary:

For any specification SP and signature morphism O: C -+ Sig[SP] we
could define data SP over o as a specification having the semantics

Sig[data SP over a] = Sig[SP]

Mod[data SP over a] = {ME IMod(Sig[SP])l /for any M’E Mod[SP]
and C-morphism f: MI rT + M’I (i there exists
a unique Sig[SP]-morphism f’*: M + M’
such that f*10 =f).

Technical digression. We show that this would essentially give the effect
of the data constraints of [GB 84aJ Let us recall the relevant definitions
from [GB 84a] first.

By a tlzeory we mean any basic specification (C, @) such that CD is a set
of Z-sentences closed under logical consequence; i.e., @ satisfies the
equality

CD= {~ESen(Z)IM~~forallMEMod[(C, @)I).

By a theory morphism from Tl = (Cl, @l) to T2 = (C2, @2) (where Tl
and T2 are theories) we mean any signature morphism Q: Cl +.X2 such

186 SANNELLA AND TARLECKI

that o(@l) s @2. According to the satisfaction condition, this means
exactly that the a-reduct functor -I0 maps models of T2 to models of Tl,
and so for every theory morphism rr: Tl -+ T2 there is an associated
a-reduct functor -1 n : Mod[T2] + Mod[Tl] (we identify classes of models
with full subcategories of the category of models over the given signature).

An institution is called liberal tf for every theory morphism rr: Tl -+ T2,
the o-reduct functor -I6 : Mod[T2] --) Mod[Tl] has a left adjoint, which
we denote by F,: Mod[Tl] + Mod[T2] (with unit vu and counit P).
Then, M2 E Mod[T2] is a-free if it is naturally isomorphic to the free
model over M21,, i.e., if the counit morphism E%~,,: F,(M21,) + il.42 is an
isomorphism.

Finally, a Z-data constraint is a pair (a: Tl + T2, 8: Z2 + C> where
C-J: Tl -+ T2 is a theory morphism, C2 is the signature of T2, and 8: C2 + Z
is a signature morphism. A C-model M satisfies the data constraint
(a: Tl + T2, 0: C2 + L’) if MI, is a model of T2 and is a-free.

With these preliminary definitions, we can state the following key
lemma:

LEMMA. For any theory morphism cx Tl + T2, a Sig[T2]-model M2 is
a-free iff A42 E Mod[data T2 over a].

Proof Sketch. The “if’ part easily follows from the fact that any two
free objects are naturally isomorphic (see, e.g., [AM 753).

For the “only if’ part note that if E&: F,(M21,) + M2 is an
isomorphism then (E&~,,) ~ ’ : 442 + F,(M2 I ,) is the unique (iso)morphism
such that (E”,~,,))‘/, = r&,,O-the rest follows easily. 1

COROLLARY. A data constraint (o: Tl -+ T2, 8: C2 -+ C> is equivalent to
(has the same class of models as) the specification translate (data T2 over a)
by 8.

The above construction indicates that data constraints may be defined
without the assumption that the underlying institution is liberal. However,
what happens then is that a data constraint may be inconsistent (have no
model) even though the theories involved are consistent (have models). On
the other hand, it must be realised that this may happen even if the
underlying institution is liberal. Moreover, a specification which includes a
number of data constraints may be inconsistent anyway. (End of technical
digression)

5. Two STANDARD CASES

The definitions of the specification-building operations we gave in the
last section were so general that they may be difficult to understand. We
now consider what the operations do in two familiar contexts-the

SPECIFICATIONS IN AN ARBITRARY INSTITUTION 187

institution FOEQ of first-order logic with equality as the only predicate
symbol, and an institution PFOEQ of partial first-order logic-and com-
pare them with operations in existing specification languages.

We define the institution FOEQ as follows:

-- Sign,,,, is AlgSig (i.e., SignGEQ, the category of algebraic
signatures and their morphisms).

~ Mod FoEQ is ModGEQ (i.e., for any algebraic signature Z,
Mod FoEQ(C) is the category of C-algebras and for any algebraic signature
morphism 0’: c + Z’, Mod FoEa is the cr-reduct functor from
Mo4x,,o(~‘) to Modm&~)).

- For any algebraic signature Z, Sen,o,o(Z) is the set of closed
first-order formulae with operation symbols from C and the equality as the
only predicate symbol; for any algebraic signature morphism G: C + C’,
Sen,,&a) is the translation of Z-formulae to Z’-formulae defined in the
natural way.

- The satisfaction relation is determined by the standard notion of
satisfaction of first-order sentences.

This clearly forms an institution (details in [GB 84a]). Moreover, our
assumptions that the category of signatures is finitely cocomplete and that
Mod FoEQ translates finite colimits in SignFOEQ to limits in Cat obviously
hold here too; in fact, these parts of the institution are exactly the same as
those in GEQ.

In the following we analyse the specification-building operations defined
in Section 4 in the framework of the above institution of first-order logic.

There is hardly anything to be said about basic specifications. All
specification languages provide a syntactic tool for listing a set of axioms
over a given signature, although usually they differ in which formulae are
acceptable. First-order equational axioms are relatively powerful compared
with, e.g., equations in [GTW 761 or universal Horn axioms in
[EKTWW SO].

In our examples we use a syntax corresponding to that of Clear:

Boo1 = sorts boo1
opns true, false: + boo1

not: boo1 --) boo1
or: bool, boo1 -+ boo1

axioms Vx: bool. true or x = true
not(true) = false
not(false) = true
Vx: bool. false or x = x
Vx: bool. x = true v x = false.

(Of course, or and v are formally not the same here.)

643.76’1-3-7

188 SANNELLA AND TARLECKI

The union operation differs from the corresponding operation in other
specification languages (e.g., + in Clear or ASL) in that it works only for
specifications over the same signature, and so it provides no direct way for
putting together specifications over different signatures. To do this, we
must use union together with the translate operation, which introduces new
sorts and operation symbols to a specification (and renames old ones).

The sum of two specifications (as defined in ASL) may now be expressed
as

SP + SP’ = def (translate SP by 1) u (translate SP’ by I’),

where 1: Sig[SP] -+ Sig[SP] u Sig[SP’] and I’: Sig[SP’] + Sig[SP] u
Sig[SP’] are the inclusions of Sig[SP] and Sig[SP’], respectively, into
their set-theoretic union Sig[SP] u Sig[SP’]. To avoid unintended con-
fusion of symbols with the same names in Sig[SP] and Sig[SP’], instead
of using the inclusions I and I’ we could use injections which rename the
common symbols as required (as in Clear). This obviously generalises to
arbitrary (not necessary finite) sums.

An operation similar to enrich in Clear (identical when there are no sym-
bol clashes) may be defined in terms of the sum and basic specification
operations:

enrich SP by sorts S opns Q axioms @

= def SP + ((sorts(SP) u S, opns(SP) u a), @),

where Sig[SP] = (sorts(SP), opns(SP)).
Note that the translate operation corresponds directly to the TRA

operator of [EWT 831.
The derive operation is, in a sense, dual to translate. It may be used to

rename and to hide some of the sorts and operation symbols of a
specification. It is exactly the same as derive in ASL [SW 83, short version
only] and corresponds directly to the reflection (REF) operator in
[EWT 83-J. The intention is the same as that of derive in Clear, but the
meaning is slightly different as mentioned in Section 4. The difference is
highlighted by the following example, using the equational variant of Clear:

SP = derive from Nat by 6: C -+ Sig[Nat],

where Nat specifies (using, e.g., the minimal operation-see below) the
standard model of the natural numbers with a single sort nat and
operations 0: + nat and succ: nat --t nat, C is Sig[Nat] - (0: -+ nut}, and r~
is the inclusion. According to our semantics of derive, Mod[SP] will be the
class of C-algebras which look just like the standard model of the natural
numbers but with the operation 0: -+ nat missing. According to Clear’s
semantics of derive (making the appropriate slight changes to the syntax of

SPECIFICATIONS IN AN ARBITRARY INSTITUTION 189

the example), any C-algebra at all will be a model of SP. This result seems
inappropriate. The problem is that the semantics of Clear maps
specifications to theories. It is impossible to give a theory-level semantics of
our derive which works for examples like this one because not all the
properties of models of the derived specification are expressible using just
C-sentences.

Note that the collection of models of derive from SP by G need not be
closed under isomorphism even if Mod[SP] is. This phenomenon occurs
when 0 is not injective on sorts. When for two sorts s and s’, a(s) = I,
derive from SP by u requires the carriers of sorts s and s’ to be identical
rather than only isomorphic. (See below for some further discussion on this
point.)

The minimal operation restricts the models of a specilication SP to only
those algebras which contain (to within isomorphism) no proper sub-
algebra which is a model of SP with the same a-reduct. In particular, in the
institution of first-order logic the definition of minimal as given in Section 4
states that if an algebra A is a model of the specification minimal SP wrt CJ
then A is a model of SP and whenever B is a model of SP which is a sub-
algebra of A such that BI,= Al,,, then A= B. Moreover, if Mod[SP] is
closed under isomorphism then the converse of this implication is true as
well. In general, however, this need not be the case. Consider the coun-
terexample

SP = enrich (derive from ((sorts t), a) by a) by opns a: -+ s, b: + s’,

where cr: (sorts s, s’) + (sorts t). Now, a Sig[SP]-algebra A is a model of
SP if and only if IA/,= IA],,. Hence, for example, AEMo~[SP] where
IAI,y= (0, 1 > = /AI,, with aA =OE IAI,s and h, = 1 E IAl,.. Now, A contains
no proper subalgebra which is a model of SP. Note, however, that there is
a model B of SP which is isomorphic to a proper subalgebra of A
(IBI, = {*} = IBIS,) so A is not minimal in Mod[SP] w.r.t. the inclusion of
the empty signature into Sig[SP].

The minimal operation is similar to the GEN operator of [EWT 831
rather than to the reachable operation of ASL [SW 831 or the use of
finitely generated algebras in CIP-L [Bau 811. In fact, minimality does not
guarantee reachability (and hence, for example, the induction principle
need not hold in minimal algebras) although reachability does imply
minimality

NN = sorts nat
opns zero: + nat

succ: nat -+ nat
axioms 3x: nat. succ(x) = x

Nat,, = minimal NN wrt lsigCNN,

190 SANNELLA AND TARLECKI

(we accept the convention that for any signature C, rz denotes the unique
signature morphism from the initial signature to 2’; in particular, here
zSlgCNN, is the inclusion of the empty signature into Sig[NN]). Models of
NN contain (up to isomorphism) either a finite segment (0, U} of
natural numbers N with succ(n) = n and an arbitrary unreachable part or
else N together with an arbitrary unreachable part containing at least one
element x such that succ(x)= x. The only models of Nat, are (up to
isomorphism) finite segments {O, .._, n) of N with succ(n)=n and all
elements reachable, or else fV together with exactly one unreachable
element w such that succ(o) = o.

An operation which is like reachable in ASL [SW 831 may be defined in
terms of minimal as

reachable SP wrt o = deT SP + minimal (Sig[SP], @) wrt 0.

The reachable operation of ASL is in fact a special case of the above,

reachable SP on S = del reachable SP wrt z,

where I is the inclusion of the signature (sorts(SP) - S, 0) into Sig[SP].
For example,

Nat-seg = reachable NN wrt lSlgCNN, = reachable NN on { nat).

Now, the only models of Nat-seg are (up to isomorphism) finite segments
{ 0, H} of N with succ(n) = II and all elements reachable.

The iso close operation closes the collection of models of a specification
under isomorphism. The only situation in which the collection of models of
a specification may not be closed under isomorphism already is when the
specification contains a use of derive from . . . by cr where CT is not injective on
sorts. It would be easy to “fix” derive by changing the definition so that the
result is automatically closed under isomorphism (this was the alternative
adopted in ASL [SW 83, long version]). Another possible “solution,”
which turns out to yield exactly the same expressive power, is to restrict
derive by allowing only signature morphisms which are injective on sorts.
We prefer, however, to adopt neither solution, retaining both derive (as it is
defined now) and iso close. This is consistent with our policy of providing
operations which are as elementary as possible. It also leaves open the
possibility of specifying collections of models which are not closed under
isomorphism; despite the well-known arguments that closure under
isomorphism is natural, we feel that there is no harm in providing such
flexibility.

The derive operation allows one to hide some of the sorts and operation
symbols of a specification. This also causes some of the properties of its

SPECIFICATIONS IN AN ARBITRARY INSTITUTION 191

models to be hidden, since they cannot be expressed using the remaining
operations. However, this is not real abstraction yet since the structure
induced by the hidden operations remains. To do real abstraction we can
pick out a set of properties we would like to preserve and then use the
abstract operation.

The properties we would like to preserve must be expressed as sentences
of the underlying institution. However, to deal properly with unreachable
elements of models (dubbed “junk” in [BG 811) we must use open for-
mulae rather than (closed) sentences. Why not just forbid junk? Although
unreachable elements seem to be of no consequence, there is an example
(Infinite-Set) in [SW 831 which shows how an unreachable element in a
model of SP can become reachable and useful in enrich SP by opns
Furthermore, junk naturally arises when we “forget” operations using
derive, which corresponds to the situation where an algebra which is
reachable when viewed from a low level becomes non-reachable when
viewed from a higher level of abstraction.

The most natural way one may view abstract in the institution of tirst-
order logic is, we think, the following.

Given a Z-specification SP, identify the set CD of properties which are to
be preserved under abstraction. These properties must be expressed as
C(X)-sentences, where X is a set of variables necessary to name
unreachable elements. The abstraction of SP with respect to @ is given by
the specification abstract SP wrt @ via I where z: Z--t C(X) is the algebraic
signature inclusion. This specifies (roughly speaking) the collection of
C-algebras which satisfy the same formulae of @ as models of SP. More
formally, a Z-algebra A satisfies abstract SP wrt @ via z if and only if there
is a C-algebra B which satisfies SP and which has the property that for any
valuation uA : X-+ 1.4 1 there exists a valuation ug: X-+ 1 BI such that for any
formula cp E @, cp holds in A under the valuation uA if and only if cp holds in
B under the valuation us (and vice versa: for any us: X-+ / B(there exists
uA : X-r IAl such that...).

To make this clearer, let us consider a simple example which does not
make use of open formulae,

Nat = minimal (C, { Vx: nat. 0 # SUCC(X),

Vx, y: nat. (succ(x) = succ(y) *x = y)}) wrt 12,

where

C = sorts
opns

nat
0: + nat
succ: nat + nat

192 SANNELLA AND TARLECKI

Nat-even = enrich Boo1 + Nat by opns even: nat -+ boo1
axioms even(O) = true

even(succ(0)) = false
Vx:nat. even(succ(succ(x)))

= even(x).

All models of Nat are isomorphic to the standard model of the natural
numbers. (Note that for this specification minimality guarantees
reachability.) Each model of Nat-even is the combination of a model of
Nat with a model of Boo1 (see above) with an extra operation even. We can
abstract from Nat-even preserving only the properties of booleans and the
behaviour of even as follows,

Nat-mod = abstract Nat-even wrt @boo, via id,,

where id =: Z -+ C is the identity signature morphism, and

@ boo, = {t = t’) t, t’ are C-terms of sort bool)

u { Vx: bool. x = true v x = false}.

All models of Nat-mod are isomorphic either to the natural numbers
modulo n, for some n E (2, 4, 6, . ..}. or to N itself with arbitrary junk of
sort nat in both cases. The sentence Vx: bool. x = true v x = false in Qboo,
forces all models of Nat-mod to have only reachable elements of sort bool;
if it were removed from Gboo, then models of Nat-mod would contain
arbitrary junk of sort bool.

We could achieve the same result using observations which are open
formulae as follows,

Nat-mod’ = abstract Nat-even wrt @boo, via z,

where X is a set of variables with X,,, = 0 and XboO, # 0, I: C + C(X) is
the algebraic signature inclusion, and

@boo, = {t = t’/ t, t’ are C-terms of sort boo1 with variables X}.

The models of Nat-mod’ are exactly those of Nat-mod. Note that all
models of Nat-mod’ have only reachable elements of sort bool since @&,
contains the formulae x = true and x = false for some x E Xbool. Note that
we were able to achieve the same effect above using only ground obser-
vations (sentences with no free variables) only because the (reachable)
carriers of sort boo1 in all models of Nat-even are finite. In other examples
this is not the case. We give a much more detailed analysis of the properties
of observational abstraction in [ST 873.

The idea of comparing algebras w.r.t. a set of formulae also appeared in

SPECIFICATIONS IN AN ARBITRARY INSTITUTION 193

[Pep 831. The difference is that there only closed formulae were con-
sidered. In ASL [SW 831 there is also a specification-building operation
called abstract which corresponds to the special case of observational
abstraction where observations are required to be equations. We
generalised this operation to the framework of an arbitrary institution in
[ST 841. The approach of the present paper although originally derived
from [ST 841 is technically different (and, we believe, simpler and more
elegant).

The abstract operation may be used to relax the interpretation of a
specification to all models which are behaviourally equivalent to a model of
the specification (this is called behavioural abstraction in ASL
[SW 83]-see that paper for examples).

Suppose that Z is an algebraic signature and IN and OUT are subsets of
the sorts of 2‘. Consider all computations which take input from sorts IN
and give output in sorts OUT; this set of computations corresponds to the
set I TAXIN)I oLlT of C-terms of sorts OUT with variables of sorts IN. Two
algebras are equivalent in our sense with respect to the set
EQ(I TAX,,)1 OUT) of equations between terms of the same sort in
I TAXIN)I OUT if they are behaviourally equivalent; that is they have
matching input/output relations. This covers the notions of behavioural
equivalence with respect to a single set OBS of observable sorts which
appear in the literature. For example, in [Rei 811 and [GM 821 we have
IN = sorts(C), OUT= OBS; in [Sch 82, SW 83, GM 831 IN = GUT=
OBS; and in [GGM 76, BM 81, Kam 831 IN = /z, and OUT = OBS. In the
case where IN = 0 we have no control over the unreachable elements of
observable sorts whatsoever. To express the obserations which are needed
to guarantee the preservation of carriers of observable sorts we need free
variables as in the case where IN = OBS.

The abstract operation usually does not appear explicitly in specification
languages (the only exception we know about is ASL); instead, it is
somehow included in the notion of the implementation of one specification
by another. The inclusion of abstract as an explicit specification-building
operation allows us to use a very simple and elegant definition of
implementation (see Section 8 for a few details). On the other hand,
abstract makes inference more complex because it is not monotone (at the
level of theories) in the sense that things true in SP need not be true in
abstract SP wrt . . . (see Section 6).

A good test for the general definitions in Section 4 is to consider their
instantiation in several different institutions. In the rest of this section we
discuss the result of instantiating in an institution of partial first-order
logic.

Let 2 = (S, Q) be an algebraic signature. A partial Z-algebra is just like

194 SANNELLA AND TARLECKI

a (total) C-algebra except that its operations may be partial. A (weak)
C-homomorphism from a partial C-algebra A to a partial C-algebra B,
h: A + B, is a family of (total) functions {h,},sES where h,: [A(, + IBI,y such
that for anyf:sl, SIZ+S and ~,EJAJ,,, u,~E(A~,,,

fA(al, a,) defined =>fB(h.,l(a,), h,,(a,)) defined and

h.,(f,(a,, d)=fs(h,I(a,), h,,(a,))

([BrW 821 would call this a total C-homomorphism). If moreover h
satisfies the condition

fs(h,y,(a,), h,,(a,)) defined afA(a, ,.,., a,) defined

then h is called a strong Z-homomorphism.
The category of partial C-algebras PAlg(C) has partial Z-algebras as

objects and (weak) C-homomorphisms as morphisms; the composition of
homomorphisms is the composition of their corresponding components as
functions. (This obviously forms a category.)

The definition of the a-reduct functor -Ig: PAlg(C’) + PAlg(C), where u:
C -+ C’ is an algebraic signature morphism, is exactly the same as that in
the total case; see Section 2.

A partial first-order C-sentence is a closed first-order formula built from
C-terms using the logical connectives 1, A , v , and 3, the quantifiers V
and 3, and the atomic formulae D,(t) and t = t’ (strong equality [BrW 821)
for each sort s in L’ and terms t, t’ E I T,(X)\. (i.e., t, t’ are Z-terms of sort s
with variables X).

A partial C-algebra A satisfies an atomic formula D,(t) under a
valuation u: X+ IAJ, written A /= L, D,(t), iff the value of t in A under u is
defined (we omit. the definition of the value of a term in a partial algebra
under a valuation; see [Bur 82, Rei 871 for details). A satisfies an atomic
formula t= t’ (where t, t’ E ITz(X)I, for some sort s in Z) under a (total)
valuation u: X + I Al, written A k I, t = t’, iff

A kt,D,(t) and A kL,D,(t’), or

A k Li D,(t) and A FL, D,(t’) and the values of t and t’ in A under u
are the same.

Satisfaction of (closed) partial first-order Z-sentences is defined as usual,
but note that V and 3 quantify only over defined values.

The institution PFOEQ of partial first-order logic is then defined as
follows:

- SignpFOEQ is AlgSig.

~ For an algebraic signature C, ModpFOEQ(C) is PAlg(Z); for an
algebraic signature morphism (T: C -+ C’, Mod,,,&O) is the a-reduct
functor -1 d : PAlg(C’) + PAlg(C).

SPECIFICATIONS IN AN ARBITRARY INSTITUTION 195

- For an algebraic signature C, Sen,,,,q(C) is the set of partial
first-order C-sentences as defined above; for an algebraic signature
morphism 0: Z + Z’, Sen,,,,Q(o) is the translation of C-sentences to
Z’-sentences, defined in the obvious way.

- For an algebraic signature Z, k Z,PFoEQ is the satisfaction relation
as defined above.

This forms an institution; the satisfaction condition follows from the fact
that FOEQ is an institution and that definedness of terms is preserved
under change of signature. Moreover, SignpFOEQ is finitely cocomplete (as
mentioned in Section 2) and ModpFOEQ translates finite colimits in
SignpFOEQ to limits in Cat.

The result of instantiating the general definitions of Section 4 in PFOEQ
gives a set of operations which in some respects resemble those in the early
version of ASL described in [Wir 821 defined in the context of partial
algebras (call this language “partial ASL,” but note that it is significantly
different from the ASL described in [SW 831). One difference, however, is
that in partial ASL the collection of models of any specification was closed
under renaming of sorts and operations; i.e., if Sig[SP] = C and C g Z’,
then Mod[SP] contains partial C’-algebras as well as partial C-algebras.
This feature could be obtained by changing the definition of ModpFOEQ
and +zZ.PFoEQ but we prefer to omit it.

The earlier comments regarding basic specifications and the union, trans-
late, derive, and iso close operations (and how to define + in terms of u
and translate) in the context of the institution FOEQ apply without change
here.

As expected, minimal SP wrt CJ gives the least-defined and smallest
(w.r.t. a) models of SP. This operation may be used to express the
operation mdef of partial ASL, albeit in a rather unsatisfactory way:

mdef SP d~f (SP u minimal (Sig[SP], 0) wrt lsigcsp,) + Bool,

where D = def {Ds(t)lt~ ITsigcsPjIs, s~sorts(Sig[SP]), and M+D,(t) for
all ME Mod[SP]} and Boo1 is a specification of the booleans including
the axiom true #false.

Abstract works similarly as in FOEQ. The use of abstract for
behavioural abstraction is slightly different though, since the properties to
be preserved must include delinedness of the results of “observable” com-
putations. If Z is an algebraic signature and IN, OUT are subsets of the
sorts of C as before, behavioural equivalence in the context of partial
algebras may be defined as observational equivalence with respect to the
set of formulae EQ(1 T,(X,,)I,,,) u {of(t) 1 t E 1 Tz(XIN)ls for s E OUT}.
Partial ASL includes no operation similar to abstract.

196 SANNELLAANDTARLECKI

It is instructive to note how a small change to the institution PFOEQ
may affect the operations. For example, we can consider an institution
which is exactly the same as PFOEQ except that for any algebraic
signature C, we consider only strong C-homomorphisms between partial
C-algebras. The minimal operation has a completely different meaning in
this institution: minimal SP wrt (T gives the smallest (w.r.t. CJ) models of SP
in each class of equally defined models. The meanings of the other
operations remain unchanged.

6. FR~~FS IN STRUCTURED SPECIFICATIONS

In the framework of an arbitrary institution INS, for any signature C
each class of C-models K determines a theory Th(K) = (‘p E Sen(C) 1 Mk cp
for all ME K}, i.e., the set of all C-sentences which are true in every model
belonging to K (note however that the class of models satisfying Th(K)
may properly include K). So every Z-specification SP determines the set of
its logical consequences, the set Th(SP) = Th(Mod[SP]) of all C-sentences
which hold in all its models. These are exactly the properties of the
specified object expressible in the given institution on which a user is
allowed to rely.

In the above, we said nothing about how to effectively determine if a
property (sentence) follows from a specification. Our basic notion is the
satisfaction relation and model-theoretic (rather than proof-theoretic) con-
sequence. All the same, for practical purposes it is necessary to have some
effective (=computational) way of proving that a sentence is a con-
sequence of a specification, i.e., a proof system.

Notation. SPl==(p means that the sentence cp holds in all models of SP
(cp E Th(SP)). SP 1 cp means that cp is provable from SP in a given proof
system.

Any useful proof system must be sound; that is SP t cp must imply
SPk(p (we must only be able to prove things which are true). Another
important property which a proof system may have is completeness, i.e.,
SPk=(p implies SP t-- cp (we can prove all the true things). Unfortunately,
for every practical specification approach no sound and complete effective
proof system can exist; more precisely, this holds for every specification
approach which is powerful enough to specify the natural numbers-see
[MS 851 for a review of this problem in the context of equational
specifications. So we must be content with ,a proof system which is sound
but not complete. The same situation occurs in program verification; there
is no (Cook-) complete Hoare-like proof system for any programming
language with a sufliciently rich control structure [Cla 791.

SPECIFICATIONS IN AN ARBITRARY INSTITUTION 197

Of course, we cannot expect to be able to construct a satisfactory (i.e.,
“complete enough”) proof system which is entirely independent of the
institution in use. We must assume that we are given some (sound) proof
system for the underlying institution, that is a proof system which allows us
to deduce sentences from sets of sentences (basic specifications). This
amounts to a proof system for any specification language where
specification-building operations are defined at the level of presentations.
However, this does not imply that such a semantics is required for doing
theorem proving. It is possible to extend the proof system for the underly-
ing institution to a proof system for the specification language. What we
must do is to devise an inference rule for every specification-building
operation which allows facts about a compound specification to be
deduced from facts about its components [SB 831 in a way which does not
depend on the particular properties of the underlying institution. This
approach allows us to use the structure of the specification to direct the
search for a proof, which is necessary to control the amount of information
present in large specifications. An additional benefit is that the resulting
proof will reflect the structure of the specification.

Let us consider our specification-building operations one by one.

INFERENCE RULE (union): For any signature Z and fan+ { SP;},,, of
Z-specifications, for any i E I and any C-sentence cp,

FACT. The family of inference rules above is sound; i.e., Th(Ui,, SP,) 2
Uj, I Th(SP,), where the second U denotes the set-theoretic union of sets of
Z-sentences.

ProoJ: It is enough to show that Mod[Ui,, SP,] c Mod[U,,, Th(SP,)],
which follows directly from the definition. m

Moreover, in the case where the specifications {SPi}iE, are basic
specifications (in fact, it is sufficient to require that Mod[Th(SP;)] =
Mod[SP,] for i E I) the inclusion of model classes opposite to the one given
in the proof holds as well, and so Th(U,E,SPi)~Th(Ui,,Th(SP,)). This
shows that the above family of inference rules is, in a sense, complete. This
is the best completeness result we can hope for, since after all an inference
rule cannot “see” those properties of the component specifications which
are not expressible in the underlying institution (and, as mentioned before,
we cannot do the job hidden in the use of Th above which is the respon-
sibility of the proof system for the underlying institution).

198 SANNELLA AND TARLECKI

INFERENCE RULE (translate): For any signature morphism cr: C + C’,
C-specifi:cation SP, and Z-sentence cp,

SP 1 cp = translate SP by g t-- a(q).

FACT. The above inference rule is sound; i.e., Th(translate SP by cr) z
o(Th(SP)).

Proof. It is enough to show that Mod[translate SP by a] E
Mod[o(Th(SP))], which follows directly from the definition of translate
and the satisfaction condition for the underlying institution. 1

Again, in the case where Mod[Th(SP)] = Mod[SP] the inclusion of
model classes opposite to the one given in the proof holds as well, and so
Th(translate SP by G) E Th(a(Th(SP))).

INFERENCE RULE (derive). For any signature morphism C: E+ C’,
Z-specification SP’, and C-sentence cp,

SP’ t-a(q) 3 derive from SP’ by (T k cp.

FACT. The above inference rule is sound; i.e., Th(derive from SP’
by a) 2 a-‘(Th(SP’)).

Proof: It is enough to note that Mod[derive from SP’ by a] E
Mod[o- ‘(Th(SP’))], which follows directly from the definition of derive
and the satisfaction condition. 1

It follows directly from the satisfaction condition and the definition of
derive that for -any C-sentence cp we have a(q) l Th(SP’) iff cp E Th(derive
from SP’ by a); i.e., o-‘(Th(SP’)) = Th(derive from SP’ by a). Incidentally,
this implies that a-‘(Th(SP’)) is closed under consequence. However, even
in the case where Mod[Th(SP)] = Mod[SP], the inclusion of model
classes opposite to the one given in the proof above need not hold.

INFERENCE RULE (minimal). For any signature morphism 0: 2” + Z,
C-specification SP, and C-sentence cp,

SP k cp 3 minimal SP wrt 0 t cp.

The above inference rule is obviously sound. However, it does not reflect
the restriction which the minimal operation imposes. The most typical use
of the minimal operation is to restrict interpretation of a specification SP to
its reachable models (this is exactly the case when Mod[SP] is closed
under submodels). In the standard algebraic framework, this allows us to
use an appropriate form of structural induction as the inference rule

SPECIFICATIONS IN AN ARBITRARY INSTITUTION 199

associated with this specification-building operation. Note however that
structural induction is itself typically not complete (see [MS 851 for
discussion of this problem in the framework of equational logic).

For the iso close operation, note that in general there need not be any
connection between the truth of sentences and the morphism structure of
the categories of models. However, in practically all the institutions we are
dealing with, the truth of sentences is preserved under isomorphism (that
is, isomorphic models are elementarily equivalent). If this is the case, then
for any C-specification SP, Th(SP) =Th(iso close SP), which gives an
obvious (and trivial) inference rule for iso close.

The inference rule for abstract is going to be a bit more complicated,
partly because in contrast to the other operations, abstract (intentionally)
does not preserve the truth of sentences; i.e.,

SPF rp =+ abstract SP wrt . . . via . . . k cp.

In order to give the inference rule, we need the following notation. For any
signature morphism 8: C -+ L’ and set @’ E Sen(2) of open C-formulae, we
define Cl(W) to be the least set of z-sentences closed (insofar as the
institution allows) under conjunction, negation, and equivalence, and
including the sentences V(+, 0) and 3($, f3) for every $ in the least set of
C’-sentences containing @’ and closed under conjunction, negation, and
equivalence (we use universal and existential quantification of open for-
mulae in an arbitrary institution as introduced in Section 3).

INFERENCE RULE (abstract). For any .E-specification SP, signature
morphism 8: C + C’, set @’ c Sen(Z’) of open Z-formulae, and L-sentence cp,

SP/-qandcp~Cl(@‘) * abstract SP wrt @’ via 13 t-- cp.

FACT. The above inference rule is sound; i.e., Th(abstract SP wrt @’
via 0) 2 Th(SP) n Cl(@).

The proof uses the definition of abstract and of the satisfaction of
quantified formulae in an arbitrary institution. For the proof, for a more
detailed discussion of the Cl operation and of the completeness of this
inference rule, and for an example of its use, see [ST 871.

Note that for any sound proof system k-, if SP is a .E-specification and cp
is a z-sentence such that SP k cp then

Mod[SP] = Mod[SPu (2, cp)].

This suggests the possibility of incrementally combining a specification with
its logical consequences as they are discovered. This would be useful from a
practical point of view in order to avoid repeating the same proof twice,
and is reminiscent of the Z specification language [ASM 791 in which

200 SANNELLAANDTARLECKI

specifications can contain theorems in addition to axioms. This also
suggests that it may be interesting to introduce and investigate some notion
of a theory which reflects the structure of the specification from which the
theory is derived (our thanks to Rod Burstall for this observation). In such
a structured theory each sentence (theorem) would be attached to the
smallest subspecitication of which it is a consequence.

7. PARAMETERISED SPECIFICATIONS

Besides providing a certain collection of predefined specification-building
operations, it is desirable to allow a user to define his own specification-
building operations, i.e., to provide a mechanism for constructing
parameterised specgications. There are different approaches to
parameterised specifications; the ones which seem most natural in our
framework are those which treat a parameterised specification as a function
from specifications to specifications as in, e.g., Clear [BG 801, Look
[ETLZ 823, or ASL. A typical parameterised specification is Stack, which
when applied to a specification of the elements which are to be “stacked”
yields a specification of stacks of those elements. As with procedures in
programming languages, a parameterised specification consists of two
parts: a formal parameter providing a “skeleton” which any actual
parameter must match, and a description of how an actual parameter is
manipulated to form the result.

The way to deal with parameterised specifications which is most widely
accepted in the literature on algebraic specifications (e.g., [BG 80, Ehr 791)
is based on the pushout construction in the category of specifications. (We
switch here for a moment to the usual algebraic framework where
specifications are just theories; specification morphisms are signature
morphisms which presere axioms.) In this approach, a parameterised
specification P is a specification morphism P: SP,,, -+ SP,,, from the for-
mal parameter specification to the result specification (usually P is assumed
to be an inclusion). To apply such a parameterised specification to an
actual parameter specification SP,,, we must provide another specification
morphism which “fits” SP,,,-models into SP,,,-models, (T: SP,,, + SP,,,
(recall that then the reduct functor -1 B takes SP,,,-models to SP,,,-models).
The result of applying P to SP,,, using cr is the specification P(SP,,,[a])
which is defined (up to isomorphism) as the pushout object of P and 0,
that is

spa,, p’ fYSP,,,C~l)
t t

sp,ary sp,,,
is a pushout in the category of specifications.

SPECIFICATIONS IN AN ARBITRARY INSTITUTION 201

This may be generalised to the framework of an arbitrary institution
INS. For readers interested in the technical details, here is a sketch of how
this may be done.

Technical digression. First, we must define the category of
specifications. For any Z-specification SP and .C’-specification SP’, a
specification morphism (T: SP + SP’ is a signature morphism c: C-+ C’
such that for any-M’ E Mod[SP’], M’I d E Mod[SP]. This obviously yields
a category of specifications Spec,,, (with identities and composition
defined as in the category of signatures). The category of theories Th,,, as
defined in [GB 84a] is a full subcategory of Spec,,,. Note that the
function Sig: ISpec,,,l -+ ISign,,, 1 extends in a natural way to a functor
Sig.

THEOREM. The finctor Sig: Spec,,, -+ Sign,,, reflects colimits.

Proqf Sketch. Let D be a diagram in Spec,,, with nodes SP, for irz I.
Let C with injections oi: Sig[SP,] + Z be a colimit of D; Sig (in Sign,,,).
Let SP be the Z-specification lJit, translate SP, by CJ;. It is easy to check
that SP with injections gi: SP, + SP for i E I is a colimit of D. 1

Note that the theorem in [GB 84a] that the functor Sig: Th,,s + Sign,,,
reflects colimits follows from the above construction since translate can
be defined at the level of presentations and theories, as mentioned in
Section 4.1.

Now, since we assume that Sign,,, is finitely cocomplete, it follows that
Spec,,, is finitely cocomplete, and hence the pushout used in the above
construction always exists.

Incidentally, it is worth noting that the function Mod: ISpec,,,l -+ ICat
(mapping any C-specification SP to the full subcategory of the category of
C-modeis with objects Mod[SP]) may also be extended in a natural way
to a (contravariant) functor Mod: Spec,,, +CatoP. It follows from the
above construction of colimits in Spec,,, that Mod is finitely cocontinuous,
i.e., maps initial objects and pushouts in Spec,,, to terminal objects and
pullbacks, respectively, in Cat (the proof uses the satisfaction condition
and the assumption that the model functor Mod,,,: Sign,,, + CaP of the
underlying institution is finitely cocontinuous). This generalises the
condition (mentioned in Section 2) imposed on the logical framework in
[EWT 831. (End of technical digression)

The proof in the above technical digression shows that the result of
applying P to SP,,, using the fitting morphism o (in the pushout approach)
is easily expressible using our specification-building operations as

(translate SP,,, by P’) u (translate SP,,, by u’),

where P’ and IJ’ are as above.

202 SANNELLA AND TARLECKI

We would like to adopt a more elementary view of parameterised
specifications, closer to parameterisation mechanisms in programming
languages. Our treatment is based on the mechanism of macro-expansion
(B-conversion in the /l-calculus). A similar but again more complicated
approach was pursued in ASL [SW 831 (for other versions of this
approach see [Wir 82, 831). Semantically, any parameterised specification
can be viewed as a function taking any specification over the given
parameter signature Zpar to a specification over the result signature Z,,,.

Formally, a parameterised specification is just a I-expression
1X: Spar. SP,,, where X is an identifier, Cpar is the parameter signature, and
SP,,, is a Z,,,-specification built using specification-building operations
which may involve X as a variable denoting a Z,,,-specification. For any
Z:,,,-specification SP, (XC: C,,,.SP,,,)(SP) is a specification where

SigC(AX: ~,,,.SP,,,)W)I =C,,,
Mod[(IX: Z,,,.SP,,,)(SP)] = Mod[SP,,,[SP/X]]

(we adopt the usual l-calculus convention that E[u/x] denotes the result of
substituting v for x in E). Another way of handling the semantics of
parameterised specifications is to explicitly regard a parameterised
specification 1X: Zpar. SP,,, as denoting a function [lx: C,,,.SP,,J from
classes of Zpar- models to classes of C,,,-models defined in the obvious way.
Then Mod[(Z C,,,.Z,,,)(SP)] = [AX: C,,,.C,J(Mod[SP]). It is easy to
check that the function 11.X: C,,,.SP,,J is monotone w.r.t. inclusion of
classes of models (since all the specification-building operations we provide
are).

Note that we.require an exact match between the parameter signature
Spar and the signature of the actual parameter specification SP. This means
that any fitting which is necessary must be done explicitly before
application. However, we require only that the signature of SP fits Spar
as in [Sch 821; in contrast to the pushout-based approach there is no
restriction on the class of models of SP, since the result of application is
well-defined for any C,,,-specification.

ASL permits specifications to be defined recursively. We can do the same
here. Whenever we have a parameterised specification AX: C.SP,,, with the
same parameter and result signature 2, its denotation [AX: .Z.SPJ is a
monotone function from classes of C-models to classes of C-models. This
function always has a greatest (w.r.t. inclusion of classes of models) fixed
point. We can thus introduce a specification-building operation fix as
follows: fix AX: Z.SP,,, is a Zspecification with the greatest fixed point of
[DC: Z.SP,,J as its class of models. Some examples of the use of this
mechanism are given in [SW 83, Wir 831.

In the above we described how to handle parameterised specifications

SPECIFICATIONS IN AN ARBITRARY INSTITUTION 203

having a single parameter. In order to handle multiple parameters we
can either combine them into a single big parameter (this is the way the
semantics of Clear works) or slightly extend our treatment of param-
eterised specifications to permit parameterised specifications which
yield parameterised specifications as a result (that is, to allow SP,,, to
itself be a parameterised specification). Then the multiple parameters
can be handled by “currying”: instead of I1X: Cl, Y: C2.SP,,, we write
AX: Cl. (AY: C2.SP,,,). We can pursue the latter solution even further and
permit an arbitrary hierarchy of higher-order parameterised specifications
by allowing both the arguments and the results of parameterised
specifications to be parameterised specifications of an arbitrary complexity.

Note that in the above we have viewed a parameterised specification as a
specification-building operation and so we have applied the function
[[1X: C,,,.SP,,,J to (the class of models of) the actual parameter
specification “as a whole.” An alternative is to apply it “pointwise” to each
of the models of the actual parameter and then form the union of the
resulting model classes. In general this gives a different result,

[r~X:C,,,.SP,,,D(ModCSPI)~ u II~X:~:,,,.SP,,,II((M)),
MEMod[SP]

where the inclusion may be proper, for example, if SP,,, contains two
occurrences of X. The right-hand side of this inclusion suggests another
possible way to define the semantics of parameterised specifications which
may even be more appropriate in a context where we are interested in
building models rather than specifications.

8. CONCLUDING REMARKS

The work. presented in this paper is aimed toward application in the
systematic development of programs from specifications. We have not yet
discussed the development process itself. The programming discipline of
stepwise refinement suggests that a program be evolved by working
gradually via a series of successively lower-level refinements. of the
specification toward a specification which is so low level that it can be
regarded as a program. For example, the specification

reverse(ni1) = nil
reverse(cons(a, I)) = append(reverse(l),cons(a,nil))

is an executable program in Standard ML [Mil84]. The stepwise
refinement approach guarantees the correctness of the resulting program,
provided that each refinement step can be proved correct. A formalisation

643’76 Z~LX

204 SANNELLA AND TARLECKI

of this approach requires a precise definition of the concept of refinement,
i.e., of the implementation of one specification by another.

In programming practice, proceeding from a specification to a program
means making a series of design decisions. These will include decisions con-
cerning the concrete representation of abstractly defined data types,
decisions about how to compute abstractly specified functions (choice of
algorithm), and decisions which select between the various possibilities
which the high-level specification leaves open. The following very simple
formal notion of implementation (independent from the particular
institution in use) captures this idea: a specification SP is implemented by
another specification SP’, written SP-+ SP’, if SP’ incorporates more
design decisions than SP; i.e., any model of SP’ is a model of SP (SP and
SP’ are required to have the same signature). We can adopt this simple
notion if we have an operation like observational abstraction available (see
[SW 83, ST 871 for more discussion on this point).

This notion of implementation can be extended to give a notion of the
implementation of parameterised specifications: P is implemented by P’,
written P -+ P’, if P and P’ have the same parameter signature C and for
all Z-specifications SP, P(SP) --~+ P’(SP).

An important issue for any notion of implementation is whether
implementations can be composed vertically and horizontally [GB SO].
Implementations can be vertically composed if the implementation relation
is transitive (SP-+ SP’ and SP’ --+ SP” implies SP -+ SP”) and they can be
horizontally composed if the specification-building operations preserve
implementations (P -N, P’ and SP --+ SP’ implies P(SP) -+ P’(SP’)). The
above notion of implementation has both these properties, since all our
specification-building operations are monotonic (with respect to inclusion
of model classes). These two properties allow large structured specifications
to be refined in a gradual and modular fashion. All of the individual small
specifications which make up a large specification can be separately refined
in several stages to give a collection of lower-level specifications (this
should be relatively easy because of their small size). When the low-level
specifications are put back together, the result is guaranteed to be an
implementation of the original specification. Note that other more
complicated notions of impl,ementation ([EKMP 821, just to take one
example) do not compose vertically or horizontally in general.

We have not studied in detail the interactions between the specification-
building operations we have defined. It is obvious, however, that they
satisfy some non-trivial laws. For example, it is possible to prove identities
such as

translate (abstract SP wrt @’ via 0) by CJ

= abstract (translate SP by 0) wrt a’(@‘) via O’,

SPECIFICATIONS IN AN ARBITRARY INSTITUTION 205

where 0’: Z + ,X1 ’ and 6’: Zl + Cl’ are the pushout in Sign of C: C -+ Cl
and 9: C + C’ (as in Section 3). A “library” of laws of this kind could be
used as a basis for program development. For a more detailed analysis and
examples of other laws which hold between our specification-building
operations in the standard algebraic framework, see [SW 831.

In this paper we defined and analysed a set of primitive and general
specification-building operations which when instantiated in any institution
provide a powerful but low-level tool for specification. We tested the
institution-based general definitions of these operations by examining the
result of instantiating them in two different ways: in an institution of total
first-order equational logic and in an institution of partial first-order logic
(Section 5). When we originally formulated the definitions we also con-
sidered the result of instantiating them in two other institutions, an error
institution based on [GDLE 821 and an institution of continuous algebras
based on [ANR 851, cf. [TW 863.

The question of whether the definitions we have given are really general
naturally arises; maybe there is some institution which we have not con-

sidered in which the operations we have defined work in an unexpected
way. Indeed, whenever one generalises on the basis of a small collection of
examples one must choose between all the generalisations which are dif-
ferent in general but which coincide in the particular examples one has at
hand. For, example, in the definition of the minimal operation, to represent
the concrete notion of injective homomorphisms we used just
monomorphisms rather than, say, equalisers or extremal monomorphisms
(or more generally we could parameterise our definition by an image fac-
torisation system as in [Tar 851). All of these possibilities work equally
well in each of our example institutions. We can try to test our
generalisations by comparing them with other available general definitions.
So for example we can show (see [Tar 851) that-under certain not very
restrictive conditionsPminimal corresponds to “generated” as defined in
[GB 84a] (note however that the definition of [GB 84a] works only in
liberal institutions, and this is a strong restriction).

Another natural question concerns our decision to allow the specification
of collections of models which are not closed under isomorphism and our
careful treatment of models containing unreachable elements. We chose this
course because we cannot see any really compelling reason, either
pragmatic or technical, for assuming that all useful collections of models
are closed under isomorphism or that only reachable models are worth
considering. On the other hand, we also know of no compelling reason
why these assumptions (especially the former) are unreasonable. By leaving
the choice to the specifier (or to the designer of a high-level specification
language which builds upon our kernel operations) we provide the freedom
to explore all possibilities without unnecessary restrictions.

206 SANNELLA AND TARLECKI

Although the reader might have the impression that we have been
carried away in our pursuit of generality, we tried to resist the urge to,
throw in unnecessary generalisations. So, for example, it is clear that iso
close can be generalised to give an operation which can close under dif-
ferent classes of morphisms, and not just under isomorphism. This
generalisation might even be useful; note that closure under (sources of)
monomorphisms gives closure under subalgebras, and closure under
(targets of) epimorphisms gives closure under quotients. We do not claim
to offer every possible operation on collections of models, only a few
interesting ones which we know are useful. This is also part of our
justification for omitting an operation which restricts to the initial or final
elements in a collection of models.

The theme which underlies all of the work presented in this paper is one
of generality. Striving always to work at the most general level possible
results in reusable theories and tools. We argued that it is best to avoid
choosing any particular logical system on which to base a specification
approach. Instead we parameterised our work by an arbitrary institution.
We hope that we have convinced the reader that this is an appropriate
level of generality on which to introduce and analyse concepts like
specification and implementation, and tools like specification-building and
theorem-proving formalisms.

ACKNOWLEDGMENTS

Our thanks to Rod Burstall for his support, encouragement, and some helpful comments, to
Martin Wirsing for his work on ASL, to Gordon Plotkin for help with logic, to Jose
Meseguer for suggesting some improvements to the presentation, and to Joseph Goguen for
useful discussions. This research was supported by the Science and Engineering Research
Council.

RECEIVED April 1 I. 1985; ACCEPTED August 4, 1986

REFERENCES

[ASM 791

[ANR 851

[AM 751

[Bar 743

[Bau 811

ABRIAL, J. R.. SC-HUMAN, S. A., AND MEYER, B. (1979) “Specification
language Z.” Massachusetts Computer Associates Inc., Boston.
ADAMEK, J., NELSON. E., AND REITERMAN, J. (1985), A Birkhoff variety
theorem for continuous algebras, Algebra UniversaLis 20, 328-350.
ARBIB, M. A., AND MANES, E. G. (1975), “Arrows, Structures and Functors:
The Categorical Imperative,” Academic Press, New York.
BARWISE, K. J. (1974). Axioms for abstract model theory, Ann. of Marh.
Logic 7, 221-265.
BAUER, F. L., ~1 a/. (the CIP Language Group) (1981), “Report on a Wide

[BR 831

[BBTW Sl]

[BM 811

[SW 851

[BrW 821

[Bur 821

[BG 801

[BG Sl]

[Cla 793

[Ehr 793

[EFH 831

[EKMP 821

[EKTWW 801

ETLZ 821

EWT 831

SPECIFICATIONS IN AN ARBITRARY INSTITUTION 207

Spectrum Language for Program Specification and Development,” Report
TUM-18104. Technische Univ. Miinchen.
BENECKE, K.. AND REICHEL. H. (1983), Equational partiality, Algebra
Universalis 16, 219-232.
BERGSTRA, J. A., BROY, M., TUCKER, J. V.. AND WIRSING. M. (1981). On
the power of algebraic specifications, in “Proc. 10th Intl. Symp. on
Mathematical Foundations of Computer Science. Strbske Pleso,
Czechoslovakia,” pp. 193-204, Lecture Notes in Computer Science Vol. 118,
Springer-Verlag, Berlin/New York.

BERGSTRA, J. A., AND MEYER, J. J. (1981), I/O computable data structures,
SIGPLAN Notices 16(4), 27-32.
BLOOM, S. L.. ANU WAGNER. E. G. (1985), Many-soried theories and their
algebras with some applications to data types, in “Algebraic Methods in
Semantics” (M. Nivat and J. C. Reynolds, Eds.), Cambridge Univ. Press.
BROY. M.. AND WIRSING, M. (1982). Partial abstract types, Acta Ir~form. 18,
41-64.
BURMEISTER, P. (1982), Partial algebras-Survey of a unifying approach
towards a two-valued model theory for partial algebras, Algebra Unicersalk
15, 306-358.
BURSTALL, R. M.. AND GOGUEN, J. A. (1980), The semantics of Clear, a
specification language, in “Proc. of Advanced Course on Abstract Software
Specilications, Copenhagen,” pp. 292-332, Lecture Notes in Computer
Science, Vol. 86, Springer-Verlag, Berlin/New York.
BURSTALL, R. M.. ANU GOGUEN. I. A. (1981), An informal introduction to
specifications using Clear, in “The Correctness Problem in Computer
Science” (R. S. Boyer and I. S. Moore. Eds.). pp. 185-213, Academic Press,
New York.
CLARKE, E. M. (1979), Programming language constructs for which it is
impossible to obtain good Hoare axiom systems, J. Assoc. Compuc. Mach.
26(l), 129-147.
EHRICH, H.-D. (1979). “On the Theory of Specification, Implementation,
and Parametrization of Abstract Data Types,” Report 82, Univ. of
Dortmund; also in J. Assoc. Comput. Mach. 29(1). 206-227 (1982).
EHRIG, H., FEY, W., AND HANSEN, H. (1983), “ACT ONE: An Algebraic
Specification Language with Two Levels of Semantics, Report No. X3-03,
Institut fiir Software und Theoretische Informatik, Technische Univ. Berlin.
EHRIG. H.. KREOWSKI. H.-J., MAHR, B., AND PADAWITZ, P. (19821,
Algebraic implementation of abstract data types, Theoret. Compur. Sci. 20,
209-263.
EHRIG. H., KREOWSKI, H.-J., THATCHER, J. W., WAGNER, E. G.. AND
WRIGHT, J. B. (1980), Parameterized data types in algebraic specification
languages (short version), in “Proc. 7th Intl. Colloq. on Automata,
Languages and Programming, Noordwijkerhout, Netherlands,” Lecture
Notes in Computer Science Vol. 85, Springer-Verlag, Berlin/New York,
EHRIG, H., THATCHER, J. W., LUCAS, P., AND ZILLES, S. N. (1982),
“Denotational and Initial Algebra Semantics of the Algebraic Specification
Language Look,” Draft report, IBM research.
EHRIG. H., WAGNER, E. G.. AND THATCHER, J. W. (1983), Algebraic
specifications with generating constraints, in “Proc. 10th ICALP, Bar-
celona,” pp. 188-202, Lecture Notes in Computer Science Vol. 154, Springer-
Verlag, Berlin/New York.

208

[Gau 841

[GGM 761

[GDLE 821

lGog 771

CGog 781

[GB 84a]

[GB 84b]

[GM 821

[GM 831

[GTW 761

[GH 831

[Kam 831

[Lis 811

[LB 771

[MacL 711

[MS 851

[MM 84 J

SANNELLA AND TARLECKI

GAUDEL, M. C. (1984), “An introduction to PLUSS.” Draft report. Univer-
sit& de Paris-Sud, Orsay.
GIARRATANA. V.. GIMONA. F., AND MONTANARI, U. (1976). Observability
concepts in abstract data type specification, in “Proc. 5th Intl. Symp. on
Mathematical Foundations of Computer Science, Gdansk,” Lecture Notes in
Computer Science Vol. 45, Springer-Verlag, Berlin/New York.
GOGOLLA, M.. DROSTEN, K., LIPECK, U., AND EHRICH. H.-D. (1982),
“Algebraic and Operational Semantics of Specifications Allowing Expec-
tations and Errors.” Fb. 140, Abteilung Informatik. Univ. of Dortmund; also
in (1984). Theoret. Comput. Sci. 34, 289-313.
GOGUEN, J. A. (1977), Abstract errors for abstract data types, in “Proc. IFIP
Working Conf. on the Formal Description of Programming Concepts, New
Brunswick, NJ.”
GOGUEN, J. A. (1978). “Order Sorted Algebras: Expectations and Error
Sorts, Coercions and Overloaded Operators,” Semantics and Theory of
Computation Report No. 14, Department of Computer Science, UCLA.
GOGUEN. J. A., AND BURSTALL, R. M. (1984), Introducing institutions, in
“Proc. Logics of Programming Workshop” (E. Clarke and D. Kozen, Eds.).
Carnegie-Mellon University, pp. 221-256, Lecture Notes in Computer
Science, Vol. 164, Springer-Verlag, Berlin/New York.
GOGUEN, J. A.. AND BURSTALL, R. M. (1984), Some fundamental algebraic
tools for the semantics of computation. Part 1. Comma categories, colimits,
signatures and theories, Theoret. Comput. Sci. 31, 175-210.
GOGUEN, J. A., AND MESEGUER. J. (1982), Universal realization, persistent
interconnection and implementation of abstract modules, in Proc. 9th
ICALP, Aarhus, Denmark,” pp. 265-281, Lecture Notes in Computer
Science Vol. 140, Springer-Verlag, Berlin/New York.
GOGUEN. J. A., AND MESEGUER, J. (1983). “An Initiality Primer,” Draft
report, SRI International.
GOGUEN. J. A., THATCHER, J. W.. AND WAGNER, E. G. (1976), “An initial
Algebra Approach to the Spccilication, Correctness, and Implementation of
Abstract Data Types,” IBM research report RC 6487; also in (1978),
“Current Trends in Programming Methodology. Vol. 4. Data Structuring”
(R. T. Yeh. Ed.), pp. g&149, Prentice-Hall, Englewood Cliffs, NJ.
GUTTAG, J. V., AND HORNING, J. J. (1983), “Preliminary Report on the
Larch Shared Language,” Report CSL-83-6. Computer Science Laboratory,
Xerox PARC.
KAMIN, S. (1983), Final data types and their specilication, TOPUS 5(1),
97-121.
LISKOV, B., ATKINSON, R., BLOOM, T.. Moss, E., SCHAFFERT, J. C.,
SCHEIFLER, R.. AND SNYDER, A. (1981), “CLU Reference Manual,” Lecture
Notes in Computer Science Vol. 144, Springer-Verlag, Berlin/New York.
LISKOV, B. H., AND BERZINS, V. (1977). “An Appraisal of Program
Specifications,” Computation structures group memo 141-1, Laboratory for
Computer Science, MIT.
MACLANE, S. (1971). “Categories for the Working Mathematician.”
Springer-Verlag, Berlin/New York.
MACQUEEN, D. B., AND SANNELLA, D. T. (1985), Completeness of proof
systems for equational specifications, IEEE Trans. Sofrware Engrg. SE-11,
454461.
MAHR, B.. AND MAKOWSKY. J. A. (1984). Characterizing specification
languages which admit initial semantics, Theorel. Comput. Sci. 31, 49-60.

SPECIFICATIONS IN AN ARBITRARY INSTITUTION 209

[Mak 851

[Mil84]

[Moore 561

[Pep 831

[Rei 811

[Rei 871

[Sad 841

[SB 831

[ST 841

[ST 851

[ST 871

[SW 831

[Sch 821

[Suf 821

[Tar 841

MAKOWSKY. J. A. (1985). Why Horn formulas matter in computer science:
Initial structures and generic examples, in “Proc. 10th Colloq. on Trees in
Algebra and Programming, Joint Conf. on Theory and Practice of Software
Development (TAPSOFT), Berlin,” pp. 374-387, Lecture Notes in Com-
puter Science, Springer-Verlag. Berlin/New York.
MILNER, R. G. (1984), A proposal for Standard ML, in “Proc. 1984 ACM
Symp. on LISP and Functional Programming, Austin, Texas.”
MOORE, E. F. (1956) Gedanken-experiments on sequential machines,
“Automata Studies” (C. E. Shannon and J. McCarthy, Eds.), pp. 1299153,
Princeton Univ. Press, Princeton.
PEPPER, P. (1983), On the correctness of type transformations, talk at 2nd
Workshop on Theory and Applications of Abstract Data Types, Passau.
REICHEL. H. (1981). Behavioural equivalence-A unifying concept for initial
and final specification methods, in “Proc. 3rd Hungarian Computer Science
Conference, Budapest,” pp. 27-39.
REITHEL, H. (1987). Initial Computability, Algebraic Specifications, and
Partial Algebras, Oxford Univ. Press.
SAIILER, M. (1984), “Mapping out specification,” Position paper,
“Workshop on Formal Aspects of Specilication, Swindon.”
SANNELLA, D. T.. AND BURSTALL. R. M. (1983) Structured theories in LCF,
in “Proc. 8th Colloq. on Trees in Algebra and Programming, L’Aquila,
Italy,” pp. 377-391. Lecture Notes in Computer Science Vol. 159. Springer-
Verlag, Berlin/New York.
SANNELLA, D. T., AND TARLECKI. A. (1984) Building specifications in an
arbitrary institution, in “Proc. Intl. Symposium on Semantics of Data Types,
Sophia-Antipolis,” pp. 337-356, Lecture Notes in Computer Science.
Springer-Verlag. Berlin/New York.
SANIJELLA. D. T., AND TARLECKI. A. (1985). Program specification and
development in Standard ML, in “Proc 12th ACM Symp. on Principles of
Programming Languages, New Orleans,” pp. 67-77.
SANNELLA, D. T., AND TARLECKI, A. (1987). On observational equivalence
and algebraic specification. J. Comput. Sysrrn~ Sri. 34, 15@178; extended
abstract in (1985) “Proc. 10th Colloq. on Trees in Algebra and Program-
ming, Joint Conf. on Theory and Practice of Software Development
(TAPSOFT), Berlin,” pp. 3088322, Lecture Notes in Computer Science
Vol. 185, Springer-Verlag. Berlin/New York.
SANNELLA, D. T., AND WIRSING. M. (1983). “A Kernel Language for
Algebraic Specification and Implementation,” Report CSR-131-83.
Department of Computer Science, Univ. of Edinburgh; extended abstract in

(1983L “Proc. Intl. Conf. on Foundations of Computation, Theory,
Borgholm, Sweden,” pp. 413427. Lecture Notes in Computer Science
Vol. 158, Springer-Verlag, Berlin/New York.
SCHOETT, 0. (1982). “A Theory of Program Modules, Their Specification
and Implementation,” Report CSR-155-83. Department of Computer
Science, Univ. of Edinburgh.
SUFRIN. B. (1982), Formal specification of a display-oriented text editor, Sci.
Comput. Programming 1, 157-202.
TARLECKI. A. (1984). Free constructions in algebraic institutions, in “Proc.
Intl. Symp. on Mathematical Foundations of Computer Science, Prague.”
pp. 526534, Lecture Notes in Computer Science Vol. 176, Springer-Verlag.
Berlin/New York; long version (1983), Report CSR-149-83, Department of
Computer Science. Univ. of Edinburgh.

210

[Tar 851

[Tar 863

[TW 861

[Wand 791

[Wir 821

[Wir 831

[ZLT 821

SANNELLA AND TARLECKI

TARLECKI, A. (1985), On the existence of free models in abstract algebraic
institutions, Theorer. Comput. Sci. 31, 269-304.
TARLECKI. A. (1986), Quasi-varieties in abstract algebraic institutions.
J. Comput. Syst. Sci. 33. 333-360.
TARLECKI, A., AND WIRSING, M. (1986), Continuous abstract data types,
Fund. Inform. 9, 95-126; extended abstract in (1985), Continuous abstract
data types-Basic machinery and results, in “Proc. Intl. Conf. on Fundamen-
tals of Computation Theory, Cottbus, GDR,” pp. 431-441, Lecture Notes in
Computer Science Vol. 199, Springer-Verlag, Berlin/New York.
WAND. M. (1979), Final algebra semantics and data type extensions,
J. Cornput. System Sci. 19, 274.
WIRSING, M. (1982), Structured algebraic specifications, in “Proc. AFCET
Symp. on Mathematics for Computer Science, Paris,” pp. 93-107.
WIRSING, M. (1983), “Structured Algebraic Specifications: A Kernel
Language,” Habilitation thesis, Technische Univ. Miinchen.
ZILLES, S. N., LUCAS, P., AND THATCHER, J. W. (1982), “A Look at
Algebraic Specifications,” IBM research report RJ 3568.

