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Abstract

An overview of past. present and future work on the Extended MI. formal program
development framework is given, with emphasis on two topics of current active research:
the semantics of the Extended ML specification language, and tools to support formal
program development.

1 Introduction

The ultimate goal of work on program specification is to establish a practical framework for the
systematic production of correct programs from requirements specifications via a sequence of verified-
correct development steps. Such a framework should be fully formal and based on sound mathematical
foundations in order to guarantee the correctness of the resulting program with respect to the original
specification. The program development activity must be supported by computer-based tools which
remove the burden of clerical work from the user and eliminate the possibility of human error.

Extended ML is a framework for the formal development of programs in the Standard ML func-
tional programming language from high-level specifications of their required input/output behaviour.
It strongly supports “development in the large”. producing modular programs consisting of an inter-
connected collection of generic and modular units. The Extended MI, framework includes a method-
ology for formal program development which establishes a number of ways of proceeding from a given
specification of a programming task towards a program. FEach such step (modular decomposition,
etc.) gives rise to one or more proof obligations which must be discharged in order to establish the
correctness of that step.

The Extended ML language is a wide-spectrum language which encompasses both specifications
and executable programs in a single unified framework. It is a simple extension of the Standard ML
programming language in which axioms are permitted in module interfaces and in place of code
in module bodies. This allows all stages in the development of a program to be expressed in the
Extended ML language, from the initial high-level specification to the final program itself and including
intermediate stages in which specification and program are intermingled.

Formally developing a program in Extended ML means writing a high-level specification of a
generic Standard ML module and then refining this specification top-down by means of a sequence
(actually, a tree) of development steps until an executable Standard ML program is obtained. The
development has a tree-like structure since one of the ways to proceed from a specification is to
decompose it into a number of smaller specifications which can then be independently refined further.
In programming terms, this corresponds to implementing a program module by decomposing it into
a number of independent sub-modules. The end-product is an interconnected collection of generic
Standard ML modules, each with a complete and accurate specification of its interface with the rest
of the system. The explicit interfaces enable correct reuse of the individual modules in other systems,
and facilitate maintainability by making it possible to localize the effect on the system of subsequent
changes in the requirements specification.
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This paper is intended as a report on the status of work on Extended ML with emphasis on two
topics of current active research: the semantics of the Extended MI. language, and tools to support
program development. In an attempt to make the paper self-contained, a brief introduction to formal
program development in Extended ML is included in Section 2. Past work on the theoretical under-
pinnings of Extended ML is summarized in Section 3. Current work on the semantics of Extended ML
is discussed in Section 4. and plans for tools to support formal program development are outlined in
Section 5.

2 An introduction to Extended ML

The aim of this section is to briefly outline the main ideas of Extended ML. Three topics are dis-
cussed: the Standard ML functional programming language, which is the target of formal program
development and on which the Extended ML wide-spectrum language is based; the Extended ML
wide-spectrum language; and the Extended ML formal program development methodology. This out-
line is necessarily brief, and readers with no prior knowledge of Extended ML will probably find it
helpful to consult the references given below.

2.1 Standard ML

Standard ML consists of two sub-languages: the Standard ML “core language” and the Standard ML
“module language”. The core language provides constructs for programming “in the small” by de-
fining a collection of types and values of those types. The module language provides constructs for
programming “in the large” by defining and combining a number of self-contained program units.
These sub-languages can be viewed as more or less independent since there are relatively few points
of contact hetween the sub-languages.

A complete formal semantics of Standard ML is in [MTH 90]; see [MT 90] for valuable explanatory
prose. The features of the language are introduced at a more tutorial level in [Wik 87| (core language

only), [MacQ 86a] and [Tof 89] (module language only), [Har 89], and [Rea 89].

2.1.1 The Standard ML core language

The Standard ML core language is a strongly typed functional programming language. It has a flexible
type system including polymorphic types, disjoint union, product and (higher-order) function types,
and user-defined abstract and concrete types. Programs written in the core language look very similar

to programs in Hope [BMS 80], Miranda [BW 88] or Haskell [HW 89]. The following example of an
Standard ML program uses most of the main features of the Standard ML core language:

datatype (’’a,’b) alist = default of ’'’a -> ’b
| cons of ’’a * ’b * (’’a,’b) alist

type dictionary = (string,string) alist
exception novalue
val empty = default(fn a => raise novalue)

fun lookup(a,default f) = f a
| lookup(a,cons(al,b,1)) = if a=al then b else lookup(a,l)

fun isin(a,l) = (lookup(a,l); true) handle novalue => false

exception conflict



fun add(a,b,default f) = cons(a,b,default f)
| add(a,b,cons(al,bl,1)) = if a=al then raise conflict
else cons(al,bl,add(a,b,1))

fun remove(a,default f) = let fun g al = if a=al
then raise novalue

else £ al
in default g
end
remove(a,cons(al,bl,1)) = if a=al then 1

else cons(al,bl,remove(a,l))

Features which are not used include: record types, user-defined abstract types (more flexibly provided
by the Standard ML module language), exceptions which pass values, and input/output. Also not
used are references and assignment, which are available in Standard ML but which are not taken into
account in work on Extended ML.

Conceptually, every value in Standard ML is represented as a term consisting of a constructor ap-
plied to a number of sub-terms, each of which in turn represents another value. In the above program,
default is a unary constructor (of type (*’a => ’b) -> (’’a,’b) alist) and cons is a ternary
constructor (of type ?’a * b * (’’a,’b) alist -> (’’a,’b) alist). Constructor functions are
uninterpreted; they just construct. There is no need to define a lower-level representation of alists
in terms of lists, arrays, pointers, etc.

Functions are defined by a sequence of one of more equations, each of which specifies the value of
the function over some subset of the set of possible argument values, as above. This subset is described
by a pattern (a term containing constructors and variables only, without repeated variables) on the
left-hand side of the equation. The pattern is thereby used for case selection and variable binding.
The patterns on the left-hand side of equations should normally be disjoint and should exhaust the
possibilities given in the definition of the argument type(s).

Certain types are designated by ML as equality types. See [M'TH 90] for the exact definition;
roughly, only types whose definitions involve abstract types or function types are excluded. The
function = : ?’a * ’’a => bool is the built-in equality function; the type variable ’’a can only be
instantiated to equality types (in contrast to ’>a which can be instantiated to any type) which prevents
values of non-equality types from being tested for equality.

2.1.2 The Standard ML module language

The Standard ML module language provides mechanisms which allow large Standard ML programs to
be structured into self-contained program units with explicitly-specified interfaces. Under this scheme,
interfaces (called signatures) and their implementations (called structures) are defined separately.
Every structure has a signature which gives the names of the types and values defined in the structure.
Structures may be built on top of existing structures, so each one is actually a hierarchy of structures,
and this is reflected in its signature. Functors are “parameterized” structures; the application of a
functor to a structure yields a structure. A functor has an input signature describing structures to
which it may be applied, and an output signature describing the structure which results from such an
application. It is possible, and sometimes necessary to allow interaction between different parts of a
program, to declare that certain substructures (or just certain types) in the hierarchy are identical or
shared.

The following is a simple example of a modular Standard ML program for sorting a list of values
of arbitrary type, provided an order relation on that type is supplied.



signature PO =
sig
type elem
val le : elem * elem -> bool
end

signature SORT =
sig
structure Elements : PO
val sort : Elements.elem list -> Elements.elem list
end

functor Sort(X : PO) : SORT =

struct
structure Elements = X
fun insert(a,[]) [a]

if Elements.le(a,b) then a::b::1
else b::insert(a,l)

| insert(a,b::1)

fun sort [] = []
| sort(a::1) = insert(a,sort 1)
end

structure IntP0 : PO =
struct
type elem = int
val le = op <=
end

structure SortInt = Sort(IntP0)

This defines a functor called Sort which may be applied to any structure matching the signature PO
(such as IntP0), whereupon it will yield a structure (above, SortInt) matching the signature SORT.
In order for the definition of Sort to be correctly typed, the body of Sort must define a structure
containing a substructure called Elements which matches PO, and a function called sort with the
type given. The function SortInt.sort may be applied to the list [11,5,2,8] to yield [2,5,8,11].
Since the function insert is not mentioned in the output signature SORT, it is considered local to the
body of Sort and does not appear in the structure SortInt. The body of Sort makes no reference
to other functors but of course it is possible to define new functors by building on top of existing
functors.

Signatures serve both to impose constraints on the bodies of structures/functors and to restrict
the information which is made available externally about the types and functions which are defined
in structure/functor bodies. Only the information which is explicitly recorded in the signature(s) of
a structure/functor is available externally.! This is vital to allow parts of a large software system to
be developed and maintained independently.

Multi-argument functors are treated as single-argument functors in which the input signature
requires a structure with multiple substructures. The functor below takes two structures matching PO
and produces another structure matching PO:

!This is not quite true in Standard ML; see [ST 89] for more discussion on this point.



functor Lexicographic(structure X : PO
structure Y : P0) : PO =
struct
type elem = X.elem * Y.elem
fun le((x,y),(x’,y’)) = if X.le(x,x’)
then if X.le(x’,x) then Y.le(y,y’) else true
else false
end

structure BoolPO : PO =

struct

type elem = bool

fun le(x,y) = (not x) orelse y
end

IntPO
BoolPO)

structure Lex = Lexicographic(structure X

structure Y

The function Lex.le is an order relation on <int X bool)—pair‘s7 where Lex.1le((2,true), (2,false))
is false.

When multi-argument functors are defined, it is sometimes necessary to declare that certain com-
ponents of the argument structures are common to both structures. This is done using a sharing
constraint. For example, changing the heading of Lexicographic to:

functor Lexicographic(structure X : PO
structure Y : PO
sharing type X.elem = Y.elem) : PO =

would restrict application to structures having the indicated types in common. In some cases (not
this one) such a restriction is necessary to ensure that the functor body is well-typed for all admissible
parameter structures.

It is possible to use sharing constraints to make explicit the fact that parts of the argument
structure of a functor are inherited by the result structure. This information can be added to the
heading of the Sort functor above as follows:

functor Sort(X : PO) : sig include SORT
sharing Elements = X
end =

The declaration include SORT has the same effect as repeating the declarations in the signature SORT
above. The sharing constraint sharing Elements = X asserts that the substructure Elements of the
result structure is identical to the argument structure.

2.2 The Extended ML wide-spectrum language

Extended ML is a vehicle for the systematic formal development of programs from specifications by
means of individually-verified steps. Extended ML is called a wide-spectrum language since it allows
all stages in the formal development process to be expressed in a single unified framework, from the
initial high-level specification to the final program itself and including intermediate stages in which
specification and program are intermingled. The eventual product of the formal development process
is a modular program in Standard ML, and thus Standard ML is the executable sub-language of
Extended ML. Earlier stages in the development of such a program are incomplete modular programs
in which some parts are only specified by means of axioms rather than defined in an executable
fashion by means of ML, code. The use of axioms allows more information to be provided in signatures



(properties may be specified which are required to hold of any structure matching that signature),
and less information to be provided in structure/functor bodies (since axioms are permitted in place
of ML code).

In the Standard ML module language, a signature acts as an interface to a program unit (structure
or functor) which serves to mediate its interactions with the outside world. The information in a
signature is sufficient for the use of Standard ML as a programming language, but when viewed as an
interface specification a signature does not generally provide enough information to permit proving
program correctness (for example). To make signatures more useful as interfaces of structures in
program specification and development, we allow them to include axioms which put constraints on
the permitted behaviour of the components of the structure. An example of such a signature is the
following more informative version of the signature PO from the last section:

signature PO =

sig
type elem
val le : elem * elem -> bool
axiom forall x => le(x,x)
axiom forall x,y => (le(x,y) andalso le(y,x) implies x=y)
axiom forall x,y,z => (le(x,y) andalso le(y,z) implies le(x,z))
end

This includes the previously-unexpressible precondition which IntP0 must satisfy if Sort (IntP0) is
to behave as expected, namely that IntP0.1le is a partial order on IntP0.elem.

Formal specifications can be viewed as abstract programs. Some specifications are so completely
abstract that they give no hint of an algorithm, while other specifications are so concrete that they
amount to programs (e.g. Standard ML function definitions, which are just equations of a certain
special form which ensures that they are executable). In order to allow different stages in the evolution
of a program to be expressed in a single framework, we allow structures to contain a mixture of ML code
and non-executable axioms. Functors can include axioms as well since they are simply parameterized
structures. For example, a stage in the development of the functor Sort in the last section might be
the following:

functor Sort(X : PO) : sig include SORT
sharing Elements = X
end =
struct
structure Elements : PO = X
fun member(a:Elements.elem,l:Elements.elem list) = ? : bool
axiom forall a => member(a,[]) = false
axiom forall a,l => member(a,a::1) = true
axiom forall a,b,l1 => (a<>b implies member(a,b::1) = member(a,l))
fun isordered(l:Elements.elem list) = 7 : bool
axiom forall 1 =>
isordered 1 = forall a,b,11,12,13 =>
(1 = 11@[a]@12@[b]0@13 implies Elements.le(a,b))
fun insert(a:Elements.elem,l:Elements.elem list) = ? : Elements.elem list
axiom forall a,l => member(a,insert(a,l))
axiom forall a,l =>
isordered 1
implies
(exists 11,12 =>
11012 =1
andalso insert(a,l) = 11@[a]@12



andalso forall al =>
(member(al,11) implies Elements.le(al,a))
andalso forall a2 =>
(member(a2,12) implies Elements.le(a,a2)))
fun sort [] = []
| sort(a::1) = insert(a,sort 1)
end

In this functor declaration, the function sort has been defined in an executable fashion in terms
of insert which is so far only constrained by axioms. As in Standard ML, the functions member,
isordered and insert are not visible outside the functor body since they do not appear in the
output signature of Sort. The functions member and isordered are only used to specify insert. At
some stage in the development of executable code for insert, member and isordered will no longer be
used (presumably). At this point, their specifications can be omitted from the body of Sort without
the need to develop executable code for them (although first it must be shown that their specifications
are consistent with the code developed for insert and sort, in order to ensure the correctness of this
step).

Functions and constants which are not defined in an executable fashion are declared using the
special place-holder expression 7 as in the example above. This is necessary in order to declare the
type of the function or constant which would normally be inferred from an executable definition by
the ML system. The same construct can be used to declare a type when its representation in terms
of other types has not yet been selected. It is also useful at the earliest stage in the development of a
functor or structure when no hody has been supplied:

functor Sort(X : PO) : sig include SORT
sharing Elements = X
end = 7

The Extended ML language is the result obtained by extending Standard ML as indicated above.
That is, axioms are allowed in signatures and in structures, and the place-holder 7 is allowed in place
of the expression (type expression, value expression, or structure expression) on the right-hand side
of declarations. A more complete introduction to the Extended ML language appears in [San 91]; a
tutorial introduction is [San 87]. More discussion of the motivation behind Extended ML may be found
in [S'T 85]. [SAST 90] defines the concrete syntax and some aspects of the semantics of Extended ML.
A difference with respect to these earlier papers is that following recent work on the semantics of
Extended ML (see Section 4) we have dropped the restriction to a simple subset of Standard ML; we
now aim to cover all of Standard ML except for references and assignment.

The examples above use the notation of first-order equational logic to write axioms (where equality
may be used in axioms on all types, not just on equality types as in Standard ML executable code).
This choice is to a large extent arbitrary since the formal underpinnings of Extended ML are mostly
independent of the choice of logic. It is natural to choose a logic which has the Standard ML core
language as a subset; this way, the development process comes to an end when all the axioms in
structure and functor bodies are expressed in this executable subset.

The role of signatures as interfaces suggests that they should be regarded as descriptions of the ex-
ternally observable behaviour of structures. This amounts to not distinguishing between behaviourally
equivalent implementations in which all computations produce the same observable results. Validity
of implementations is defined in Extended ML in terms of satisfaction of axioms up to behavioural
equivalence with respect to an appropriate set of observable types. The details of this may be found
in [ST 89]. This is reflected in the proof obligations which are incurred in the course of Extended ML
program development (see the next section) where behavioural consequence (|=gpg) is used in place of
ordinary consequence (|=).



2.3 The Extended ML development methodology

The starting point of formal development is a high-level requirements specification of a software
system. The concept of a Standard ML functor corresponds to the informal notion of a self-contained
software system. A functor may be built by composing other functors and so the scale of such a
system may vary from small (like the examples above) to very large. In Extended ML, a specification
of a software system is a functor with specified interfaces. The initial high-level specification will be
a functor of the form:

functor F(X : SIG) : SIG’ =7

where SIG and SIG’ are Extended ML signatures containing axioms. At later stages of development,
a functor specification may include a body which is not yet composed of executable code. This is still
a specification of a software system, but one in which some details of the intended implementation
have been supplied.

Any non-executable Extended ML functor specification, i.e. a functor specification having a body
consisting only of the placeholder 7 or having a non-trivial body which is however not yet composed
entirely of executable code, is regarded as a specification of a programming task. The task which is
specified is (in the case of ?) to fill in a body which satisfies the functor interfaces, or (in the case of
a body containing axioms) to fill in a body which satisfies the axioms in the current body.

Given a specification of a programming task, there are three ways to proceed towards a program
which satisfies the specification:

Decomposition step: Decompose the functor into a composition of “smaller” functors, which are
then regarded as separate programming tasks in their own right.

Coding step: Provide a functor body in the form of an abstract program containing type and value
declarations and a mixture of axioms and code to define them.

Refinement step: Further refine an abstract program by providing a more concrete (but possibly
still non-executable) version which fills in some of the decisions left open by the more abstract
version.

Decomposition steps may be seen as programming (or program design) “in the large”, while coding
and refinement steps are programming “in the small”.

Each of the three kinds of step gives rise to one or more proof obligations which can be generated
mechanically from the “before” and “after” versions of the functor. The details of each kind of step
are given below. Each proof obligation is a condition of the form:

SPI U USPn |ZOBS SP

where SP,....,5P,,SP are Extended ML signatures or structure expressions and OBS is a set of
observable types (a subset of the types of SP). Discharging such a proof obligation requires showing
that the axioms and definitions in SP logically follow from the axioms and definitions in SP,,...,SP,,
up to behavioural equivalence with respect to OBS. Since behavioural consequence is a weakening of
ordinary logical consequence, it is sufficient to show that SP; U---USP, |= SP which is generally
easier to show (if it holds). A step is correct if all the proof obligations it incurs do in fact hold.
An executable Standard ML program which is obtained via a sequence of correct steps from an
Extended ML specification of requirements is guaranteed to satisfy that specification.

Decomposition step Given an Extended ML functor of the form:
functor F(X0 : SIGO) : SIGO’ = 7

we may proceed by introducing a number of additional functors:



functor G1(X1 : SIG1) : SIG1’ =7

functor Gn(Xn : SIGn) : SIGn’ = 7

and replacing the definition of F with the definition:

functor F(X0 : SIGO) : SIGO’ = sirexp

where strexp is a structure expression which involves the functors G1, .. .. Gn (and possibly other already

completed functors and structures). The developments of G1,...,Gn may then proceed separately.
The new definition of F is required to be a well-formed Extended ML functor definition. A number

of proof obligations are incurred, one for each point in the expression strexp where two modules come
into contact. This includes the point where the result delivered by streap is returned as the result of

F. In particular:

. If the result of an application of Gj is used in a context which demands a structure of signature

SIG, then it is necessary to prove that SIGj’ [Eppg SIG. where OBS is an appropriate subset
of the types of SIG.

. If the result of an application of an already completed functor H is used in a context which

demands a structure of signature SI(, then it is necessary to prove that SIG' |=,ps SIG, where
OBS is an appropriate subset of the types of SIG and SIG' is the output signature of H.

. If any explicit structure expression strexzp’ is used in strexzp in a context which demands a

structure of signature SIG, then it is necessary to prove that strexp’ |=opg SIG. where OBS is
an appropriate subset of the types of SIG. (Note that strezp itself is such a structure expression,
where the context demands a structure of signature SIG0”.)

. If any structure identifier S is used in strexzp in a context which demands a structure of signature

SIG, then it is necessary to prove that SIG' |=ops SIG, where OBS is an appropriate subset of
the types of SIG and SIG' is the signature associated with S. (Note that the parameter X0 is
such a structure identifier, associated with the signature SIGO.) O

Coding step Given an Extended ML functor of the form:

functor F(X : SIG) : SIG’ = 7

we may proceed by replacing the definition of F with the definition:

functor F(X : SIG) : SIG’ = strexp

where strexp is a well-formed Extended ML functor body. This incurs a single proof obligation:

SIG U strexp =pps SIG?

where OBS is an appropriate subset of the types of SIG’, in addition to any proof obligations arising

from the use of structures within streap. O

Refinement step Given an Extended ML functor of the form:

functor F(X : SIG) : SIG’ = sirexp

we may proceed by replacing the definition of F with the definition:

functor F(X : SIG) : SIG’ = .St'l‘(ﬁl‘p/



where strexp’ is a well-formed Extended ML functor body. This incurs a single proof obligation:
SIG U strexp’ |=pps strexp

where OBS is an appropriate subset of the types of strexp, in addition to any proof obligations arising
from the use of structures within strezp’. O

See [ST 89] for more details, in particular concerning the set OBS of observable sorts appearing
in the above proof obligations. [ST 89] and [San 91] contain examples of the application of all three
kinds of step during the process of developing a software system from a specification.

3 Past work

A considerable volume of theory relevant to the enterprise of formal development of Standard ML
programs from Extended ML specifications has accumulated during the past several years. The
purpose of this section is to indicate the relevant theory which exists and to mention some topics
which have not yet been sufficiently investigated.

One compelling reason for focusing on the development of Standard ML programs. apart from the
powerful and convenient Standard ML modularization mechanisms outlined in the previous section, is
that Standard ML is without doubt the most rigorously formalized full-scale programming language
in existence today. Standard ML possesses a formal semantics [MTH 90] which completely defines
all aspects of the language. Draft versions of this semantics have been widely studied over a period
of several years, leading to a high degree of confidence in its accuracy and integrity. A number of
important properties of the semantics have been proved [Tof 88], [MT 90]. The formal semantics
provides the basis for reasoning about Standard ML programs, which is required in order to prove
that a program satisfies an Extended ML specification. Compatibility between the formal semantics
of Standard ML and of Extended ML is required to simplify the transition between Extended ML and
Standard ML; for example, the semantics of modules must be compatible in order to ensure that when
an Extended ML program development task (an Extended ML functor specification) is decomposed
into simpler tasks, the composition of Standard ML functors fulfilling these tasks will be well-formed
and will fulfill the original task.

Other important theory concerning Standard ML includes a large body of work on various aspects
of Standard ML’s polymorphic type system and related type systems, beginning with [Mil 78]. Type-
theoretic studies of the Standard ML module system include [MacQ 86b] and [MH 88]; the latter
has been reformulated in category-theoretic terms and modified in [HMM 90]. The theorem-proving
systems Edinburgh LCF [GMW 79] and Cambridge LCF [Pau 87] implement versions of the logic
PPA (polymorphic predicate A-calculus) which can be used for reasoning about programs written in
a subset of the Standard ML core language. A number of good implementations of SML exist, see
e.g. Standard ML of New Jersey [AM 87]. Although as yet few environmental tools for Standard ML
programming have been produced (debuggers, etc.), work on these is underway.

A very important problem in the context of Standard ML which has not yet been solved is that of
proving properties of programs in the full Standard ML language. Obtaining an appropriate correct-
ness logic and proof system for the core language alone will not be an easy task because of the number
of interacting features present in the language (polymorphism, user-defined types, higher-order func-
tions, equality types, non-terminating functions, exceptions, references, input/output, etc.). Ensuring
soundness of any such system with respect to the semantics of Standard ML is another important
but difficult problem. Once a sound proof system is available for the core language, extending it
to the module language should be a less arduous task, although the problem of checking soundness
remains difficult. Ideas in [SB 83] about proof in the context of structured specifications should he
relevant to such an extension. A natural extension to the Standard ML module system is to permit
higher-order functors. Although this is not included in the semantics of the language, recent work
has demonstrated that such an extension would be semantically unproblematic. Some of the implica-
tions of such an extension on Extended ML have already been considered [SST 90]; see [KS 91] for a
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description of the SPECTRAL specification language, which extends Extended ML with higher-order
functors, dependent types and object-oriented inheritance.

Work on Extended ML proper has so far concentrated almost exclusively on issues of semantics,
correctness and foundations. Some of these issues have proved to be more subtle than was thought
at first, which means that the treatment of certain aspects has changed significantly in the process
of further investigation. The first work on Extended ML was [ST 85] which provided an introduction
to the Extended ML language and outlined some ideas concerning its semantics. An early goal
of work on Extended ML was to maintain independence from the choice of logical language to be
used for writing axioms; since executable definitions are taken to be a subset of axioms, this also
results in independence from the choice of target programming language. A suitable formalisation
of the notion of logic is provided in the theory of institutions [GB 84]. An institution comprises not
only a language for writing axioms but also a notion of signature (different from Standard ML or
Extended ML signature), a notion of model, and a satisfaction relation between models and axioms.
Several unpublished drafts of an institution-independent denotational semantics of Extended ML
were written early in 1986. The semantics described a translation of Extended ML into institution-
independent ASL [S'T' 88a]. An outline of the principles of this semantics appeared in [S'T 86]. The
semantics itself was never finalized since the design of Standard ML was not yet fixed at this point in
time, and frequent subsequent changes to the semantics would have been required to keep it in line
with changes in the Standard ML language.

The Extended ML methodology for formal program development was introduced in [ST 89], with
results demonstrating that any program obtained from a requirements specification using the methods
presented will be correct with respect to that specification. This work required a revision of the treat-
ment of behavioural equivalence along lines suggested by [Sch 86], and accordingly the correctness
results in [ST 89] are subject to the assumption that the Standard ML language is stable (roughly
speaking, functors preserve behavioural equivalence). The methodology and results concerning cor-
rectness are in principle institution-independent, but they have not yet been explicitly formulated in
these terms. In order to provide a basis for the first work on tools, [SAST 90] defines the concrete
syntax, static semantics and dynamic semantics of Extended ML (instantiated to an institution of
first-order equational logic) as an extension to the semantics of Standard ML, ignoring the role of ax-
ioms beyond requiring them to be syntactically well-formed and well-typed. The language described is
substantially different from that described in the 1986 version of the Extended ML semantics because
of the changes to the Standard ML languages since then. The revised semantics of Extended ML
discussed in Section 4 is a major extension of this to deal fully with the effect of axioms, and to
encompass the full Standard ML language apart from references and assignment.

The foundations of EKxtended MI., are based on a theory of algebraic specifications developed in the
context of the ASL kernel specification language. This theory includes the semantics of ASL and its
properties [SW 83], [Wir 86]. its extension to the framework of an arbitrary institution [ST 88a], work
on observational and behavioural equivalence in algebraic specifications [ST 87], on implementation
of specifications [ST 88b], on first-order and higher-order parameterization [SST 90], [ST 91], and on
theorem proving [SB 83], [ST 88a] and proofs of model class containment [Far 89], [Far 90], [Far 91]
in the context of structured specifications. All of this theory is relevant to Extended ML, although
translating results from the level of ASL to the level of Extended ML is a non-trivial task. Some
work on related approaches is also relevant, e.g. work on PLUSS [Bid 89], which is also based on ASL,
and the theory of module algebra [BHK 90] together with related work on the Ax-calculus [FJKR 87].
Results concerning logical relations and data abstraction [Mit 86] are related to the correctness of the
Extended ML formal program development methodology. However, much of the “classical” theory of
algebraic specifications such as described in [EM 85] is not applicable in the context of Extended ML
because of the restriction to (conditional) equations and the different methods used for structuring
specifications.

A number of examples of Extended ML specifications have been written and formal program
developments carried out in spite of the difficulty in using Extended ML in the absence of appropriate
support tools. These include examples of complete formal developments in [ST 85], [ST 89], [HK 90],
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[San 91] and case studies done by students at Edinburgh and elsewhere, and a large Extended ML
specification of a Standard ML typechecker in [MS 90]. A case study in the formal development of a
standardized protocol using a combination of Extended ML and CCS [Mil 89] has also been carried
out [SGM 89].

The above discussion has mentioned some issues which remain to be resolved. This includes the
question of whether Standard ML (minus references and assignment) is stable or not; the answer
is almost certainly yes, but the proof of this result will be difficult. If the answer should turn out
to be no, this would indicate a worrying flaw in the design of Standard ML rather than a failure
of Extended ML. Once the revised semantics of Extended ML is finished, it will be necessary to
check that it is fully compatible with the semantics of Standard ML. It would also be desirable to
eventually give an institution-independent version of this semantics in order to facilitate application
to other programming languages. We lack a proof system for the language of Extended ML axioms;
this should not be a surprise since such a system would be practically the same as a proof system for
the Standard ML core language (minus references and assignment). Extending such a proof system
to all of Extended ML is similar to the problem of extending a proof system for the Standard ML core
language to the module language. Given a semantics of Extended ML by translation to ASL, such as
the 1986 draft semantics, the proof rules for ASL in [ST 88a] would be applicable.

An important problem concerns practical methods for proving behavioural consequence. A number
of methods for establishing behavioural consequence are available. These include: methods described
in [ST 89], which apply only to conditional equational specifications of a certain kind; methods de-
veloped for VDM for proving the correctness of data reification [Jon 86]; correspondences [Sch 86]; and
context induction [Hen 90]. The ease of use of these different methods is in inverse proportion to the
number of cases of interest which they cover. This suggests that the best approach is to use a collec-
tion of methods, applying the simpler and less powerful methods (starting with ordinary consequence,
which is a sufficient condition for behavioural consequence) before trying the more inconvenient but
more powerful methods.

Finally, a range of tools to support formal program development in Extended ML is required.
Work on these has just begun; see Section 5 for current plans.

4 Semantics

Active work is currently in progress on a new semantics of Extended ML. The aim of this section is
to discuss some aspects of this work: why it is necessary, what decisions have been made so far, and
what problems have arisen. The semantics of Extended ML is not yet complete, and so some of the
details in the following may change in the final version.

As was mentioned in the last section, a draft semantics of Extended ML has been in existence since
1986. This semantics described an institution-independent translation from Extended ML into the
ASL kernel specification language. Its principles (primarily, the technicalities required to make the
translation from Extended ML to ASL institution independent) were outlined in [ST 86]. The most
fundamental difference between these two languages is that Extended MI. provides convenient and
fairly elaborate mechanisms for handling sharing of components (see Section 2.1.2), while such mech-
anisms are completely absent in AST. for the sake of simplicity. The translation from Extended ML to
ASL is largely a matter of making these mechanisms explicit. The semantics of institution-independent
ASL [ST 88a] assigns to every well-formed specification a signature and a class of models over that
signature. Composing the translation from Extended ML to ASL with the semantics of ASL there-
fore associates a signature and a class of models with every well-formed Extended ML signature and
structure.

In 1986 the design of Standard ML was not yet fixed. The draft semantics of Extended ML was
written by reference to a draft of [MacQ 86a]. In the process of writing the semantics, certain gaps
and ambiguities in [MacQ 86a] came to light, making it necessary (through discussion with MacQueen
and with ML implementors) to guess the intended semantics of some constructs. During 1986-1989
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the Standard ML language evolved in response to problems discovered by implementors and by users,
diverging in many respects from the guesses made in the kExtended MI, semantics and even from
some details which were explicitly treated in [MacQ 86]. The formal semantics of Standard ML
[MTH 90] was written during this time. Now that the semantics of Standard ML is finished, complete
implementations of it are available, and work on tools to support the use of Extended ML is beginning
(see Section 5). it is appropriate to revise the semantics of Extended ML to make it fully compatible
with Standard ML.

Faced with the job of producing a semantics for Extended ML which is consistent with the se-
mantics of Standard ML, there seem to be two options:

1. Revise the 1986 draft of the Extended ML semantics to take account of changes in Standard ML.
2. Introduce the features of Extended ML into the semantics of Standard ML [M'TH 90].

Fach of these two options has advantages and disadvantages. The main advantage of (1) is that the re-
vision is a matter of detail which does not involve a radical departure from our previous approach. The
semantics then remains institution-independent. Its main disadvantage is that establishing consist-
ency with [MTH 90] is extremely difficult since the styles of the two semantics are radically different.
An advantage of (2) is that consistency is almost automatic by construction. Furthermore. it is relat-
ively easy to include features of ML like polymorphic types and exceptions by extending the treatment
in [MTH 90]. Although an advantage of an institution-independent semantics is that such features
are in principle easily integrated afterwards by instantiation to an appropriate institution, defining an
institution covering all the features of Standard ML would be a technically difficult task which would
involve redoing much of the Standard ML semantics in a different form. A further advantage of (2) is
that it would be easy to keep up with any changes to Standard ML (although none are expected, at
least in the short term) since these will be reflected in future editions of [MTH 90]. We have chosen
(2) in spite of some short-term disadvantages which are discussed at the end of this section. We
aim to cover almost the full Standard ML language, including polymorphism, higher-order functions,
exceptions and non-terminating functions, but excluding references and assignment.

The semantics of Standard ML in [MTH 90] is given in the style of structured operational semantics
[Plo 81], presented as system of inference rules. It is split into static semantics, which covers type
inference (102 rules) and dynamic semantics, which covers evaluation (91 rules), with 3 rules to make
the connection between the two. Considering that Standard ML is a general-purpose language with a
wide range of advanced features and that the semantics completely defines all aspects of the language,
the semantics is quite elegant and compact.

For each language construct the Standard ML semantics contains one or more static rules and one
or more dynamic rules which define its meaning. A typical example is the semantics of declarations
of the form local strdec; in strdec, end, where strdec; and strdec, (and local ...end) are structure-
level declarations. The relevant rule in the static semantics is the following:

B F strdec; = B & Ey F strdecy, = E,
B F local strdecy in strdec, end = K,

The meta-variables B, F, and F, stand for static environments giving the “static” properties (types,
signatures etc.) associated with currently accessible names of types, values, exceptions, structures,
signatures and functors. This rule says that strdec, is elaborated in an environment containing
previously-defined types, values, etc. together with the types etc. declared in strdec;, but that the
declarations in strdec; do not themselves contribute to the resulting environment. The rule for this
construct in the dynamic semantics is:

B F strdec; = F, B+ K, strdec, = F,
B F local strdec, in strdec, end = F,

In the dynamic semantics the meta-variables B, £y and F, stand for dynamic environments containing
bindings for value names, exception names, structure names, signature names and functor names.
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Types are fully handled in the static semantics so type names do not appear in environments at this
level: if static elaboration is successful then no type errors can occur during dynamic evaluation. This
rule has a similar meaning to the corresponding static rule; the difference is that it deals with values
rather than with types. (The above explanation and the discussion below gloss over some of the
details of the semantics which are not essential to the discussion, such as the difference between the
meta-variables B and £ and the difference between B+ £ and B @& E.)

As an example of the application of these rules, consider the following Standard ML program
fragment:

local
datatype t = mkt of int }strdecl
val a = 4
in
fun f x = x*2
val v = mkt(f a) }strdecQ

end

Static elaboration proceeds as follows. Suppose that B, is the initial static environment of built-in
types and values; then

By &+ strdec; = (TE,, VE,)

where TFE, is the type environment TFE; = {t — ({y, {mkt — int -> #;})} and VE, is the (static)
value environment VE; = {mkt — int -> ¢y, a+— int} Here, {; is a unique internal name for t which
ensures that it is not confused with other types in the program named t, and {mkt — int -> {#,}
gives the constructors for that type. The result also includes empty environments of exceptions and
structures; such empty environments will usually be omitted below. Continuing,

By @ (TE,, VE,) & strdec, = VE,
where VI, is the value environment VE, = {f — int -> int,v — {;}. Putting these together gives
By local strdec, in strdec, end = VFE,

Notice that a, t and mkt are not available in the resulting environment. The type t is hidden even
though there is a value (v) having that type.
As for dynamic evaluation, if B(/J is the initial dynamic environment of built-in values, then

B(/J F strdec, = VE’1

where VE'1 is the (dynamic) value environment VE’l = {mkt — mkt,a — 4}. The type t does not
appear in this result, but the constructor mkt does. Then,

Bé + VE’1 F strdec, = VE’2

where VE! is the value environment VE', = {f — (x => x*2,...),v — (mkt,8)}. Here, (x => x*2,...)
is a closure: the missing component is the declaration-time environment of the function £ (this is omit-
ted here since it is unimportant for this example). The value bound to v demonstrates the fact that
constructors in Standard ML are uninterpreted. Putting these two inferences together gives

Bé F local strdec, in strdecy end = VE;

As in the static semantics, a and mkt are not available in the resulting environment.

The semantics of Extended ML is comprised of three main parts: static semantics, dynamic
semantics and “verification” semantics. The role of the static semantics is to define the class of
well-formed phrases, the same as in Standard ML, and the static semantic rules for Extended ML
are largely the same as those for Standard ML. The role of the dynamic semantics is to define the
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effect of running a “program” which may contain components which have been specified but not
yet defined in an executable fashion. The effect will be the same as in Standard MI., provided the
undefined components are not used; otherwise an exception is raised. The dynamic semantic rules for
Extended ML are largely the same as those for Standard ML.

In the static and dynamic semantics of Extended ML, axioms are treated as formal comments
which are typechecked but have no other effect. The role of the verification semantics is to define the
effect of these axioms, which involves computing the class of models corresponding to each structure,
signature and functor. The classes of models computed correspond (roughly speaking) to the results
produced by the composition of the 1986 semantics of EKxtended ML and the semantics of ASL. The
division between the static and verification semantics of Extended ML is not so clean as the division
between the static and dynamic semantics, since the interpretation of quantifiers in axioms. which
takes place in the verification semantics, depends strongly on type information collected by the static
semantics (see below). This makes the verification semantic rules a little messy; since most of the
discussion below has nothing to do with this issue, the messiness will be suppressed wherever possible.

The static and dynamic semantic rules for local declarations in Extended ML are exactly the same
as the corresponding rules in the static and dynamic semantics of Standard MI. which have already
been discussed above. The rule in the verification semantics is:

J F ostrdec; = M,
for each My € My, J+ M, F strdec, = M,[M,]

J F local strdec, in strdec, end

= {(¢1 + @2, Ba) | (91, ) € My, (03, By) € My[(0y, By}

The meta-variable M, stands for a model, M, and My[M,] stand for classes of models, and J stands
for an interpretation, which is a model together with a signature and dynamic functor environment.

Models here are much more concrete than algebras as traditionally used in work on algebraic specific-
ations, built from the formal entities used in the semantics of Standard ML, although the purpose is
the same. In place of a collection of carrier sets, a model contains a realisation (meta-variables ¢,
and ¢, above) which gives a set of constructors for each type. In place of a set of functions, a model
additionally contains a dynamic environment (meta-variables F; and F, above). This binds function
names to closures rather than to arbitrary mathematical functions, and binds (constant) value names
to Standard ML values. The advantage of using this concrete notion of model rather than algebras
is that evaluation of an expression in a model is defined directly via the dynamic semantics (taking
exceptions, higher-order functions, etc. into account) rather than by some other means. The above
rule says that the result of local strdec; in strdec, end is a class of models which is obtained by
combining realisations from models of strdec; with corresponding models of strdec,. Although the
types declared in strdec; are no longer accessible in the result, it is necessary to keep track of their
“carriers” in order to interpret quantifiers over types which depend on such types. The premise “for
each My € My, ...7 should be interpreted as a conjunction of premises, one for each M; € M. Since
M may be infinite, we are really dealing here with infinitary rules.

As an example of the application of this rule, consider the following FExtended ML fragment
(compare this with the Standard ML example above):

local
datatype t = mkt of int
val a:int = 7 strdecy
axiom a<5 andalso a>2

in
fun f (x:int) = ?:int
axiom forall x => abs(f x) = abs(x) * 2 ; strdec,
val v = mkt(f a)

end
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Static elaboration and dynamic evaluation have the same results as for the previous example in
Standard MI.. As for the verification semantics, if .J; is the initial interpretation of built-in types and
values, then

Jo b strdecy = {M,, M,}

where M, is a model containing the realisation ¢, = {t, — (ty, {mkt — int-> #y})} and the value
environment {mkt — mkt,a — 3}, and M, is a model containing ¢; and the value environment
{mkt — mkt,a+— 4} (compare VE'1 above). These are the only two models containing the realisation
generated by the declaration of t and an interpretation of a which satisfies the axiom.” The second
premise determines two classes of models, M,[M,] and M,[M,]. M,[M,] is the result of evaluating
strdecy under the interpretation of strdec; given by M, which yields {M, ,M,,....} where M, is
a model containing the empty realisation (no new types are introduced) and the value environment
{f — (x => x%2,...),v — (mkt,6)}, M}, is a model containing the empty realisation and the value
environment {f — (x => "x*2,...),v — (mkt, —6)}, etc. M,[M,] is the result of evaluating strdec,
under the interpretation of strdec; given by M,, which yields {M, , M, ....} where M, is a model
containing the empty realisation and the value environment {f — (x => x*2,...),v— (mkt,8)}, M,,
is a model containing the empty realisation and the value environment {f — (x => “x*2,...),v —
(mkt, —8)}, etc. Putting these together as the rule requires gives

Jo F local strdec; in strdec, end = {M:l, M;27 ceey M;l, M;z, .

where Mlln is obtained by combining the realisation in M, (i.e. ;) with M, and M;n is obtained
by combining the realisation in M, (also ¢,) with M, . So for example, M;1 is the model (¢4, {f —
(x => x*2,...),v — (mkt,8)}) (compare VE/ above).

The ideas of the Extended ML program development methodology presented in Section 2.3 are
reflected in the verification semantics of Extended ML structure and functor bindings. We will briefly
comment on structure bindings; functor bindings are similar, mutatis mutandis. The Standard ML
dynamic semantic rule for a structure binding strid : sigexp = strexp is the following:

B F strexp = K Inter B - sigexp = [
B & strid : sigexp = strexp = {strid — F | I}

Here, Inter B F sigexp = [ computes the “interface” [ of sigexp, the set of (value, exception and
structure) names in sigexp, and £ | [ restricts £ to the names in /. The result is a dynamic structure
environment where strid is bound to a restricted view of the structure £ obtained by evaluating strexp.
The dynamic semantic rule in Extended ML is the same; a simplified version of the corresponding
verification semantic rule in Extended ML is the following:

J F strezp = M J & sigexp = M’
for each M € M, IM' e M' . M “fits” M’

J b ostrid = sigexp = strexp = {(¢', {strid — E'}) | (¢, B') € M'}

Here, M “fits” M’ means that an appropriately restricted version of M is behaviourally equivalent to
M’ with respect to an appropriate set of observable types. The precise details of this are too com-
plicated to be explained without reference to more of the Extended MI. semantics. This requirement
corresponds to one of the proof obligations which is incurred by a decomposition step, namely 2(a)
in Section 2.3. The result of a structure binding is a class of models, one for each possible model of
the structure. A very important point here is that the class of possible models of the structure is
taken to be M’ (the models of the interface sigexp) rather than M (the models of the body strexp).
This may seem worryingly inaccurate: sigerp may allow more models than strezp, and the models

2This is not quite true; an infinite number of similar models would be obtained by interpreting mkt as a closure such
as (x => mkt x,...) or (x => if true then mkt x else mkt(x+1), ...).
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of strexp need only be behaviourally equivalent to models of sigexp. This choice has strong method-
ological motivations. First, in reasoning about a structure we should only need to use those of its
properties which are recorded in its interface. Additional properties which the structure happens to
satisfy are to be ignored since they are accidents of the particular choice of implementation. This
choice is the reason why proof obligation 2(b) incurred by a decomposition step (see Section 2.3) refers
to the signature SIG' associated with a structure identifier rather than requiring the actual class of
models of the structure to be determined. Second, the “inaccuracy” caused by the use of behavioural
equivalence is justified by [Sch 86] and [ST 89]. The name “verification” semantics comes from the
fact that “idealized” classes of models are computed, for the sake of verification of interfaces. By
the way, if there is some model of strexp which fits no model of sigexp, then (since there is no other
rule for this form of structure binding) the structure binding fails to evaluate and so is regarded as
ill-formed from the viewpoint of the verification semantics. This is similar to the failure of an ill-typed
expression to elaborate according to the static semantics. Both forms of failure are caught by rules
for handling programs (sequences of top-level declarations) — these are the rules which make the
connection between the static, dynamic and verification semantics.

One of the advantages of building a semantics of Extended ML starting with the semantics of
Standard ML is that features of Standard ML like polymorphism, higher-order functions and excep-
tions are relatively easy to integrate. Concretely, this means that the type system of Standard ML is
already able to cope with these features and that corresponding semantic objects are already defined
together with appropriate basic operations to manipulate them. Seen within the institutional frame-
work, the signatures and the models of the institution are fixed; a problem which remains is the choice
of the logical language appropriate for writing axioms which specify the properties of the components
of these models and the definition of satisfaction of an axiom by a model. The design of this language
and its semantics involves making choices which are difficult to assess properly without substantial
experience with examples. We have attempted to make choices which seem natural from the stand-
point of the semantics of Standard ML. Further, we have attempted to maximize expressive power,
and to avoid making certain common specification idioms unduly awkward to write.

Syntactically, it is convenient to take axioms to be closed expression of type bool, with the
syntax of such expressions extended by (higher-order) universal and existential quantifiers and equality
over values of arbitrary type. The interpretation of quantifiers is not entirely obvious, especially in
the presence of polymorphic types; this topic will be discussed below. There is a choice with the
interpretation of equality since the evaluation of an expression may diverge or generate an exception.
We have chosen to use a weak version of equality (cf. existence equations [Rei 87]); if exp; and exp,
are two closed expressions of the same type, then exp, = exp, is true in a model M iff the values
of exp, and exp, in M are defined, are not exceptions, and are equal. If exp, diverges or raises an
exception, then so does exp, = exp,. If this is not the case but exp, diverges or raises an exception,
then so does exp; = exp,. This definition also holds if exzp; and exp, are of functional type, or are
data values containing embedded functions, except that we have to decide what kind of equality to
use on function values. We have chosen to use here a strong version of extensional equality; two
functions are equal in a model M iff for all well-typed arguments they produce either equal values in
M or else both are undefined or both produce the same exception. A (postfix) definedness predicate
called terminates is provided; as with D(exp) in [BW 82], exp terminates is true in a model M
if the value of exp is defined in M and is false in M if the value of exp is undefined in M. If the
value of exp in M is an exception then the value of erp terminates is true. In contrast to D(exp)
in [BW 82], exp terminates is not definable as exp = exp. since the value of the latter formula is
undefined (rather than false) if the value of exp is undefined. One could supply a similar predicate
to test whether an expression produces an exception or not (and to test which exception is produced);
this, however, is already expressible in Standard ML. For example, the expression:

(exp ; false) handle _ => true

is true in M if the value of exp in M is an exception, is false if the value of exp in M is defined but
not an exception, and is undefined otherwise.
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From the above discussion it is clear that a multiple-valued logic is being used. Besides the usual
true and false, the value of a closed expression of type bool can be undefined or one of a possibly
infinite number of exceptions. However, at the level of axioms, this does not complicate matters: an
axiom exp is satisfied by a model M iff the value of exp in M is true. Any other result means that
the axiom exp is not satisfied by M.

There are at least two complications concerning the interpretation of quantifiers, both involving the
domain of quantification. Since only ML-representable types and values are available as components
of models, it seems natural that the domain of quantification should include only such values. Only
computable functions are representable in Standard ML; thus the following axiom, which specifies
a function alwayshalts : (int -> int) -> bool to solve the halting problem for (computable)
functions of type int -> int. will not be satisfied by any model:

forall g:int->int => alwayshalts g = (forall x:int => (g x) terminates)

The other complication involves the domain of quantification of quantifiers over polymorphic types.
For example, what is specified by the following axiom?

forall (1:’a list,1’:’a list) => length(1@l’) = length 1 + length 1’
If 1 and 1° are really meant to range over values of type *a 1ist only, then this axiom only says that
length([]@[]) = length []1 + length []

since [] is the only value of this type (in Standard ML)! This is probably not what was intended.
The interpretation we have been considering is to take the value of a quantified formula to be true if
its value is true for all instantiations of the types of the quantified variables (including the identity
instantiation and other instantiations containing type Variables)g, and false if its value is false for
all such type instantiations. If its value is true for some instantiations and false for others, then
the result is undefined. (Quantifiers range only over well-defined values, excluding exceptions and
undefined.) This means that the value of the following expression is undefined:

forall x:’a => forall 1l:’a list => [x]0@1 = 1@[x]

(it is vacuously true for the identity instantiation, is true when ’a is instantiated to any type
having just one value (examples are the built-in type unit and the type ’a 1list) and is false
when ’a is instantiated to any type having more than one value). This seems to be the best choice
of interpretation, taking into account complications involved with nested quantifiers and quantifiers
occurring in negative positions. A similar choice is taken for equality of functions of polymorphic type.
Another possibility would have been to explicitly quantify type variables, but we prefer to avoid this
if possible since it seems to be in conflict with the spirit of ML, where types are left implicit whenever
possible.

In a quantified expression, the domain of quantification depends critically on the type(s) of the
quantified variable(s), as we have seen. This is the source of the (one-way) interaction between the
static and verification semantics of Extended ML; the static semantics is responsible for determining
the most general types of all variables and expressions, and the verification semantics is responsible for
evaluating quantified formulae (and other expressions in axioms). Dynamic recomputation of types is
necessary to make the examples of quantification above and the following example work as intended:

fun ispermutation(l,1’) = forall x => count(x,l) = count(x,1’)

where count : ’a * ’a list -> int counts the number of occurrences of a value in a list. Another
slightly more bizarre example is the following:

fun onlyvalue x = forall y => x=y

31t might be more appropriate to take only ground instantiations of type variables, as in [GP 89].
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The function onlyvalue tests whether or not the given value is the only value of its type. For
example, onlyvalue 3 is false and onlyvalue () is true (where () is the unique value of type
unit). However, onlyvalue [] is undefined since the quantifier ranges over ’a list, and as we
have seen there is a single value of type ’a list but many values of its type instances (int list,
unit list, etc.). Adding an explicit (monomorphic) type qualification to [] changes this result;
onlyvalue([]:int list) is false.

The above discussion leaves completely open the question of proving theorems about Extended ML
specifications. Any proof system for Extended ML would have to be shown sound with respect to the
semantics sketched above. Although this semantics is in some sense very much more “concrete” than
the 1986 version, it is still model-based rather than theory-based and so establishing the soundness of
a proof system will not be an easy task (completeness is unachievable since datatype definitions cor-
respond to data constraints  see [MS 85]). Although the way that we have dealt with polymorphism
is somewhat unusual. the inference rules for type instantiation in PPA [GMW 79]. [Pau 87] seem to
remain sound. We have not yet thought about inference rules for the version of equality discussed
above, and the impact of higher-order functions and exceptions on the rest of the logic is not clear.
It might be necessary to revise our decisions concerning the interpretation of equality, quantification,
etc. if we discover that the versions we have chosen cause grave problems for theorem proving. This
is a delicate area, where seemingly minor changes can have dramatic consequences [Coq 86]. The
inference rules supplied in [ST 88a] for the specification-building operations of ASL should be applic-
able to Extended ML since the basic elements are similar (e.g.. local corresponds to a combination
of translate, U and derive, and substructures in signatures correspond to a combination of U and
translate). For example, the following inference rule may be derived from the ASL inference rules
for translate, U and derive, assuming no name conflicts occur between strdec; and strdec, (here, -
stands for provability, which is intended to be sound with respect to satisfaction, |=):

strdecy U strdecy F exp exp contains no names from strdec,

local strdecy, in sirdec, end - exp

This rule is sound, but more is needed. In order to prove the correctness of development steps when
the signatures involved use local, a different approach is required; see [Far 90] for some methods
developed in the ASL context which are relevant to this problem. The use of infinitary rules in the
verification semantics of Extended ML should not cause substantial additional difficulties, since it
corresponds more or less directly to the use of quantification over model classes in the semantics of
ASL.

Our choice to build the semantics of Extended ML by modifying the semantics of Standard ML has
at least two disadvantages. One is that the resulting semantics is not institution-independent. This
means that the logical language to be used in writing axioms is fixed, along with the target language
to be used for writing code. If we are interested only in the development of Standard ML programs,
this is not such a serious disadvantage since the logical language we intend to provide is powerful
enough to cover all the features of Standard ML. Of course, it might turn out that our definition of
satisfaction is not the most convenient one, but then the main problem is how to redefine satisfaction
in an appropriate way (and the provision of a sound proof system for the new version of satisfaction).
If we are interested in applying the methods of Extended ML in the context of other programming
languages (an obvious candidate is Prolog with modularization facilities added [SWa 87]) then the
advantages of an institution-independent approach are more apparent. Another disadvantage is that
the semantics will not be ASL-based. This will make the theory and methods developed in the context
of AST. more difficult to transfer to the Extended ML context. Tt should not be difficult to overcome
both of these disadvantages. Once we have finished a semantics of Extended ML and convinced
ourselves that it is fully compatible with the semantics of Standard ML, it will be time to consider
how to factor the definitions via ASL and which parts of the semantics depend on the institution at

hand.
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5 Extended ML support tools

The eventual practical feasibility of formal program development hinges on the availability of computer-
aided tools to support various development activities. This is necessary both because of the sheer
amount of (mostly clerical) work involved and because of the need to avoid the possibility of human
error.

Now that most of the theoretical underpinnings of Extended ML seem to be in place, the time seems
ripe to turn attention to an Extended ML support system which will allow the ideas to be tested in
practice. Some ideas concerning appropriate components for such a system and how they might assist
in the program development process are outlined below. What follows is a more or less unstructured
collection of ideas rather than a complete system design. More definite ideas will crystallize once
the first components of the system are in use. Highest priority will be placed on completing three
components: the front end (Extended ML parser and typechecker). adapting a theorem prover for use
with Extended ML, and the verification condition generator. Even a primitive system consisting of
just these three components will be of enormous help in carrying out case studies in formal program
development.

As is to be expected, the Extended M1 support system will be written in Standard ML. This will
enable us to exploit the fact that the Extended ML language is a relatively minor modification of
Standard ML by adapting components of the Standard ML of New Jersey compiler (itself written in
ML) for our purposes. It will also allow us to experiment with the use of the techniques we advocate
in developing the components of the system itself.

User interface

A very important feature of any system is its user interface. With powerful workstations and bit-
mapped screens, windows, pop-up menus, structure editing, hypertext, etc. it is possible to produce
a very flashy interface, although the effort involved is considerable. Our guiding principle here is to
exploit other people’s work as far as possible by adapting and integrating existing user interfaces as
appropriate rather than investing our own effort, at least in the forseeable future.

The syntax and type system of Extended ML is intentionally very close to that of Standard ML
and so the Standard ML parser and typechecker will be useable for the front end of the system with
only minor modifications. One further great advantage of adopting a specification language which is
a variant of Standard ML is that we will be able to take advantage of the environmental tools for
Standard ML (structure editors, etc.) which will shortly be emerging.

This takes care of the user interface for those aspects of program development involving the text of
specifications and programs. The most important thing which this leaves out is theorem proving. We
expect to adapt some existing theorem prover (see below) which will come with its own user interface.

Module library

The task of constructing specifications and developing programs is greatly eased if we have avail-
able a large library of commonly-used specifications (for example, of standard data types like sets,
stacks and queues and standard functions like sorting and searching), each with one or more correct
implementations. Then most of the effort can be devoted to those aspects which are unique to the
problem at hand.

A support system would incorporate a library of Standard ML modules (structures and functors
— mainly the latter) each associated with its interface specification and with cross references to other
modules in the library on which it depends and which depend on it. The cross references would
be used to provide a version control mechanism to ensure that everything is kept consistent when
specifications and modules in the library are changed. This library will grow as the system is used to
develop new modules. In many cases it will be advantageous to retain the entire development history
of a module as advocated in [SS 83], rather than just the module and its interface specification; this
will come in handy in cases where modification of an existing module to suit some new purpose is
required.
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Making friends with specifications

A Standard ML system provides various ways of experimenting with programs in an interactive
fashion — functors may be applied to structures and functions may be applied to various values,
expression evaluation may be timed. etc. In this way it is possible to test that a program is suitable
for some purpose.

We need to provide suitable facilities for users to experiment with specifications in order to under-
stand their consequences and to gain confidence that they reflect what is desired. This is especially
important given the role of a specification as the starting point of the program development process,
and the amount of work involved in formally developing a program from a specification. The parser
and typechecker mentioned above will at least ensure that specifications are syntactically well-formed
and free from type errors, but this is only a start.

If a specification consists only of universally quantified equations or conditional equations, then
under certain conditions term rewriting may be used to evaluate expressions. This fact is used to
justify interest in specification languages in which the expressive power is restricted so as to guarantee
that all specifications are executable. We regard such restrictions as much too strong (cf. [HJ 89])
the step from a non-executable statement of required behaviour to an executable algorithm (even a
very high-level one) is too difficult and too fundamental to be ignored. However, it makes sense to
take advantage of the technology developed in systems like OBJ [GW 88] and RAP [Hus 85] to allow
specifications which happen to be in the required form to be tested. The consequences of specifications
not in this form can be explored using a theorem prover (see below); instead of asking for the value of
an expression f(c) we can try to prove a theorem of the form f(¢) = d where d is the value we expect
f(e) to have.

In addition, tools will be needed to check for certain properties of specifications (sufficient com-
pleteness, consistency etc.). Some of these properties may be checked automatically while checking
others requires the use of a theorem prover. Properties like consistency are very desirable to ensure
peace of mind, albeit not actually required for correctness (an inconsistent specification cannot be
refined to a program, so no incorrect program will be produced). If properties such as sufficient
completeness are present then certain stages of the program development process are simplified.

Verification condition generator

According to the formal program development methodology presented in [S'T 89] and outlined in
Section 2.3, developing Standard ML functors from Extended ML requirements specifications (functor
headings) involves three kinds of steps: decomposition steps, coding steps., and refinement steps.
Each kind of development step involves constructing one or more specifications and verifying that
certain well-formedness conditions hold. and that certain relationships between specifications hold.
Some of these conditions are entirely syntactic, corresponding more or less to signature matching in
Standard ML, and would be handled automatically. Others involve proving theorems and would be
recorded for later attention.

The conditions required may be generated automatically from proposed development steps. It
is natural to make this a side-effect of the usual Standard ML signature matching process, since
the conditions depend to a large extent on information concerning sharing between types which is
determined in the course of signature matching.

Agenda of outstanding tasks

During program development, progress is made on a variety of fronts:

1. Functor headings are implemented in terms of other functors.

2. Abstract programs are written and refined, sometimes producing executable code.
3. Proof obligations incurred during (1) and (2) are discharged.

The final program is guaranteed to be executable and correct with respect to the original specification
once all of these tasks are completed. Some mechanism is required to keep track of those tasks which
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remain, perhaps enforcing some loose control on the order in which they are attacked. For example,
to avoid wasted effort it makes sense to attack a set of accumulated proof obligations top-down
(e.g. discharging those incurred by early development steps before those incurred by later ancillary
development steps) rather than bottom-up.

Behavioural consequence

The proof obligations which arise as a result of development steps will in general involve proving
that certain specifications entail other specifications up to behavioural equivalence rather than “lit-
erally”. As discussed in Section 3, a number of methods are available for establishing behavioural
consequence, where the simplest methods only work in some cases but the most general methods are
difficult to use. In most cases literal entailment will suffice and so nothing more than a theorem prover
as described below will be needed. For those cases where proper behavioural consequence is involved,
some extra machinery is required to apply each of the methods available, generating proof-theoretic
sufficient conditions which may be passed to the theorem prover.

Theorem prover

We expect to use some existing theorem prover as the proof engine for this system, rather than
developing a new theorem prover from scratch. The currently most promising candidates are [sabelle
[Pau 86]. [PN 90] and Lego [Bur 89]. [LPT 89]. Any existing theorem prover would have to be enriched
to cope with the modular structure of specifications along the lines described in [SB 83], cf. [Far 89],
[Far 90], [Far 91].

The small examples of formal program development in Extended ML which have been attempted
so far suggest that 90% or more of the proof obligations which arise will be trivial to establish, either
because (for example) the input interface of one functor is syntactically identical to the output interface
of another, or hbecause any proof involved is immediate. Such proof obligations could be discharged
automatically by a background job while the user is busy with other tasks. The remaining ones
inevitably involve more or less complex induction proofs. This suggests that the methods described
in [BM 88], which can be cast in the form of LCF-style proof strategies [Ste 90], might be able to
handle many of them automatically. This would leave only a few hard proofs which would be tackled
interactively. Limited experience with a theorem prover for the CLEAR specification language suggests
that the modular structure of specifications makes it easier to discover proofs [San 82].

Changing one’s mind

The formal development of realistic programs will not proceed in practice without backtracking,
mistakes and iteration, and Extended ML does not remove the possibility of unwise design decisions.
In particular, it is difficult to get specifications right and so during the program development process
some specifications will change several times in more or less significant ways. It will be important to
salvage as much as possible of a development in progress when such changes are made.

Certain changes to specifications do not affect the correctness of a development in progress at all
provided that an appropriate relation between the old specification and the new specification can be
shown to hold. Alternatively, if the modified specification provides the interface between functors
arising during the decomposition process, then the correctness of the development is preserved if it is
possible to re-establish the correctness of the functors involving that interface.

Salvaging a major part of the development in progress under more radical alterations to specifica-
tions should be possible if the system keeps track of interdependencies, not only at the level of modules
in the library but also at the level of the verification of individual interfaces (for example, matching
a structure against a signature involves matching its substructures against the corresponding subsig-
natures). Even when a specification changes in a radical way, most of the specifications on which it
depends and which depend on it will remain unchanged. The system could check which of the earlier
interfaces still match and flag those which do not. making a distinction between an interface which
must itself be shown to match and one which will match once certain interfaces on which it depends
are shown to match.
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Reusing existing program modules

An often-cited advantage of equipping program modules with specified interfaces is that it enables
such modules to be reused in the development of other systems. As the library becomes more and
more full of modules which were useful as components in previous systems, new systems are supposed
to become easier to build. The effort involved in ensuring that such a module is correct with respect
to its interface specification can thus be justified not only with reference to the system currently under
development but also with reference to possible future projects.

The methodology described in Section 2.3 and the module library mentioned above support such
reuse. The discussion above concerning altering specifications also applies here, allowing existing
modules to be changed to fit modified interface specifications, provided enough information is retained
in the library about the development history of the module. But as the library grows it will become
difficult to identify potentially useful modules. Any process of matching a requirement specification
against the modules in the library which involves theorem proving or non-trivial user interaction seems
doomed to failure once the library grows to a significant size. Probably screening the modules in the
library by means of some crude mechanism such as keyword search is the most cost-effective way of
separating the potential wheat from the chaff.

Changing to a new institution

The first version of the support system will be specialised to developing Standard ML programs
from specifications containing axioms written using the logical language described in Section 4. If
necessary, simplifications may be adopted; for example, the first version of the theorem prover will no
doubt be unable to deal fully with exceptions and/or higher-order quantifiers. As described earlier,
the ideas embodied by Extended ML apply in the context of an arbitrary logical system (institution
[GB 84]) and so ultimately we expect the system to support any form of axioms and any suitable
target programming language. But in order to achieve a well-engineered general system it is necessary
to first gain some experience with a more specialised system such as the one we propose. In the
process of building this system we hope to gain a more concrete understanding of the extent to which
components like those described above can be implemented in an institution-independent way.
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