
Extended ML: Past, present and futureDonald Sannella� Andrzej TarleckiyAbstractAn overview of past, present and future work on the Extended ML formal programdevelopment framework is given, with emphasis on two topics of current active research:the semantics of the Extended ML speci�cation language, and tools to support formalprogram development.1 IntroductionThe ultimate goal of work on program speci�cation is to establish a practical framework for thesystematic production of correct programs from requirements speci�cations via a sequence of veri�ed-correct development steps. Such a framework should be fully formal and based on sound mathematicalfoundations in order to guarantee the correctness of the resulting program with respect to the originalspeci�cation. The program development activity must be supported by computer-based tools whichremove the burden of clerical work from the user and eliminate the possibility of human error.Extended ML is a framework for the formal development of programs in the Standard ML func-tional programming language from high-level speci�cations of their required input/output behaviour.It strongly supports \development in the large", producing modular programs consisting of an inter-connected collection of generic and modular units. The Extended ML framework includes a method-ology for formal program development which establishes a number of ways of proceeding from a givenspeci�cation of a programming task towards a program. Each such step (modular decomposition,etc.) gives rise to one or more proof obligations which must be discharged in order to establish thecorrectness of that step.The Extended ML language is a wide-spectrum language which encompasses both speci�cationsand executable programs in a single uni�ed framework. It is a simple extension of the Standard MLprogramming language in which axioms are permitted in module interfaces and in place of codein module bodies. This allows all stages in the development of a program to be expressed in theExtended ML language, from the initial high-level speci�cation to the �nal program itself and includingintermediate stages in which speci�cation and program are intermingled.Formally developing a program in Extended ML means writing a high-level speci�cation of ageneric Standard ML module and then re�ning this speci�cation top-down by means of a sequence(actually, a tree) of development steps until an executable Standard ML program is obtained. Thedevelopment has a tree-like structure since one of the ways to proceed from a speci�cation is todecompose it into a number of smaller speci�cations which can then be independently re�ned further.In programming terms, this corresponds to implementing a program module by decomposing it intoa number of independent sub-modules. The end-product is an interconnected collection of genericStandard ML modules, each with a complete and accurate speci�cation of its interface with the restof the system. The explicit interfaces enable correct reuse of the individual modules in other systems,and facilitate maintainability by making it possible to localize the e�ect on the system of subsequentchanges in the requirements speci�cation.�LFCS, Department of Computer Science, University of Edinburgh, Edinburgh, Scotland.yInstitute of Computer Science, Polish Academy of Sciences, Warsaw, Poland.1



This paper is intended as a report on the status of work on Extended ML with emphasis on twotopics of current active research: the semantics of the Extended ML language, and tools to supportprogram development. In an attempt to make the paper self-contained, a brief introduction to formalprogram development in Extended ML is included in Section 2. Past work on the theoretical under-pinnings of Extended ML is summarized in Section 3. Current work on the semantics of Extended MLis discussed in Section 4, and plans for tools to support formal program development are outlined inSection 5.2 An introduction to Extended MLThe aim of this section is to brie
y outline the main ideas of Extended ML. Three topics are dis-cussed: the Standard ML functional programming language, which is the target of formal programdevelopment and on which the Extended ML wide-spectrum language is based; the Extended MLwide-spectrum language; and the Extended ML formal program development methodology. This out-line is necessarily brief, and readers with no prior knowledge of Extended ML will probably �nd ithelpful to consult the references given below.2.1 Standard MLStandard ML consists of two sub-languages: the Standard ML \core language" and the Standard ML\module language". The core language provides constructs for programming \in the small" by de-�ning a collection of types and values of those types. The module language provides constructs forprogramming \in the large" by de�ning and combining a number of self-contained program units.These sub-languages can be viewed as more or less independent since there are relatively few pointsof contact between the sub-languages.A complete formal semantics of Standard ML is in [MTH 90]; see [MT 90] for valuable explanatoryprose. The features of the language are introduced at a more tutorial level in [Wik 87] (core languageonly), [MacQ 86a] and [Tof 89] (module language only), [Har 89], and [Rea 89].2.1.1 The Standard ML core languageThe Standard ML core language is a strongly typed functional programming language. It has a 
exibletype system including polymorphic types, disjoint union, product and (higher-order) function types,and user-de�ned abstract and concrete types. Programs written in the core language look very similarto programs in Hope [BMS 80], Miranda [BW 88] or Haskell [HW 89]. The following example of anStandard ML program uses most of the main features of the Standard ML core language:datatype (''a,'b) alist = default of ''a -> 'b| cons of ''a * 'b * (''a,'b) alisttype dictionary = (string,string) alistexception novalueval empty = default(fn a => raise novalue)fun lookup(a,default f) = f a| lookup(a,cons(a1,b,l)) = if a=a1 then b else lookup(a,l)fun isin(a,l) = (lookup(a,l); true) handle novalue => falseexception conflict 2



fun add(a,b,default f) = cons(a,b,default f)| add(a,b,cons(a1,b1,l)) = if a=a1 then raise conflictelse cons(a1,b1,add(a,b,l))fun remove(a,default f) = let fun g a1 = if a=a1then raise novalueelse f a1in default gend| remove(a,cons(a1,b1,l)) = if a=a1 then lelse cons(a1,b1,remove(a,l))Features which are not used include: record types, user-de�ned abstract types (more 
exibly providedby the Standard ML module language), exceptions which pass values, and input/output. Also notused are references and assignment, which are available in Standard ML but which are not taken intoaccount in work on Extended ML.Conceptually, every value in Standard ML is represented as a term consisting of a constructor ap-plied to a number of sub-terms, each of which in turn represents another value. In the above program,default is a unary constructor (of type (''a -> 'b) -> (''a,'b) alist) and cons is a ternaryconstructor (of type ''a * 'b * (''a,'b) alist -> (''a,'b) alist). Constructor functions areuninterpreted; they just construct. There is no need to de�ne a lower-level representation of alistsin terms of lists, arrays, pointers, etc.Functions are de�ned by a sequence of one of more equations, each of which speci�es the value ofthe function over some subset of the set of possible argument values, as above. This subset is describedby a pattern (a term containing constructors and variables only, without repeated variables) on theleft-hand side of the equation. The pattern is thereby used for case selection and variable binding.The patterns on the left-hand side of equations should normally be disjoint and should exhaust thepossibilities given in the de�nition of the argument type(s).Certain types are designated by ML as equality types. See [MTH 90] for the exact de�nition;roughly, only types whose de�nitions involve abstract types or function types are excluded. Thefunction = : ''a * ''a -> bool is the built-in equality function; the type variable ''a can only beinstantiated to equality types (in contrast to 'a which can be instantiated to any type) which preventsvalues of non-equality types from being tested for equality.2.1.2 The Standard ML module languageThe Standard ML module language provides mechanisms which allow large Standard ML programs tobe structured into self-contained program units with explicitly-speci�ed interfaces. Under this scheme,interfaces (called signatures) and their implementations (called structures) are de�ned separately.Every structure has a signature which gives the names of the types and values de�ned in the structure.Structures may be built on top of existing structures, so each one is actually a hierarchy of structures,and this is re
ected in its signature. Functors are \parameterized" structures; the application of afunctor to a structure yields a structure. A functor has an input signature describing structures towhich it may be applied, and an output signature describing the structure which results from such anapplication. It is possible, and sometimes necessary to allow interaction between di�erent parts of aprogram, to declare that certain substructures (or just certain types) in the hierarchy are identical orshared.The following is a simple example of a modular Standard ML program for sorting a list of valuesof arbitrary type, provided an order relation on that type is supplied.3



signature PO =sigtype elemval le : elem * elem -> boolendsignature SORT =sigstructure Elements : POval sort : Elements.elem list -> Elements.elem listendfunctor Sort(X : PO) : SORT =structstructure Elements = Xfun insert(a,[]) = [a]| insert(a,b::l) = if Elements.le(a,b) then a::b::lelse b::insert(a,l)fun sort [] = []| sort(a::l) = insert(a,sort l)endstructure IntPO : PO =structtype elem = intval le = op <=endstructure SortInt = Sort(IntPO)This de�nes a functor called Sort which may be applied to any structure matching the signature PO(such as IntPO), whereupon it will yield a structure (above, SortInt) matching the signature SORT.In order for the de�nition of Sort to be correctly typed, the body of Sort must de�ne a structurecontaining a substructure called Elements which matches PO, and a function called sort with thetype given. The function SortInt.sort may be applied to the list [11,5,2,8] to yield [2,5,8,11].Since the function insert is not mentioned in the output signature SORT, it is considered local to thebody of Sort and does not appear in the structure SortInt. The body of Sort makes no referenceto other functors but of course it is possible to de�ne new functors by building on top of existingfunctors.Signatures serve both to impose constraints on the bodies of structures/functors and to restrictthe information which is made available externally about the types and functions which are de�nedin structure/functor bodies. Only the information which is explicitly recorded in the signature(s) ofa structure/functor is available externally.1 This is vital to allow parts of a large software system tobe developed and maintained independently.Multi-argument functors are treated as single-argument functors in which the input signaturerequires a structure with multiple substructures. The functor below takes two structures matching POand produces another structure matching PO:1This is not quite true in Standard ML; see [ST 89] for more discussion on this point.4



functor Lexicographic(structure X : POstructure Y : PO) : PO =structtype elem = X.elem * Y.elemfun le((x,y),(x',y')) = if X.le(x,x')then if X.le(x',x) then Y.le(y,y') else trueelse falseendstructure BoolPO : PO =structtype elem = boolfun le(x,y) = (not x) orelse yendstructure Lex = Lexicographic(structure X = IntPOstructure Y = BoolPO)The function Lex.le is an order relation on hint� booli-pairs, where Lex.le((2,true),(2,false))is false.When multi-argument functors are de�ned, it is sometimes necessary to declare that certain com-ponents of the argument structures are common to both structures. This is done using a sharingconstraint. For example, changing the heading of Lexicographic to:functor Lexicographic(structure X : POstructure Y : POsharing type X.elem = Y.elem) : PO = ...would restrict application to structures having the indicated types in common. In some cases (notthis one) such a restriction is necessary to ensure that the functor body is well-typed for all admissibleparameter structures.It is possible to use sharing constraints to make explicit the fact that parts of the argumentstructure of a functor are inherited by the result structure. This information can be added to theheading of the Sort functor above as follows:functor Sort(X : PO) : sig include SORTsharing Elements = Xend = ...The declaration include SORT has the same e�ect as repeating the declarations in the signature SORTabove. The sharing constraint sharing Elements = X asserts that the substructure Elements of theresult structure is identical to the argument structure.2.2 The Extended ML wide-spectrum languageExtended ML is a vehicle for the systematic formal development of programs from speci�cations bymeans of individually-veri�ed steps. Extended ML is called a wide-spectrum language since it allowsall stages in the formal development process to be expressed in a single uni�ed framework, from theinitial high-level speci�cation to the �nal program itself and including intermediate stages in whichspeci�cation and program are intermingled. The eventual product of the formal development processis a modular program in Standard ML, and thus Standard ML is the executable sub-language ofExtended ML. Earlier stages in the development of such a program are incomplete modular programsin which some parts are only speci�ed by means of axioms rather than de�ned in an executablefashion by means of ML code. The use of axioms allows more information to be provided in signatures5



(properties may be speci�ed which are required to hold of any structure matching that signature),and less information to be provided in structure/functor bodies (since axioms are permitted in placeof ML code).In the Standard ML module language, a signature acts as an interface to a program unit (structureor functor) which serves to mediate its interactions with the outside world. The information in asignature is su�cient for the use of Standard ML as a programming language, but when viewed as aninterface speci�cation a signature does not generally provide enough information to permit provingprogram correctness (for example). To make signatures more useful as interfaces of structures inprogram speci�cation and development, we allow them to include axioms which put constraints onthe permitted behaviour of the components of the structure. An example of such a signature is thefollowing more informative version of the signature PO from the last section:signature PO =sig type elemval le : elem * elem -> boolaxiom forall x => le(x,x)axiom forall x,y => (le(x,y) andalso le(y,x) implies x=y)axiom forall x,y,z => (le(x,y) andalso le(y,z) implies le(x,z))endThis includes the previously-unexpressible precondition which IntPO must satisfy if Sort(IntPO) isto behave as expected, namely that IntPO.le is a partial order on IntPO.elem.Formal speci�cations can be viewed as abstract programs. Some speci�cations are so completelyabstract that they give no hint of an algorithm, while other speci�cations are so concrete that theyamount to programs (e.g. Standard ML function de�nitions, which are just equations of a certainspecial form which ensures that they are executable). In order to allow di�erent stages in the evolutionof a program to be expressed in a single framework, we allow structures to contain a mixture of ML codeand non-executable axioms. Functors can include axioms as well since they are simply parameterizedstructures. For example, a stage in the development of the functor Sort in the last section might bethe following:functor Sort(X : PO) : sig include SORTsharing Elements = Xend =structstructure Elements : PO = Xfun member(a:Elements.elem,l:Elements.elem list) = ? : boolaxiom forall a => member(a,[]) = falseaxiom forall a,l => member(a,a::l) = trueaxiom forall a,b,l => (a<>b implies member(a,b::l) = member(a,l))fun isordered(l:Elements.elem list) = ? : boolaxiom forall l =>isordered l = forall a,b,l1,l2,l3 =>(l = l1@[a]@l2@[b]@l3 implies Elements.le(a,b))fun insert(a:Elements.elem,l:Elements.elem list) = ? : Elements.elem listaxiom forall a,l => member(a,insert(a,l))axiom forall a,l =>isordered limplies(exists l1,l2 =>l1 @ l2 = landalso insert(a,l) = l1@[a]@l26



andalso forall a1 =>(member(a1,l1) implies Elements.le(a1,a))andalso forall a2 =>(member(a2,l2) implies Elements.le(a,a2)))fun sort [] = []| sort(a::l) = insert(a,sort l)endIn this functor declaration, the function sort has been de�ned in an executable fashion in termsof insert which is so far only constrained by axioms. As in Standard ML, the functions member,isordered and insert are not visible outside the functor body since they do not appear in theoutput signature of Sort. The functions member and isordered are only used to specify insert. Atsome stage in the development of executable code for insert, member and isorderedwill no longer beused (presumably). At this point, their speci�cations can be omitted from the body of Sort withoutthe need to develop executable code for them (although �rst it must be shown that their speci�cationsare consistent with the code developed for insert and sort, in order to ensure the correctness of thisstep).Functions and constants which are not de�ned in an executable fashion are declared using thespecial place-holder expression ? as in the example above. This is necessary in order to declare thetype of the function or constant which would normally be inferred from an executable de�nition bythe ML system. The same construct can be used to declare a type when its representation in termsof other types has not yet been selected. It is also useful at the earliest stage in the development of afunctor or structure when no body has been supplied:functor Sort(X : PO) : sig include SORTsharing Elements = Xend = ?The Extended ML language is the result obtained by extending Standard ML as indicated above.That is, axioms are allowed in signatures and in structures, and the place-holder ? is allowed in placeof the expression (type expression, value expression, or structure expression) on the right-hand sideof declarations. A more complete introduction to the Extended ML language appears in [San 91]; atutorial introduction is [San 87]. More discussion of the motivation behind Extended ML may be foundin [ST 85]. [SdST 90] de�nes the concrete syntax and some aspects of the semantics of Extended ML.A di�erence with respect to these earlier papers is that following recent work on the semantics ofExtended ML (see Section 4) we have dropped the restriction to a simple subset of Standard ML; wenow aim to cover all of Standard ML except for references and assignment.The examples above use the notation of �rst-order equational logic to write axioms (where equalitymay be used in axioms on all types, not just on equality types as in Standard ML executable code).This choice is to a large extent arbitrary since the formal underpinnings of Extended ML are mostlyindependent of the choice of logic. It is natural to choose a logic which has the Standard ML corelanguage as a subset; this way, the development process comes to an end when all the axioms instructure and functor bodies are expressed in this executable subset.The role of signatures as interfaces suggests that they should be regarded as descriptions of the ex-ternally observable behaviour of structures. This amounts to not distinguishing between behaviourallyequivalent implementations in which all computations produce the same observable results. Validityof implementations is de�ned in Extended ML in terms of satisfaction of axioms up to behaviouralequivalence with respect to an appropriate set of observable types. The details of this may be foundin [ST 89]. This is re
ected in the proof obligations which are incurred in the course of Extended MLprogram development (see the next section) where behavioural consequence (j=OBS ) is used in place ofordinary consequence (j=). 7



2.3 The Extended ML development methodologyThe starting point of formal development is a high-level requirements speci�cation of a softwaresystem. The concept of a Standard ML functor corresponds to the informal notion of a self-containedsoftware system. A functor may be built by composing other functors and so the scale of such asystem may vary from small (like the examples above) to very large. In Extended ML, a speci�cationof a software system is a functor with speci�ed interfaces. The initial high-level speci�cation will bea functor of the form:functor F(X : SIG) : SIG' = ?where SIG and SIG' are Extended ML signatures containing axioms. At later stages of development,a functor speci�cation may include a body which is not yet composed of executable code. This is stilla speci�cation of a software system, but one in which some details of the intended implementationhave been supplied.Any non-executable Extended ML functor speci�cation, i.e. a functor speci�cation having a bodyconsisting only of the placeholder ? or having a non-trivial body which is however not yet composedentirely of executable code, is regarded as a speci�cation of a programming task. The task which isspeci�ed is (in the case of ?) to �ll in a body which satis�es the functor interfaces, or (in the case ofa body containing axioms) to �ll in a body which satis�es the axioms in the current body.Given a speci�cation of a programming task, there are three ways to proceed towards a programwhich satis�es the speci�cation:Decomposition step: Decompose the functor into a composition of \smaller" functors, which arethen regarded as separate programming tasks in their own right.Coding step: Provide a functor body in the form of an abstract program containing type and valuedeclarations and a mixture of axioms and code to de�ne them.Re�nement step: Further re�ne an abstract program by providing a more concrete (but possiblystill non-executable) version which �lls in some of the decisions left open by the more abstractversion.Decomposition steps may be seen as programming (or program design) \in the large", while codingand re�nement steps are programming \in the small".Each of the three kinds of step gives rise to one or more proof obligations which can be generatedmechanically from the \before" and \after" versions of the functor. The details of each kind of stepare given below. Each proof obligation is a condition of the form:SP 1 [ ��� [ SPn j=OBS SPwhere SP1; : : : ;SPn;SP are Extended ML signatures or structure expressions and OBS is a set ofobservable types (a subset of the types of SP). Discharging such a proof obligation requires showingthat the axioms and de�nitions in SP logically follow from the axioms and de�nitions in SP1; : : : ;SPn,up to behavioural equivalence with respect to OBS. Since behavioural consequence is a weakening ofordinary logical consequence, it is su�cient to show that SP1 [ ��� [ SPn j= SP which is generallyeasier to show (if it holds). A step is correct if all the proof obligations it incurs do in fact hold.An executable Standard ML program which is obtained via a sequence of correct steps from anExtended ML speci�cation of requirements is guaranteed to satisfy that speci�cation.Decomposition step Given an Extended ML functor of the form:functor F(X0 : SIG0) : SIG0' = ?we may proceed by introducing a number of additional functors:8



functor G1(X1 : SIG1) : SIG1' = ?...functor Gn(Xn : SIGn) : SIGn' = ?and replacing the de�nition of F with the de�nition:functor F(X0 : SIG0) : SIG0' = strexpwhere strexp is a structure expression which involves the functors G1; : : : ; Gn (and possibly other alreadycompleted functors and structures). The developments of G1; : : : ; Gn may then proceed separately.The new de�nition of F is required to be a well-formed Extended ML functor de�nition. A numberof proof obligations are incurred, one for each point in the expression strexp where two modules comeinto contact. This includes the point where the result delivered by strexp is returned as the result ofF. In particular:1(a). If the result of an application of Gj is used in a context which demands a structure of signatureSIG, then it is necessary to prove that SIGj' j=OBS SIG, where OBS is an appropriate subsetof the types of SIG.1(b). If the result of an application of an already completed functor H is used in a context whichdemands a structure of signature SIG, then it is necessary to prove that SIG 0 j=OBS SIG , whereOBS is an appropriate subset of the types of SIG and SIG 0 is the output signature of H.2(a). If any explicit structure expression strexp 0 is used in strexp in a context which demands astructure of signature SIG, then it is necessary to prove that strexp 0 j=OBS SIG, where OBS isan appropriate subset of the types of SIG. (Note that strexp itself is such a structure expression,where the context demands a structure of signature SIG0'.)2(b). If any structure identi�er S is used in strexp in a context which demands a structure of signatureSIG, then it is necessary to prove that SIG 0 j=OBS SIG, where OBS is an appropriate subset ofthe types of SIG and SIG 0 is the signature associated with S. (Note that the parameter X0 issuch a structure identi�er, associated with the signature SIG0.) 2Coding step Given an Extended ML functor of the form:functor F(X : SIG) : SIG' = ?we may proceed by replacing the de�nition of F with the de�nition:functor F(X : SIG) : SIG' = strexpwhere strexp is a well-formed Extended ML functor body. This incurs a single proof obligation:SIG [ strexp j=OBS SIG'where OBS is an appropriate subset of the types of SIG', in addition to any proof obligations arisingfrom the use of structures within strexp. 2Re�nement step Given an Extended ML functor of the form:functor F(X : SIG) : SIG' = strexpwe may proceed by replacing the de�nition of F with the de�nition:functor F(X : SIG) : SIG' = strexp 0 9



where strexp 0 is a well-formed Extended ML functor body. This incurs a single proof obligation:SIG [ strexp 0 j=OBS strexpwhere OBS is an appropriate subset of the types of strexp, in addition to any proof obligations arisingfrom the use of structures within strexp 0. 2See [ST 89] for more details, in particular concerning the set OBS of observable sorts appearingin the above proof obligations. [ST 89] and [San 91] contain examples of the application of all threekinds of step during the process of developing a software system from a speci�cation.3 Past workA considerable volume of theory relevant to the enterprise of formal development of Standard MLprograms from Extended ML speci�cations has accumulated during the past several years. Thepurpose of this section is to indicate the relevant theory which exists and to mention some topicswhich have not yet been su�ciently investigated.One compelling reason for focusing on the development of Standard ML programs, apart from thepowerful and convenient Standard ML modularization mechanisms outlined in the previous section, isthat Standard ML is without doubt the most rigorously formalized full-scale programming languagein existence today. Standard ML possesses a formal semantics [MTH 90] which completely de�nesall aspects of the language. Draft versions of this semantics have been widely studied over a periodof several years, leading to a high degree of con�dence in its accuracy and integrity. A number ofimportant properties of the semantics have been proved [Tof 88], [MT 90]. The formal semanticsprovides the basis for reasoning about Standard ML programs, which is required in order to provethat a program satis�es an Extended ML speci�cation. Compatibility between the formal semanticsof Standard ML and of Extended ML is required to simplify the transition between Extended ML andStandard ML; for example, the semantics of modules must be compatible in order to ensure that whenan Extended ML program development task (an Extended ML functor speci�cation) is decomposedinto simpler tasks, the composition of Standard ML functors ful�lling these tasks will be well-formedand will ful�ll the original task.Other important theory concerning Standard ML includes a large body of work on various aspectsof Standard ML's polymorphic type system and related type systems, beginning with [Mil 78]. Type-theoretic studies of the Standard ML module system include [MacQ 86b] and [MH 88]; the latterhas been reformulated in category-theoretic terms and modi�ed in [HMM 90]. The theorem-provingsystems Edinburgh LCF [GMW 79] and Cambridge LCF [Pau 87] implement versions of the logicPP� (polymorphic predicate �-calculus) which can be used for reasoning about programs written ina subset of the Standard ML core language. A number of good implementations of SML exist, seee.g. Standard ML of New Jersey [AM 87]. Although as yet few environmental tools for Standard MLprogramming have been produced (debuggers, etc.), work on these is underway.A very important problem in the context of Standard ML which has not yet been solved is that ofproving properties of programs in the full Standard ML language. Obtaining an appropriate correct-ness logic and proof system for the core language alone will not be an easy task because of the numberof interacting features present in the language (polymorphism, user-de�ned types, higher-order func-tions, equality types, non-terminating functions, exceptions, references, input/output, etc.). Ensuringsoundness of any such system with respect to the semantics of Standard ML is another importantbut di�cult problem. Once a sound proof system is available for the core language, extending itto the module language should be a less arduous task, although the problem of checking soundnessremains di�cult. Ideas in [SB 83] about proof in the context of structured speci�cations should berelevant to such an extension. A natural extension to the Standard ML module system is to permithigher-order functors. Although this is not included in the semantics of the language, recent workhas demonstrated that such an extension would be semantically unproblematic. Some of the implica-tions of such an extension on Extended ML have already been considered [SST 90]; see [KS 91] for a10



description of the SPECTRAL speci�cation language, which extends Extended ML with higher-orderfunctors, dependent types and object-oriented inheritance.Work on Extended ML proper has so far concentrated almost exclusively on issues of semantics,correctness and foundations. Some of these issues have proved to be more subtle than was thoughtat �rst, which means that the treatment of certain aspects has changed signi�cantly in the processof further investigation. The �rst work on Extended ML was [ST 85] which provided an introductionto the Extended ML language and outlined some ideas concerning its semantics. An early goalof work on Extended ML was to maintain independence from the choice of logical language to beused for writing axioms; since executable de�nitions are taken to be a subset of axioms, this alsoresults in independence from the choice of target programming language. A suitable formalisationof the notion of logic is provided in the theory of institutions [GB 84]. An institution comprises notonly a language for writing axioms but also a notion of signature (di�erent from Standard ML orExtended ML signature), a notion of model, and a satisfaction relation between models and axioms.Several unpublished drafts of an institution-independent denotational semantics of Extended MLwere written early in 1986. The semantics described a translation of Extended ML into institution-independent ASL [ST 88a]. An outline of the principles of this semantics appeared in [ST 86]. Thesemantics itself was never �nalized since the design of Standard ML was not yet �xed at this point intime, and frequent subsequent changes to the semantics would have been required to keep it in linewith changes in the Standard ML language.The Extended ML methodology for formal program development was introduced in [ST 89], withresults demonstrating that any program obtained from a requirements speci�cation using the methodspresented will be correct with respect to that speci�cation. This work required a revision of the treat-ment of behavioural equivalence along lines suggested by [Sch 86], and accordingly the correctnessresults in [ST 89] are subject to the assumption that the Standard ML language is stable (roughlyspeaking, functors preserve behavioural equivalence). The methodology and results concerning cor-rectness are in principle institution-independent, but they have not yet been explicitly formulated inthese terms. In order to provide a basis for the �rst work on tools, [SdST 90] de�nes the concretesyntax, static semantics and dynamic semantics of Extended ML (instantiated to an institution of�rst-order equational logic) as an extension to the semantics of Standard ML, ignoring the role of ax-ioms beyond requiring them to be syntactically well-formed and well-typed. The language described issubstantially di�erent from that described in the 1986 version of the Extended ML semantics becauseof the changes to the Standard ML languages since then. The revised semantics of Extended MLdiscussed in Section 4 is a major extension of this to deal fully with the e�ect of axioms, and toencompass the full Standard ML language apart from references and assignment.The foundations of Extended ML are based on a theory of algebraic speci�cations developed in thecontext of the ASL kernel speci�cation language. This theory includes the semantics of ASL and itsproperties [SW 83], [Wir 86], its extension to the framework of an arbitrary institution [ST 88a], workon observational and behavioural equivalence in algebraic speci�cations [ST 87], on implementationof speci�cations [ST 88b], on �rst-order and higher-order parameterization [SST 90], [ST 91], and ontheorem proving [SB 83], [ST 88a] and proofs of model class containment [Far 89], [Far 90], [Far 91]in the context of structured speci�cations. All of this theory is relevant to Extended ML, althoughtranslating results from the level of ASL to the level of Extended ML is a non-trivial task. Somework on related approaches is also relevant, e.g. work on PLUSS [Bid 89], which is also based on ASL,and the theory of module algebra [BHK 90] together with related work on the ��-calculus [FJKR 87].Results concerning logical relations and data abstraction [Mit 86] are related to the correctness of theExtended ML formal program development methodology. However, much of the \classical" theory ofalgebraic speci�cations such as described in [EM 85] is not applicable in the context of Extended MLbecause of the restriction to (conditional) equations and the di�erent methods used for structuringspeci�cations.A number of examples of Extended ML speci�cations have been written and formal programdevelopments carried out in spite of the di�culty in using Extended ML in the absence of appropriatesupport tools. These include examples of complete formal developments in [ST 85], [ST 89], [HK 90],11



[San 91] and case studies done by students at Edinburgh and elsewhere, and a large Extended MLspeci�cation of a Standard ML typechecker in [MS 90]. A case study in the formal development of astandardized protocol using a combination of Extended ML and CCS [Mil 89] has also been carriedout [SGM 89].The above discussion has mentioned some issues which remain to be resolved. This includes thequestion of whether Standard ML (minus references and assignment) is stable or not; the answeris almost certainly yes, but the proof of this result will be di�cult. If the answer should turn outto be no, this would indicate a worrying 
aw in the design of Standard ML rather than a failureof Extended ML. Once the revised semantics of Extended ML is �nished, it will be necessary tocheck that it is fully compatible with the semantics of Standard ML. It would also be desirable toeventually give an institution-independent version of this semantics in order to facilitate applicationto other programming languages. We lack a proof system for the language of Extended ML axioms;this should not be a surprise since such a system would be practically the same as a proof system forthe Standard ML core language (minus references and assignment). Extending such a proof systemto all of Extended ML is similar to the problem of extending a proof system for the Standard ML corelanguage to the module language. Given a semantics of Extended ML by translation to ASL, such asthe 1986 draft semantics, the proof rules for ASL in [ST 88a] would be applicable.An important problem concerns practical methods for proving behavioural consequence. A numberof methods for establishing behavioural consequence are available. These include: methods describedin [ST 89], which apply only to conditional equational speci�cations of a certain kind; methods de-veloped for VDM for proving the correctness of data rei�cation [Jon 86]; correspondences [Sch 86]; andcontext induction [Hen 90]. The ease of use of these di�erent methods is in inverse proportion to thenumber of cases of interest which they cover. This suggests that the best approach is to use a collec-tion of methods, applying the simpler and less powerful methods (starting with ordinary consequence,which is a su�cient condition for behavioural consequence) before trying the more inconvenient butmore powerful methods.Finally, a range of tools to support formal program development in Extended ML is required.Work on these has just begun; see Section 5 for current plans.4 SemanticsActive work is currently in progress on a new semantics of Extended ML. The aim of this section isto discuss some aspects of this work: why it is necessary, what decisions have been made so far, andwhat problems have arisen. The semantics of Extended ML is not yet complete, and so some of thedetails in the following may change in the �nal version.As was mentioned in the last section, a draft semantics of Extended ML has been in existence since1986. This semantics described an institution-independent translation from Extended ML into theASL kernel speci�cation language. Its principles (primarily, the technicalities required to make thetranslation from Extended ML to ASL institution independent) were outlined in [ST 86]. The mostfundamental di�erence between these two languages is that Extended ML provides convenient andfairly elaborate mechanisms for handling sharing of components (see Section 2.1.2), while such mech-anisms are completely absent in ASL for the sake of simplicity. The translation from Extended ML toASL is largely a matter of making these mechanisms explicit. The semantics of institution-independentASL [ST 88a] assigns to every well-formed speci�cation a signature and a class of models over thatsignature. Composing the translation from Extended ML to ASL with the semantics of ASL there-fore associates a signature and a class of models with every well-formed Extended ML signature andstructure.In 1986 the design of Standard ML was not yet �xed. The draft semantics of Extended ML waswritten by reference to a draft of [MacQ 86a]. In the process of writing the semantics, certain gapsand ambiguities in [MacQ 86a] came to light, making it necessary (through discussion with MacQueenand with ML implementors) to guess the intended semantics of some constructs. During 1986{198912



the Standard ML language evolved in response to problems discovered by implementors and by users,diverging in many respects from the guesses made in the Extended ML semantics and even fromsome details which were explicitly treated in [MacQ 86]. The formal semantics of Standard ML[MTH 90] was written during this time. Now that the semantics of Standard ML is �nished, completeimplementations of it are available, and work on tools to support the use of Extended ML is beginning(see Section 5), it is appropriate to revise the semantics of Extended ML to make it fully compatiblewith Standard ML.Faced with the job of producing a semantics for Extended ML which is consistent with the se-mantics of Standard ML, there seem to be two options:1. Revise the 1986 draft of the Extended ML semantics to take account of changes in Standard ML.2. Introduce the features of Extended ML into the semantics of Standard ML [MTH 90].Each of these two options has advantages and disadvantages. The main advantage of (1) is that the re-vision is a matter of detail which does not involve a radical departure from our previous approach. Thesemantics then remains institution-independent. Its main disadvantage is that establishing consist-ency with [MTH 90] is extremely di�cult since the styles of the two semantics are radically di�erent.An advantage of (2) is that consistency is almost automatic by construction. Furthermore, it is relat-ively easy to include features of ML like polymorphic types and exceptions by extending the treatmentin [MTH 90]. Although an advantage of an institution-independent semantics is that such featuresare in principle easily integrated afterwards by instantiation to an appropriate institution, de�ning aninstitution covering all the features of Standard ML would be a technically di�cult task which wouldinvolve redoing much of the Standard ML semantics in a di�erent form. A further advantage of (2) isthat it would be easy to keep up with any changes to Standard ML (although none are expected, atleast in the short term) since these will be re
ected in future editions of [MTH 90]. We have chosen(2) in spite of some short-term disadvantages which are discussed at the end of this section. Weaim to cover almost the full Standard ML language, including polymorphism, higher-order functions,exceptions and non-terminating functions, but excluding references and assignment.The semantics of Standard ML in [MTH 90] is given in the style of structured operational semantics[Plo 81], presented as system of inference rules. It is split into static semantics, which covers typeinference (102 rules) and dynamic semantics, which covers evaluation (91 rules), with 3 rules to makethe connection between the two. Considering that Standard ML is a general-purpose language with awide range of advanced features and that the semantics completely de�nes all aspects of the language,the semantics is quite elegant and compact.For each language construct the Standard ML semantics contains one or more static rules and oneor more dynamic rules which de�ne its meaning. A typical example is the semantics of declarationsof the form local strdec1 in strdec2 end, where strdec1 and strdec2 (and local : : :end) are structure-level declarations. The relevant rule in the static semantics is the following:B ` strdec1 ) E1 B � E1 ` strdec2 ) E2B ` local strdec1 in strdec2 end) E2The meta-variables B, E1 and E2 stand for static environments giving the \static" properties (types,signatures etc.) associated with currently accessible names of types, values, exceptions, structures,signatures and functors. This rule says that strdec2 is elaborated in an environment containingpreviously-de�ned types, values, etc. together with the types etc. declared in strdec1, but that thedeclarations in strdec1 do not themselves contribute to the resulting environment. The rule for thisconstruct in the dynamic semantics is:B ` strdec1 ) E1 B + E1 ` strdec2 ) E2B ` local strdec1 in strdec2 end) E2In the dynamic semantics the meta-variables B, E1 and E2 stand for dynamic environments containingbindings for value names, exception names, structure names, signature names and functor names.13



Types are fully handled in the static semantics so type names do not appear in environments at thislevel; if static elaboration is successful then no type errors can occur during dynamic evaluation. Thisrule has a similar meaning to the corresponding static rule; the di�erence is that it deals with valuesrather than with types. (The above explanation and the discussion below gloss over some of thedetails of the semantics which are not essential to the discussion, such as the di�erence between themeta-variables B and E and the di�erence between B + E and B � E.)As an example of the application of these rules, consider the following Standard ML programfragment:localdatatype t = mkt of intval a = 4 ) strdec1in fun f x = x*2val v = mkt(f a) ) strdec2endStatic elaboration proceeds as follows. Suppose that B0 is the initial static environment of built-intypes and values; thenB0 ` strdec1 ) (TE 1;VE 1)where TE 1 is the type environment TE 1 = ft 7! (t0; fmkt 7! int -> t0g)g and VE 1 is the (static)value environmentVE 1 = fmkt 7! int -> t0; a 7! intg Here, t0 is a unique internal name for t whichensures that it is not confused with other types in the program named t, and fmkt 7! int -> t0ggives the constructors for that type. The result also includes empty environments of exceptions andstructures; such empty environments will usually be omitted below. Continuing,B0 � (TE 1;VE 1) ` strdec2 ) VE 2where VE 2 is the value environment VE 2 = ff 7! int -> int; v 7! t0g. Putting these together givesB0 ` local strdec1 in strdec2 end) VE 2Notice that a, t and mkt are not available in the resulting environment. The type t is hidden eventhough there is a value (v) having that type.As for dynamic evaluation, if B 00 is the initial dynamic environment of built-in values, thenB00 ` strdec1 ) VE 01where VE 01 is the (dynamic) value environment VE 01 = fmkt 7! mkt; a 7! 4g. The type t does notappear in this result, but the constructor mkt does. Then,B00 + VE 01 ` strdec2 ) VE 02where VE 02 is the value environmentVE 02 = ff 7! (x => x*2; : : :); v 7! (mkt; 8)g. Here, (x => x*2; : : :)is a closure; the missing component is the declaration-time environment of the function f (this is omit-ted here since it is unimportant for this example). The value bound to v demonstrates the fact thatconstructors in Standard ML are uninterpreted. Putting these two inferences together givesB00 ` local strdec1 in strdec2 end) VE 02As in the static semantics, a and mkt are not available in the resulting environment.The semantics of Extended ML is comprised of three main parts: static semantics, dynamicsemantics and \veri�cation" semantics. The role of the static semantics is to de�ne the class ofwell-formed phrases, the same as in Standard ML, and the static semantic rules for Extended MLare largely the same as those for Standard ML. The role of the dynamic semantics is to de�ne the14



e�ect of running a \program" which may contain components which have been speci�ed but notyet de�ned in an executable fashion. The e�ect will be the same as in Standard ML, provided theunde�ned components are not used; otherwise an exception is raised. The dynamic semantic rules forExtended ML are largely the same as those for Standard ML.In the static and dynamic semantics of Extended ML, axioms are treated as formal commentswhich are typechecked but have no other e�ect. The role of the veri�cation semantics is to de�ne thee�ect of these axioms, which involves computing the class of models corresponding to each structure,signature and functor. The classes of models computed correspond (roughly speaking) to the resultsproduced by the composition of the 1986 semantics of Extended ML and the semantics of ASL. Thedivision between the static and veri�cation semantics of Extended ML is not so clean as the divisionbetween the static and dynamic semantics, since the interpretation of quanti�ers in axioms, whichtakes place in the veri�cation semantics, depends strongly on type information collected by the staticsemantics (see below). This makes the veri�cation semantic rules a little messy; since most of thediscussion below has nothing to do with this issue, the messiness will be suppressed wherever possible.The static and dynamic semantic rules for local declarations in Extended ML are exactly the sameas the corresponding rules in the static and dynamic semantics of Standard ML which have alreadybeen discussed above. The rule in the veri�cation semantics is:J ` strdec1 )M1for each M1 2M1; J + M1 ` strdec2 )M2[M1]J ` local strdec1 in strdec2 end) f('1 + '2; E2) j ('1; E1) 2M1; ('2; E2) 2M2[('1; E1)]gThe meta-variable M1 stands for a model, M1 and M2[M1] stand for classes of models, and J standsfor an interpretation, which is a model together with a signature and dynamic functor environment.Models here are much more concrete than algebras as traditionally used in work on algebraic speci�c-ations, built from the formal entities used in the semantics of Standard ML, although the purpose isthe same. In place of a collection of carrier sets, a model contains a realisation (meta-variables '1and '2 above) which gives a set of constructors for each type. In place of a set of functions, a modeladditionally contains a dynamic environment (meta-variables E1 and E2 above). This binds functionnames to closures rather than to arbitrary mathematical functions, and binds (constant) value namesto Standard ML values. The advantage of using this concrete notion of model rather than algebrasis that evaluation of an expression in a model is de�ned directly via the dynamic semantics (takingexceptions, higher-order functions, etc. into account) rather than by some other means. The aboverule says that the result of local strdec1 in strdec2 end is a class of models which is obtained bycombining realisations from models of strdec1 with corresponding models of strdec2. Although thetypes declared in strdec1 are no longer accessible in the result, it is necessary to keep track of their\carriers" in order to interpret quanti�ers over types which depend on such types. The premise \foreach M1 2M1, : : :" should be interpreted as a conjunction of premises, one for each M1 2M1. SinceM1 may be in�nite, we are really dealing here with in�nitary rules.As an example of the application of this rule, consider the following Extended ML fragment(compare this with the Standard ML example above):localdatatype t = mkt of intval a:int = ?axiom a<5 andalso a>2 9>=>; strdec1in fun f (x:int) = ?:intaxiom forall x => abs(f x) = abs(x) * 2val v = mkt(f a) 9>=>; strdec2end 15



Static elaboration and dynamic evaluation have the same results as for the previous example inStandard ML. As for the veri�cation semantics, if J0 is the initial interpretation of built-in types andvalues, thenJ0 ` strdec1 ) fM1;M2gwhere M1 is a model containing the realisation '1 = ft0 7! (t0; fmkt 7! int-> t0g)g and the valueenvironment fmkt 7! mkt; a 7! 3g, and M2 is a model containing '1 and the value environmentfmkt 7! mkt; a 7! 4g (compare VE 01 above). These are the only two models containing the realisationgenerated by the declaration of t and an interpretation of a which satis�es the axiom.2 The secondpremise determines two classes of models, M2[M1] and M2[M2]. M2[M1] is the result of evaluatingstrdec2 under the interpretation of strdec1 given by M1, which yields fM11 ;M12; : : :g where M11 isa model containing the empty realisation (no new types are introduced) and the value environmentff 7! (x => x*2; : : :); v 7! (mkt; 6)g, M12 is a model containing the empty realisation and the valueenvironment ff 7! (x => ~x*2; : : :); v 7! (mkt;�6)g, etc. M2[M2] is the result of evaluating strdec2under the interpretation of strdec1 given by M2, which yields fM21 ;M22; : : :g where M21 is a modelcontaining the empty realisation and the value environment ff 7! (x => x*2; : : :); v 7! (mkt; 8)g, M22is a model containing the empty realisation and the value environment ff 7! (x => ~x*2; : : :); v 7!(mkt;�8)g, etc. Putting these together as the rule requires givesJ0 ` local strdec1 in strdec2 end) fM 011 ;M 012; : : : ;M 021;M 022; : : :gwhere M 01n is obtained by combining the realisation in M1 (i.e. '1) with M1n and M 02n is obtainedby combining the realisation in M2 (also '1) with M2n. So for example, M 021 is the model ('1; ff 7!(x => x*2; : : :); v 7! (mkt; 8)g) (compare VE 02 above).The ideas of the Extended ML program development methodology presented in Section 2.3 arere
ected in the veri�cation semantics of Extended ML structure and functor bindings. We will brie
ycomment on structure bindings; functor bindings are similar, mutatis mutandis. The Standard MLdynamic semantic rule for a structure binding strid : sigexp = strexp is the following:B ` strexp ) E InterB ` sigexp ) IB ` strid : sigexp = strexp ) fstrid 7! E # IgHere, InterB ` sigexp ) I computes the \interface" I of sigexp, the set of (value, exception andstructure) names in sigexp, and E # I restricts E to the names in I. The result is a dynamic structureenvironment where strid is bound to a restricted view of the structure E obtained by evaluating strexp.The dynamic semantic rule in Extended ML is the same; a simpli�ed version of the correspondingveri�cation semantic rule in Extended ML is the following:J ` strexp )M J ` sigexp )M0for each M 2M; 9M 0 2M0 : M \�ts" M 0J ` strid : sigexp = strexp ) f('0; fstrid 7! E 0g) j ('0; E 0) 2M0gHere, M \�ts" M 0 means that an appropriately restricted version of M is behaviourally equivalent toM 0 with respect to an appropriate set of observable types. The precise details of this are too com-plicated to be explained without reference to more of the Extended ML semantics. This requirementcorresponds to one of the proof obligations which is incurred by a decomposition step, namely 2(a)in Section 2.3. The result of a structure binding is a class of models, one for each possible model ofthe structure. A very important point here is that the class of possible models of the structure istaken to be M0 (the models of the interface sigexp) rather than M (the models of the body strexp).This may seem worryingly inaccurate: sigexp may allow more models than strexp, and the models2This is not quite true; an in�nite number of similar models would be obtained by interpreting mkt as a closure suchas (x => mkt x; : : :) or (x => if true then mkt x else mkt(x+1); : : :).16



of strexp need only be behaviourally equivalent to models of sigexp. This choice has strong method-ological motivations. First, in reasoning about a structure we should only need to use those of itsproperties which are recorded in its interface. Additional properties which the structure happens tosatisfy are to be ignored since they are accidents of the particular choice of implementation. Thischoice is the reason why proof obligation 2(b) incurred by a decomposition step (see Section 2.3) refersto the signature SIG 0 associated with a structure identi�er rather than requiring the actual class ofmodels of the structure to be determined. Second, the \inaccuracy" caused by the use of behaviouralequivalence is justi�ed by [Sch 86] and [ST 89]. The name \veri�cation" semantics comes from thefact that \idealized" classes of models are computed, for the sake of veri�cation of interfaces. Bythe way, if there is some model of strexp which �ts no model of sigexp, then (since there is no otherrule for this form of structure binding) the structure binding fails to evaluate and so is regarded asill-formed from the viewpoint of the veri�cation semantics. This is similar to the failure of an ill-typedexpression to elaborate according to the static semantics. Both forms of failure are caught by rulesfor handling programs (sequences of top-level declarations) | these are the rules which make theconnection between the static, dynamic and veri�cation semantics.One of the advantages of building a semantics of Extended ML starting with the semantics ofStandard ML is that features of Standard ML like polymorphism, higher-order functions and excep-tions are relatively easy to integrate. Concretely, this means that the type system of Standard ML isalready able to cope with these features and that corresponding semantic objects are already de�nedtogether with appropriate basic operations to manipulate them. Seen within the institutional frame-work, the signatures and the models of the institution are �xed; a problem which remains is the choiceof the logical language appropriate for writing axioms which specify the properties of the componentsof these models and the de�nition of satisfaction of an axiom by a model. The design of this languageand its semantics involves making choices which are di�cult to assess properly without substantialexperience with examples. We have attempted to make choices which seem natural from the stand-point of the semantics of Standard ML. Further, we have attempted to maximize expressive power,and to avoid making certain common speci�cation idioms unduly awkward to write.Syntactically, it is convenient to take axioms to be closed expression of type bool, with thesyntax of such expressions extended by (higher-order) universal and existential quanti�ers and equalityover values of arbitrary type. The interpretation of quanti�ers is not entirely obvious, especially inthe presence of polymorphic types; this topic will be discussed below. There is a choice with theinterpretation of equality since the evaluation of an expression may diverge or generate an exception.We have chosen to use a weak version of equality (cf. existence equations [Rei 87]); if exp1 and exp2are two closed expressions of the same type, then exp1 = exp2 is true in a model M i� the valuesof exp1 and exp2 in M are de�ned, are not exceptions, and are equal. If exp1 diverges or raises anexception, then so does exp1 = exp2. If this is not the case but exp2 diverges or raises an exception,then so does exp1 = exp2. This de�nition also holds if exp1 and exp2 are of functional type, or aredata values containing embedded functions, except that we have to decide what kind of equality touse on function values. We have chosen to use here a strong version of extensional equality; twofunctions are equal in a model M i� for all well-typed arguments they produce either equal values inM or else both are unde�ned or both produce the same exception. A (post�x) de�nedness predicatecalled terminates is provided; as with D(exp) in [BW 82], exp terminates is true in a model Mif the value of exp is de�ned in M and is false in M if the value of exp is unde�ned in M . If thevalue of exp in M is an exception then the value of exp terminates is true. In contrast to D(exp)in [BW 82], exp terminates is not de�nable as exp = exp, since the value of the latter formula isunde�ned (rather than false) if the value of exp is unde�ned. One could supply a similar predicateto test whether an expression produces an exception or not (and to test which exception is produced);this, however, is already expressible in Standard ML. For example, the expression:(exp ; false) handle _ => trueis true in M if the value of exp in M is an exception, is false if the value of exp in M is de�ned butnot an exception, and is unde�ned otherwise. 17



From the above discussion it is clear that a multiple-valued logic is being used. Besides the usualtrue and false, the value of a closed expression of type bool can be unde�ned or one of a possiblyin�nite number of exceptions. However, at the level of axioms, this does not complicate matters: anaxiom exp is satis�ed by a model M i� the value of exp in M is true. Any other result means thatthe axiom exp is not satis�ed by M .There are at least two complications concerning the interpretation of quanti�ers, both involving thedomain of quanti�cation. Since only ML-representable types and values are available as componentsof models, it seems natural that the domain of quanti�cation should include only such values. Onlycomputable functions are representable in Standard ML; thus the following axiom, which speci�esa function alwayshalts : (int -> int) -> bool to solve the halting problem for (computable)functions of type int -> int, will not be satis�ed by any model:forall g:int->int => alwayshalts g = (forall x:int => (g x) terminates)The other complication involves the domain of quanti�cation of quanti�ers over polymorphic types.For example, what is speci�ed by the following axiom?forall (l:'a list,l':'a list) => length(l@l') = length l + length l'If l and l' are really meant to range over values of type 'a list only, then this axiom only says thatlength([]@[]) = length [] + length []since [] is the only value of this type (in Standard ML)! This is probably not what was intended.The interpretation we have been considering is to take the value of a quanti�ed formula to be true ifits value is true for all instantiations of the types of the quanti�ed variables (including the identityinstantiation and other instantiations containing type variables)3, and false if its value is false forall such type instantiations. If its value is true for some instantiations and false for others, thenthe result is unde�ned. (Quanti�ers range only over well-de�ned values, excluding exceptions andunde�ned.) This means that the value of the following expression is unde�ned:forall x:'a => forall l:'a list => [x]@l = l@[x](it is vacuously true for the identity instantiation, is true when 'a is instantiated to any typehaving just one value (examples are the built-in type unit and the type 'a list) and is falsewhen 'a is instantiated to any type having more than one value). This seems to be the best choiceof interpretation, taking into account complications involved with nested quanti�ers and quanti�ersoccurring in negative positions. A similar choice is taken for equality of functions of polymorphic type.Another possibility would have been to explicitly quantify type variables, but we prefer to avoid thisif possible since it seems to be in con
ict with the spirit of ML where types are left implicit wheneverpossible.In a quanti�ed expression, the domain of quanti�cation depends critically on the type(s) of thequanti�ed variable(s), as we have seen. This is the source of the (one-way) interaction between thestatic and veri�cation semantics of Extended ML; the static semantics is responsible for determiningthe most general types of all variables and expressions, and the veri�cation semantics is responsible forevaluating quanti�ed formulae (and other expressions in axioms). Dynamic recomputation of types isnecessary to make the examples of quanti�cation above and the following example work as intended:fun ispermutation(l,l') = forall x => count(x,l) = count(x,l')where count : 'a * 'a list -> int counts the number of occurrences of a value in a list. Anotherslightly more bizarre example is the following:fun onlyvalue x = forall y => x=y3It might be more appropriate to take only ground instantiations of type variables, as in [GP 89].18



The function onlyvalue tests whether or not the given value is the only value of its type. Forexample, onlyvalue 3 is false and onlyvalue () is true (where () is the unique value of typeunit). However, onlyvalue [] is unde�ned since the quanti�er ranges over 'a list, and as wehave seen there is a single value of type 'a list but many values of its type instances (int list,unit list, etc.). Adding an explicit (monomorphic) type quali�cation to [] changes this result;onlyvalue([]:int list) is false.The above discussion leaves completely open the question of proving theorems about Extended MLspeci�cations. Any proof system for Extended ML would have to be shown sound with respect to thesemantics sketched above. Although this semantics is in some sense very much more \concrete" thanthe 1986 version, it is still model-based rather than theory-based and so establishing the soundness ofa proof system will not be an easy task (completeness is unachievable since datatype de�nitions cor-respond to data constraints | see [MS 85]). Although the way that we have dealt with polymorphismis somewhat unusual, the inference rules for type instantiation in PP� [GMW 79], [Pau 87] seem toremain sound. We have not yet thought about inference rules for the version of equality discussedabove, and the impact of higher-order functions and exceptions on the rest of the logic is not clear.It might be necessary to revise our decisions concerning the interpretation of equality, quanti�cation,etc. if we discover that the versions we have chosen cause grave problems for theorem proving. Thisis a delicate area, where seemingly minor changes can have dramatic consequences [Coq 86]. Theinference rules supplied in [ST 88a] for the speci�cation-building operations of ASL should be applic-able to Extended ML since the basic elements are similar (e.g., local corresponds to a combinationof translate, [ and derive, and substructures in signatures correspond to a combination of [ andtranslate). For example, the following inference rule may be derived from the ASL inference rulesfor translate, [ and derive, assuming no name con
icts occur between strdec1 and strdec2 (here, `stands for provability, which is intended to be sound with respect to satisfaction, j=):strdec1 [ strdec2 ` exp exp contains no names from strdec1local strdec1 in strdec2 end ` expThis rule is sound, but more is needed. In order to prove the correctness of development steps whenthe signatures involved use local, a di�erent approach is required; see [Far 90] for some methodsdeveloped in the ASL context which are relevant to this problem. The use of in�nitary rules in theveri�cation semantics of Extended ML should not cause substantial additional di�culties, since itcorresponds more or less directly to the use of quanti�cation over model classes in the semantics ofASL.Our choice to build the semantics of Extended ML by modifying the semantics of Standard ML hasat least two disadvantages. One is that the resulting semantics is not institution-independent. Thismeans that the logical language to be used in writing axioms is �xed, along with the target languageto be used for writing code. If we are interested only in the development of Standard ML programs,this is not such a serious disadvantage since the logical language we intend to provide is powerfulenough to cover all the features of Standard ML. Of course, it might turn out that our de�nition ofsatisfaction is not the most convenient one, but then the main problem is how to rede�ne satisfactionin an appropriate way (and the provision of a sound proof system for the new version of satisfaction).If we are interested in applying the methods of Extended ML in the context of other programminglanguages (an obvious candidate is Prolog with modularization facilities added [SWa 87]) then theadvantages of an institution-independent approach are more apparent. Another disadvantage is thatthe semantics will not be ASL-based. This will make the theory and methods developed in the contextof ASL more di�cult to transfer to the Extended ML context. It should not be di�cult to overcomeboth of these disadvantages. Once we have �nished a semantics of Extended ML and convincedourselves that it is fully compatible with the semantics of Standard ML, it will be time to considerhow to factor the de�nitions via ASL and which parts of the semantics depend on the institution athand. 19



5 Extended ML support toolsThe eventual practical feasibility of formal program developmenthinges on the availability of computer-aided tools to support various development activities. This is necessary both because of the sheeramount of (mostly clerical) work involved and because of the need to avoid the possibility of humanerror.Now that most of the theoretical underpinnings of Extended ML seem to be in place, the time seemsripe to turn attention to an Extended ML support system which will allow the ideas to be tested inpractice. Some ideas concerning appropriate components for such a system and how they might assistin the program development process are outlined below. What follows is a more or less unstructuredcollection of ideas rather than a complete system design. More de�nite ideas will crystallize oncethe �rst components of the system are in use. Highest priority will be placed on completing threecomponents: the front end (Extended ML parser and typechecker), adapting a theorem prover for usewith Extended ML, and the veri�cation condition generator. Even a primitive system consisting ofjust these three components will be of enormous help in carrying out case studies in formal programdevelopment.As is to be expected, the Extended ML support system will be written in Standard ML. This willenable us to exploit the fact that the Extended ML language is a relatively minor modi�cation ofStandard ML by adapting components of the Standard ML of New Jersey compiler (itself written inML) for our purposes. It will also allow us to experiment with the use of the techniques we advocatein developing the components of the system itself.User interfaceA very important feature of any system is its user interface. With powerful workstations and bit-mapped screens, windows, pop-up menus, structure editing, hypertext, etc. it is possible to producea very 
ashy interface, although the e�ort involved is considerable. Our guiding principle here is toexploit other people's work as far as possible by adapting and integrating existing user interfaces asappropriate rather than investing our own e�ort, at least in the forseeable future.The syntax and type system of Extended ML is intentionally very close to that of Standard MLand so the Standard ML parser and typechecker will be useable for the front end of the system withonly minor modi�cations. One further great advantage of adopting a speci�cation language which isa variant of Standard ML is that we will be able to take advantage of the environmental tools forStandard ML (structure editors, etc.) which will shortly be emerging.This takes care of the user interface for those aspects of program development involving the text ofspeci�cations and programs. The most important thing which this leaves out is theorem proving. Weexpect to adapt some existing theorem prover (see below) which will come with its own user interface.Module libraryThe task of constructing speci�cations and developing programs is greatly eased if we have avail-able a large library of commonly-used speci�cations (for example, of standard data types like sets,stacks and queues and standard functions like sorting and searching), each with one or more correctimplementations. Then most of the e�ort can be devoted to those aspects which are unique to theproblem at hand.A support system would incorporate a library of Standard ML modules (structures and functors| mainly the latter) each associated with its interface speci�cation and with cross references to othermodules in the library on which it depends and which depend on it. The cross references wouldbe used to provide a version control mechanism to ensure that everything is kept consistent whenspeci�cations and modules in the library are changed. This library will grow as the system is used todevelop new modules. In many cases it will be advantageous to retain the entire development historyof a module as advocated in [SS 83], rather than just the module and its interface speci�cation; thiswill come in handy in cases where modi�cation of an existing module to suit some new purpose isrequired. 20



Making friends with speci�cationsA Standard ML system provides various ways of experimenting with programs in an interactivefashion | functors may be applied to structures and functions may be applied to various values,expression evaluation may be timed, etc. In this way it is possible to test that a program is suitablefor some purpose.We need to provide suitable facilities for users to experiment with speci�cations in order to under-stand their consequences and to gain con�dence that they re
ect what is desired. This is especiallyimportant given the role of a speci�cation as the starting point of the program development process,and the amount of work involved in formally developing a program from a speci�cation. The parserand typechecker mentioned above will at least ensure that speci�cations are syntactically well-formedand free from type errors, but this is only a start.If a speci�cation consists only of universally quanti�ed equations or conditional equations, thenunder certain conditions term rewriting may be used to evaluate expressions. This fact is used tojustify interest in speci�cation languages in which the expressive power is restricted so as to guaranteethat all speci�cations are executable. We regard such restrictions as much too strong (cf. [HJ 89]) |the step from a non-executable statement of required behaviour to an executable algorithm (even avery high-level one) is too di�cult and too fundamental to be ignored. However, it makes sense totake advantage of the technology developed in systems like OBJ [GW 88] and RAP [Hus 85] to allowspeci�cations which happen to be in the required form to be tested. The consequences of speci�cationsnot in this form can be explored using a theorem prover (see below); instead of asking for the value ofan expression f(c) we can try to prove a theorem of the form f(c) = d where d is the value we expectf(c) to have.In addition, tools will be needed to check for certain properties of speci�cations (su�cient com-pleteness, consistency etc.). Some of these properties may be checked automatically while checkingothers requires the use of a theorem prover. Properties like consistency are very desirable to ensurepeace of mind, albeit not actually required for correctness (an inconsistent speci�cation cannot bere�ned to a program, so no incorrect program will be produced). If properties such as su�cientcompleteness are present then certain stages of the program development process are simpli�ed.Veri�cation condition generatorAccording to the formal program development methodology presented in [ST 89] and outlined inSection 2.3, developing Standard ML functors from Extended ML requirements speci�cations (functorheadings) involves three kinds of steps: decomposition steps, coding steps, and re�nement steps.Each kind of development step involves constructing one or more speci�cations and verifying thatcertain well-formedness conditions hold, and that certain relationships between speci�cations hold.Some of these conditions are entirely syntactic, corresponding more or less to signature matching inStandard ML, and would be handled automatically. Others involve proving theorems and would berecorded for later attention.The conditions required may be generated automatically from proposed development steps. Itis natural to make this a side-e�ect of the usual Standard ML signature matching process, sincethe conditions depend to a large extent on information concerning sharing between types which isdetermined in the course of signature matching.Agenda of outstanding tasksDuring program development, progress is made on a variety of fronts:1. Functor headings are implemented in terms of other functors.2. Abstract programs are written and re�ned, sometimes producing executable code.3. Proof obligations incurred during (1) and (2) are discharged.The �nal program is guaranteed to be executable and correct with respect to the original speci�cationonce all of these tasks are completed. Some mechanism is required to keep track of those tasks which21



remain, perhaps enforcing some loose control on the order in which they are attacked. For example,to avoid wasted e�ort it makes sense to attack a set of accumulated proof obligations top-down(e.g. discharging those incurred by early development steps before those incurred by later ancillarydevelopment steps) rather than bottom-up.Behavioural consequenceThe proof obligations which arise as a result of development steps will in general involve provingthat certain speci�cations entail other speci�cations up to behavioural equivalence rather than \lit-erally". As discussed in Section 3, a number of methods are available for establishing behaviouralconsequence, where the simplest methods only work in some cases but the most general methods aredi�cult to use. In most cases literal entailment will su�ce and so nothing more than a theorem proveras described below will be needed. For those cases where proper behavioural consequence is involved,some extra machinery is required to apply each of the methods available, generating proof-theoreticsu�cient conditions which may be passed to the theorem prover.Theorem proverWe expect to use some existing theorem prover as the proof engine for this system, rather thandeveloping a new theorem prover from scratch. The currently most promising candidates are Isabelle[Pau 86], [PN 90] and Lego [Bur 89], [LPT 89]. Any existing theorem prover would have to be enrichedto cope with the modular structure of speci�cations along the lines described in [SB 83], cf. [Far 89],[Far 90], [Far 91].The small examples of formal program development in Extended ML which have been attemptedso far suggest that 90% or more of the proof obligations which arise will be trivial to establish, eitherbecause (for example) the input interface of one functor is syntactically identical to the output interfaceof another, or because any proof involved is immediate. Such proof obligations could be dischargedautomatically by a background job while the user is busy with other tasks. The remaining onesinevitably involve more or less complex induction proofs. This suggests that the methods describedin [BM 88], which can be cast in the form of LCF-style proof strategies [Ste 90], might be able tohandle many of them automatically. This would leave only a few hard proofs which would be tackledinteractively. Limited experience with a theorem prover for the CLEAR speci�cation language suggeststhat the modular structure of speci�cations makes it easier to discover proofs [San 82].Changing one's mindThe formal development of realistic programs will not proceed in practice without backtracking,mistakes and iteration, and Extended ML does not remove the possibility of unwise design decisions.In particular, it is di�cult to get speci�cations right and so during the program development processsome speci�cations will change several times in more or less signi�cant ways. It will be important tosalvage as much as possible of a development in progress when such changes are made.Certain changes to speci�cations do not a�ect the correctness of a development in progress at allprovided that an appropriate relation between the old speci�cation and the new speci�cation can beshown to hold. Alternatively, if the modi�ed speci�cation provides the interface between functorsarising during the decomposition process, then the correctness of the development is preserved if it ispossible to re-establish the correctness of the functors involving that interface.Salvaging a major part of the development in progress under more radical alterations to speci�ca-tions should be possible if the system keeps track of interdependencies, not only at the level of modulesin the library but also at the level of the veri�cation of individual interfaces (for example, matchinga structure against a signature involves matching its substructures against the corresponding subsig-natures). Even when a speci�cation changes in a radical way, most of the speci�cations on which itdepends and which depend on it will remain unchanged. The system could check which of the earlierinterfaces still match and 
ag those which do not, making a distinction between an interface whichmust itself be shown to match and one which will match once certain interfaces on which it dependsare shown to match. 22



Reusing existing program modulesAn often-cited advantage of equipping program modules with speci�ed interfaces is that it enablessuch modules to be reused in the development of other systems. As the library becomes more andmore full of modules which were useful as components in previous systems, new systems are supposedto become easier to build. The e�ort involved in ensuring that such a module is correct with respectto its interface speci�cation can thus be justi�ed not only with reference to the system currently underdevelopment but also with reference to possible future projects.The methodology described in Section 2.3 and the module library mentioned above support suchreuse. The discussion above concerning altering speci�cations also applies here, allowing existingmodules to be changed to �t modi�ed interface speci�cations, provided enough information is retainedin the library about the development history of the module. But as the library grows it will becomedi�cult to identify potentially useful modules. Any process of matching a requirement speci�cationagainst the modules in the library which involves theorem proving or non-trivial user interaction seemsdoomed to failure once the library grows to a signi�cant size. Probably screening the modules in thelibrary by means of some crude mechanism such as keyword search is the most cost-e�ective way ofseparating the potential wheat from the cha�.Changing to a new institutionThe �rst version of the support system will be specialised to developing Standard ML programsfrom speci�cations containing axioms written using the logical language described in Section 4. Ifnecessary, simpli�cations may be adopted; for example, the �rst version of the theorem prover will nodoubt be unable to deal fully with exceptions and/or higher-order quanti�ers. As described earlier,the ideas embodied by Extended ML apply in the context of an arbitrary logical system (institution[GB 84]) and so ultimately we expect the system to support any form of axioms and any suitabletarget programming language. But in order to achieve a well-engineered general system it is necessaryto �rst gain some experience with a more specialised system such as the one we propose. In theprocess of building this system we hope to gain a more concrete understanding of the extent to whichcomponents like those described above can be implemented in an institution-independent way.Acknowledgements: Thanks to Mike Fourman, Robin Milner, Brian Monahan and Mads Tofte foruseful discussions on aspects of Section 4, and to Stefan Kahrs, Ed Kazmierczak, Jim Hook and ananonymous referee for helpful comments on a draft of this paper. This research was supported bythe Universities of Edinburgh, Bremen and Manchester, and by grants from the Polish Academy ofSciences, the (U.K.) Science and Engineering Research Council, ESPRIT, and the Wolfson Foundation.6 References[ Note: LNCS n = Springer Lecture Notes in Computer Science, Volume n ][AM 87] A. Appel and D. MacQueen. A Standard ML compiler. Proc. Conf. on Functional Program-ming and Computer Architecture, Portland. LNCS 274 (1987).[BHK 90] J. Bergstra, J. Heering and P. Klint. Module algebra. Journal of the Assoc. for ComputingMachinery 37(2), 335{372 (1990).[Bid 89] M. Bidoit. PLUSS, un langage pour le d�eveloppement de sp�eci�cations alg�ebriques modu-laires. Th�ese d'Etat, Universit�e Paris-Sud, Orsay (1989).[BW 88] R. Bird and P. Wadler. Introduction to Functional Programming. Prentice-Hall (1988).[BM 88] R. Boyer and J. Moore. A Computational Logic Handbook. Academic Press (1988).[BW 82] M. Broy and M. Wirsing. Partial abstract data types. Acta Informatica 18(1), 47{64 (1982).[Bur 89] R. Burstall. Computer-assisted proof for mathematics: an introduction, using the Lego proofsystem. Proc. IAM Conf. on The Revolution in Mathematics Caused by Computing, Brighton(1989). 23
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