
Horizontal composability revisited?

Donald Sannella1 and Andrzej Tarlecki2,3

1 Laboratory for Foundations of Computer Science, University of Edinburgh
2 Institute of Informatics, Warsaw University

3 Institute of Computer Science, Polish Academy of Sciences

Abstract. We recall the contribution of Goguen and Burstall’s 1980
CAT paper and its powerful influence on theories of specification imple-
mentation that were emerging at about the same time, via the intro-
duction of the notions of vertical and horizontal composition of imple-
mentations. We then give a different view of implementation which we
believe provides a more adequate reflection of the rather subtle interplay
between implementation, specification structure and program structure.

1 Introduction

Goguen and Burstall’s Cat paper [GB80] is surely the most influential paper in
the algebraic specification literature never to be properly published in a work-
shop or conference proceedings or in a journal. The topic of the paper was the
notion of specification implementation—also known as refinement—as a relation
on specifications, used for the step-by-step development of a program from a
specification of requirements. We write SP � SP ′ to denote that SP ′ is an
implementation of SP , with the informal meaning that SP ′ captures all the re-
quirements expressed by SP but in a way that incorporates more design decisions
and is thus closer to being a program. A hot question at the time was how to
properly formalise this intuition. Earlier work that was relevant to this question
was Hoare’s work on data refinement [Hoa72] which had been incorporated into
VDM [Jon80], and Milner’s work on simulations [Mil71]; first approaches in the
algebraic specification literature were [GTW78] and (early versions of) [Ehr82]
and [EKMP82].

The main contribution of [GB80] was to sketch a compelling two-dimensional
view of implementations, with implementations composing both vertically and
horizontally. Composition along the vertical dimension corresponds to compo-
sition of consecutive implementations: if SP � SP ′ and also SP ′ � SP ′′,
then one would expect to have SP � SP ′′. This justifies the correctness of
the principle of stepwise refinement. (This was called vertical composition be-
cause Goguen and Burstall drew their implementations vertically, with SP at
the top; we draw them horizontally here, except in a few diagrams, to save

? This work was funded in part by the European IST FET programme under the
IST-2005-015905 MOBIUS and IST-2005-016004 SENSORIA projects, and by the
British–Polish Research Partnership Programme.

space.) Horizontal composition is about composing implementations of parts of
a specification to give an implementation of the whole: if SP 1

� SP ′

1 and
SP2

� SP ′

2, then one would expect to have SP1 ⊕ SP2
� SP ′

1 ⊕ SP ′

2 for
any specification-building operation ⊕. In particular, this should hold for com-
position of parameterised specifications: if P1

� P ′

1 and P2
� P ′

2 then one
would expect to have P1;P2

� P ′

1;P
′

2. Finally, it was suggested that vertical
and horizontal composition should satisfy the double law, which says that given a
diagram of implementations admitting both vertical and horizontal composition
of implementations, the result is the same whether vertical composition is done
before or after horizontal composition.

In Section 2 we recall this work. A vertical composition theorem was the
main result in many accounts of implementations that were emerging at about
the same time, sometimes under more or less restrictive conditions on the spec-
ifications or implementations in question. Horizontal composition proved more
elusive; in most cases it remained a topic for the “Future Research” section.
Recent approaches go further. For instance, [GT00] (cf. [Gog96]) provides some
algebraic laws that link vertical and horizontal structure, but with what seems
to be a somewhat different understanding of the vertical dimension. Another
example is [LF97] where horizontal composability is achieved for colimits of
specification diagrams in the context of specifications for reactive systems. Still,
to our knowledge, no theory of implementations ever entirely fulfilled the dream
of Cat.

In Section 4 we give a different view of implementations which we believe
properly reflects the subtle interplay between implementations, specification
structure and program structure, and observe that it trivially satisfies a ver-
tical composition theorem. In Section 5 we consider horizontal composition, and
conclude that it does not hold in general but neither is it desirable. The problem
with horizontal composition arises from the lack of correspondence in general
between the structure of a specification and the structure of a program that im-
plements it, and the difference between operations for combining specifications
on one hand and operations for combining program components on the other.

2 CAT

The Cat paper [GB80] outlines a vision for a future interactive programming
system to be used for the development and maintenance of programs from spec-
ifications, in which program components were to be equipped with specifications
of their properties. The processes by which implementations are carried out
were to be fully modularised and parameterised, and all concepts in Cat were
to have a full semantic definition in order to support formal proofs of correct-
ness. Complete system designs were to be obtained by composing a number of
implementations, each one expressing an elementary design decision. Such a de-
gree of formalization and modularization would be useful not just for achieving
correctness but also for restricting the scope of re-checking required when the
system is modified subsequently. Scherlis and Scott’s Inferential Programming

2

paper [SS83], which led to the Ergo project at CMU [LPRS88], contains some
more detailed ideas along similar lines.

The important part of [GB80] is only a few pages long, sandwiched between a
quick review of the features of the then brand-new Clear specification language
[BG80] and a long OBJ definition that is only marginally relevant (see [GT79] for
a presentation of OBJ as it was at the time). The key insight is the recognition
of a distinction between so-called vertical and horizontal structure:

“One basic intuition behind Cat is that the process of implementing
a large program from its specification has a two-dimensional structure.
One dimension of structure, the horizontal, corresponds to the structure
of the specification. The second dimension, the vertical, corresponds to
the sequence of successive refinements of the specification into actual
code; the specification is at the top, and the code is at the bottom. . . . A
major purpose of the Cat project is to render this intuition much more
precise.” J.A. Goguen and R.M. Burstall [GB80]

In elaborating this point, Goguen and Burstall make reference mainly to the
structure of specifications arising from parameterised specifications, known as
theory procedures in Clear, which provide a specification of requirements that
any actual parameter needs to satisfy as well as a specification of the result.
Implementation of one such procedure P by another one P ′ having the same
“metasource” and “metatarget” specifications SP and SP ′ respectively (where
any actual argument specification must extend SP and then the result will extend
SP ′ in a corresponding way) would be represented by the following diagram:

SP SP ′

� �P

� �
P ′

?

6

�
α

where α gives the relationship between P and P ′.
Nowadays the authors would presumably agree with us (see e.g. [Gog96])

that the proper entities here are specifications of parameterised programs, see
[SST92], that is, descriptions of functions mapping algebras to algebras, rather
than Clear theory procedures which map specifications (descriptions of classes
of algebras) to specifications. See Section 3.

Such implementations should compose both vertically and horizontally. Hori-
zontal composition of implementations refers to composition of implementations
of parts of a specification to give an implementation of the whole. Given the
following diagram:

SP SP ′

� �P

� �
P ′

?

6

�
α SP ′′

� �Q

� �
Q′

?

6

�
β

3

horizontal composition would give

SP

� �P ;Q

� �
P ′;Q′

?

6

�
α·β SP ′′

where “·” denotes horizontal composition of implementations and “;” stands
for composition of specifications of parameterised programs. The same idea ap-
plies to other specification-building operations: given α : SP 1

� SP ′

1 and
α′ : SP2

� SP ′

2, one would expect to have α � α′ : SP1 ⊕ SP2
� SP ′

1 ⊕ SP ′

2

for any specification-building operation ⊕. This depends on having an opera-
tion � for combining implementations that corresponds to each operation ⊕ for
combining specifications. But according to [GB80]:

“Questions remain about how the Clear operations can be extended
from specifications to implementations.”

Vertical composition of implementations corresponds to stepwise refinement:

SP SP ′

� �P

-P ′

� �
P ′′

?

6

�
α

�
α′

SP SP ′

� �P

� �
P ′′

?

6

�
α;α′

The composed implementation α;α′ combines the design decisions in α with
those in α′: for instance, if α shows how to implement graphs using sets, and
α′ shows how to implement sets using lists, then α;α′ shows how to implement
graphs using lists.

Now, suppose we have a structured specification with consecutive implemen-
tations of its components, like so:

SP SP ′

� �P

-P ′

� �
P ′′

?

6

�
α

�
α′

SP ′′

� �Q

-Q′

� �
Q′′

?

6

�
β

�
β′

In this situation we may apply vertical composition to give implementations
α;α′ and β;β′, and then apply horizontal composition to give an implementation
(α;α′)·(β;β′) : P ;Q � P ′′;Q′′. Alternatively, we may first apply horizontal
composition to give implementations α·β and α′·β′, and then apply vertical
composition to give an implementation (α·β);(α′·β′) : P ;Q � P ′′;Q′′. Goguen
and Burstall conjecture that these two implementations should be the same:
the order of composition should not matter. If this “double law” holds then
implementations form a two-dimensional category, see [Mac71] (where the double

4

law is called the “interchange law”). They speculate that the double law may
not hold for some specification-building operations, and then extra care must be
taken at such points during the implementation process.

All of this discussion is set in the context of an arbitrary institution [GB92]—
a concept which first appeared in the semantics of Clear [BG80]—abstracting
away from the particular logical system used to write specifications. There is
no formal definition of what implementation of specifications means. Goguen
and Burstall also suggest that the Cat framework would be appropriate for
use with various different programming languages and programming paradigms.
Although functional languages are the most obvious fit, they speculate that
the use of imperative languages and assembly languages should not pose any
insurmountable obstacles.

3 Specifications and programs

The precise syntax of specifications is not very important in this paper. More
significant is the way that the semantics of specifications is defined: for each spec-
ification SP , we define its signature Sig(SP) and its class of models, Mod(SP),
where each SP -model is a Sig(SP)-algebra: Mod(SP) ⊆ Alg(Sig(SP)). The sig-
nature of a specification defines an interface giving names to the required pro-
gram components, while its models represent programs that are considered to be
its correct realizations. If Sig(SP) = Σ we will say that SP is a Σ-specification.

The framework we are describing is independent of any particular institution
[GB92]. It can therefore be used with different programming paradigms by se-
lecting a notion of model that reflects the features of the paradigm in question.
However, for the sake of concreteness and simplicity let us concentrate on stan-
dard many-sorted algebras over standard algebraic signatures, specified using
axioms in first-order logic with equality. These capture a subset of Standard ML
programs (so-called structures) over Standard ML signatures [MTHM97], com-
prising first-order non-polymorphic datatypes and first-order non-polymorphic
properly-terminating functions.

Example 3.1. The following signature defines an interface for a program to sort
lists of elements with respect to an order relation on the type of elements:

signature SORTELEM =

sig

type elem

val ord : elem * elem -> bool

type listelem

val nil : listelem

val cons : elem * listelem -> listelem

val sort : listelem -> listelem

end

A structure over this signature provides code for the required components, in-
cluding such a sorting program:

5

structure SortElem : SORTELEM =

struct

type elem = int

fun ord(x,y) = x >= y

datatype listelem = nil | cons of elem * listelem

fun sort l = ... (* code for sort *) ...

end

The semantics of Standard ML [MTHM97] can be used to interpret the above
code as a definition of an algebraic signature, call it [[SORTELEM]], and a particular
algebra over this signature [[SortElem]] ∈ Alg([[SORTELEM]]).

Example 3.2. The following specification has the above program as a correct
realization:

specification SORTELEMSPEC =

spec

type elem

val ord : elem * elem -> bool

axiom ... (* ord is transitive, reflexive and antisymmetric *) ...

datatype listelem = nil | cons of elem * listelem

val sort : listelem -> listelem

axiom ... (* sort produces a permutation of its input *) ...

axiom ... (* the output of sort is ordered according to ord *) ...

end

Then Sig(SORTELEMSPEC) = [[SORTELEM]] and [[SortElem]] ∈ Mod(SORTELEMSPEC)
⊆ Alg([[SORTELEM]]).

For the sake of example, one often considers the following rudimentary ways
of building specifications:

basic specifications: For any signature Σ and set Φ of Σ-sentences, the basic

specification 〈Σ,Φ〉 is a Σ-specification with Mod(〈Σ,Φ〉) = {M ∈ Alg(Σ) |
M |= Φ}. (SORTELEMSPEC above is a basic specification.)

union: For any Σ, given Σ-specifications SP 1 and SP2, their union SP1 ∪SP2

is a Σ-specification with Mod(SP1 ∪ SP2) = Mod(SP1) ∩ Mod(SP2).
translation: For any signature morphism σ:Σ → Σ ′ and Σ-specification SP ,

translate SP by σ is a Σ′-specification with Mod(translate SP by σ) =
{M ′ ∈ Alg(Σ′) | M ′

σ ∈ Mod(SP)}.1

hiding : For any σ:Σ → Σ′ and Σ′-specification SP ′, derive from SP ′ by σ

is a Σ-specification with Mod(derive from SP ′ by σ) = {M ′

σ | M ′ ∈

Mod(SP ′)}.1

1 For any signature morphism σ: Σ → Σ
′ and algebra M

′ ∈ Alg(Σ′), M
′

σ ∈ Alg(Σ)

is the reduct of M
′ with respect to σ, see e.g. [ST99]. When σ is a signature inclusion,

M
′

σ may be written as M
′

Σ .

6

This follows Asl [SW83,ST88a] and is different from Clear, where specification
expressions denoted theories which in turn have model classes, see [ST97] for a
discussion of the difference. The operations are more primitive but are similarly
expressive: for instance “+” in Clear corresponds to union of suitably translated
specifications over different signatures, where the translations respect shared
subspecifications.

This defines a number of so-called specification-building operations which map
specifications to more complex specifications: we have constant specification-
building operations (basic specifications), one binary specification-building op-
eration (union) and two unary ones (translation and hiding). In fact, each of
these may be viewed as a family of operations, indexed by signatures (union) and
specification morphisms (translation and hiding). Once this “static” indexing is
fixed, each specification-building operation semantically amounts to a function
on appropriate classes of models.

One property of the above specification-building operations will prove cru-
cial for further considerations: an n-ary specification-building operation op is
monotone if it is monotone as a function on model classes. That is: for any
specifications SP1, SP ′

1, . . . , SPn, SP ′

n, such that Sig(SP i) = Sig(SP ′

i) and
Mod(SP i) ⊆ Mod(SP ′

i) for i = 1, . . . , n, we also have Mod(op(SP1, . . . ,SPn)) ⊆
Mod(op(SP ′

1, . . . ,SP ′

n)).
All the above specification-building operations, and therefore any operation

that may be defined using them, are monotone. In fact, nearly all specification-
building operations one may find in the literature are monotone. The only
exception we are aware of are operations that select initial or free models of
specifications—one may argue though that such an operation should be viewed
as simply imposing an additional constraint on the class of models of a speci-
fication, like an axiom, rather than as specification-building operations in their
own right (see for instance data constraints in [GB92]).

Structured specifications in Casl [BM04,CoF04] are based on the operations
above as well; somewhat more convenient notation is introduced there, which we
will use in examples too. For instance, union (not limited to specifications with
identical signatures) is written with and, translation along surjective signature
morphisms is written with with (followed by the mapping of symbols), hiding
is written with reveal or hide (followed by a list of symbols). Perhaps most
useful is then, which is an obvious combination of a translation along a signa-
ture inclusion with union to build an extension of a specification by new sorts,
operations and/or axioms.

Example 3.3. Here are some examples of structured specifications:

specification ELEMSPEC =

spec

type elem

val ord : elem * elem -> bool

axiom ... (* ord is transitive, reflexive and antisymmetric *) ...

end

specification ELEMLISTSPEC =

7

ELEMSPEC then

datatype listelem = nil | cons of elem * listelem

end

specification PERMELEMSPEC =

ELEMLISTSPEC then

val perm : listelem -> listelem

axiom ... (* perm produces a permutation of its input *) ...

end

specification ORDERELEMSPEC =

ELEMLISTSPEC then

val order : listelem -> listelem

axiom ... (* the output of order is ordered w.r.t. ord *) ...

end

specification STRUCTSORTELEMSPEC =

{PERMELEMSPEC with perm |-> sort}
and

{ORDERELEMSPEC with order |-> sort}

Specifications SORTELEMSPEC of Example 3.2 and STRUCTSORTELEMSPEC above
are equivalent: they have the same signature ([[SORTELEM]] in both cases, see
Example 3.1) and the same class of models.

In common with all work on algebraic specification we have taken the view
that algebras model programs. But in general we are interested in program
components which define new sorts and operations in terms of some existing ones.
These may be generic components, where the parameters are supplied explicitly,
or components that explicitly import or implicitly build on other components.
In each case, we need to model components as functions mapping algebras to
algebras; in the case of explicit or implicit imports this reflects the way that the
newly-defined sorts and operations depend on the imports.

Definition 3.4. Let Σ and Σ ′ be signatures. A (Σ → Σ′)-constructor is a

function2 mapping Σ-algebras to Σ′-algebras.

In the standard algebraic institution, constructors correspond most directly
to Standard ML functors defining first-order non-polymorphic datatypes and
first-order non-polymorphic properly-terminating functions, where the input and
output signatures are explicit.

Example 3.5. Here is an example of a constructor in Standard ML:

signature ELEM =

sig

type elem

val ord : elem * elem -> bool

2 In general, we need to consider partial constructors, where the result may not be
defined for every algebra over the parameter signature but only for those that sat-
isfy additional constraints. See [ST89]. For simplicity, we restrict attention to total
constructors here, with a few comments in footnotes concerning partial constructors.

8

end

functor Sort(X: ELEM) : SORTELEM =

struct

open X

datatype listelem = nil | cons of elem * listelem

fun sort l = ... (* code for sort *) ...

end

The semantics of Standard ML can be used to interpret the above code as
defining a function mapping [[ELEM]]-algebras to [[SORTELEM]]-algebras, i.e. an
([[ELEM]] → [[SORTELEM]])-constructor. One important property of this function
is that it is persistent : the argument structure is extended to the result struc-
ture, preserving the interpretation of parameter types and values.

Any (Σ → Σ′)-constructor κ determines a specification-building operation,
written κ as well, that takes any Σ-specification SP to a Σ ′-specification having
the image of Mod(SP) under κ as its models: Mod(κ(SP)) = {κ(M) | M ∈
Mod(SP)}. Hiding is one such specification-building operation, determined by
reduct. The other specification-building operations discussed above do not arise
in such a way, in general. Translation is determined by a total constructor only
when it is with respect to a bijective renaming3, and then it coincides with hiding
with respect to the inverse of that renaming. Casl union is not determined by
a total constructor unless there is no overlap (“sharing”) between the signatures
of the arguments.4

Constructors may themselves be specified. For the same reason as ordinary
specifications describe classes of algebras, constructor specifications describe
classes of constructors, that is, classes of functions mapping algebras to alge-
bras [SST92].

Definition 3.6. Given specifications SP and SP ′, the constructor specifica-
tion SP → SP ′ specifies the class of (Sig(SP) → Sig(SP ′))-constructors that

map models of SP to models of SP ′: Mod(SP → SP ′) = {F :Alg(Sig(SP)) →
Alg(Sig(SP ′)) | for each A ∈ Mod(SP), F (A) ∈ Mod(SP ′)}.5

Moreover, when Sig(SP) overlaps with Sig(SP ′) then the specified construc-

tors should preserve the interpretation of the overlapping sorts and operations. In

particular, when Sig(SP) is a subsignature of Sig(SP ′), then as in Casl we re-

quire the functions in Mod(SP → SP ′) to be persistent: when F :Alg(Sig(SP)) →
Alg(Sig(SP ′)) ∈ Mod(SP → SP ′) then for every model A ∈ Mod(SP), F (A) ∈
Mod(SP ′) is such that F (A) Sig(SP) = A.

3 Translations along surjective signature morphisms are determined by partial con-
structors, in general.

4 When there is overlap, Casl union is determined by a partial constructor which
amalgamates models that coincide on the shared subsignature.

5 If partial constructors are considered, an additional requirement here would be that
their domain contains Mod(SP).

9

Example 3.7. Recall Examples 3.1–3.3. Then ELEMSPEC → SORTELEMSPEC is a
specification of (persistent) constructors F :Alg([[ELEM]]) → Alg([[SORTELEM]])
that when given a model E ∈ Mod(ELEMSPEC) extends it to a model F (E) ∈
Mod(SORTELEMSPEC). One example of such a constructor is the functor Sort ∈
Mod(ELEMSPEC → SORTELEMSPEC), presented in Example 3.5. Constructor spec-
ifications correspond to functor specifications in Extended ML, see [KST97].

The generalisation to n-ary constructors and constructor specifications is
straightforward.

4 Implementations and vertical composition

A very simple notion of specification implementation is the following:

Definition 4.1. Let SP and SP ′ be specifications such that Sig(SP) = Sig(SP ′).
Then SP ′ is a simple implementation of SP, written SP � SP ′, if Mod(SP) ⊇
Mod(SP ′).

This simply requires that all of the correct realizations of SP ′ are correct real-
izations of SP . That is, SP ′ incorporates all the requirements that are in SP ,
and perhaps other constraints that result from additional design decisions.

For simplicity, the definition of simple implementation requires the signatures
of both specifications to be the same. The hiding operation may be used to adjust
the signatures (for example, by removing auxiliary functions from the signature
of the implementing specification) if this is not the case.

The fact that simple implementations vertically compose is an immediate
consequence of the transitivity of the subset relation:

Proposition 4.2. If SP � SP ′ and SP ′ � SP ′′ then SP � SP ′′.

The notion of simple implementation is powerful enough (in the context
of a sufficiently rich specification language) to handle all concrete examples of
interest. However, it is not very convenient. During the process of developing a
program, the successive specifications incorporate more and more details arising
from successive design decisions. Thereby, some parts become fully determined,
and remain unchanged as a part of the specification until the final program
is obtained. The following diagram is a visual representation of this situation,
where κ1, . . . , κn label the parts that become determined at consecutive steps.'

&

$

%
SP0

�

κ1

'
&

$
%SP1

�

κ1
κ2

�
�

�
�SP2

� · · · �

κ1
κ2

· · · κn•

It is more convenient to avoid such clutter by separating the finished parts from
the specification, putting them aside, and proceeding with the development of
the unresolved parts only:

10

'

&

$

%
SP0 κ1

�

'
&

$
%SP1 κ2

�

�
�

�
�SP2 κ3

� · · · κn

� • SPn =
���������

where
�	�������

is a specification for which a standard implementation empty is
available.

It is important for the finished parts κ1, . . . , κn to be independent of the
particular choice of realization for what is left: they should extend any realization
of the unresolved part to a realization of what is being implemented. This is
exactly what is required by the notion of a constructor defined in Sect. 3: κi

is a function taking models of SP i to models of SP i−1. These considerations
motivate a more elaborate version of the notion of implementation:

Definition 4.3 ([ST88b]). Given specifications SP and SP ′ and constructor

κ : Alg(Sig(SP ′)) → Alg(Sig(SP)), we say that SP ′ is a constructor implemen-
tation of SP via κ, written SP κ

� SP ′, if κ ∈ Mod(SP ′ → SP).

Thus, in the development diagram above, κi:Alg(Sig(SP i)) → Alg(Sig(SP i−1))
with κi ∈ Mod(SP i → SP i−1) for 1 ≤ i ≤ n; that is, each κi corresponds to
a parameterised program with input interface SP i and output interface SP i−1.
Given a model M of SP i, κi may be applied to yield a model κi(M) of SP i−1.

Example 4.4. From Example 3.7, we have SORTELEMSPEC
Sort

ELEMSPEC. That

is, the task of implementing sorting of lists of elements with respect to a function
ord is reduced by means of the constructor Sort to the task of implementing
elem and ord.

The definition of constructor implementation generalises smoothly to imple-
mentations of constructor specifications. This requires higher-order constructors;
for details see [ST97].

It is easy to see that constructor implementations compose vertically:

Proposition 4.5. If SP κ
� SP ′ and SP ′

κ
′

� SP ′′ then SP
κ

′;κ

� SP ′′.

So, a constructor implementation via κ:Alg(Sig(SP ′)) → Alg(Sig(SP)) com-
posed with a constructor implementation via κ′:Alg(Sig(SP ′′)) → Alg(Sig(SP ′))
yields a constructor implementation via κ′;κ:Alg(Sig(SP ′′)) → Alg(Sig(SP)),
which is just the composition of the functions κ′ and κ written in diagrammati-
cal order.

Once the development process is finally complete (that is, when nothing is
left unresolved, as in the diagram above) we can successively apply the construc-
tors to obtain a correct realization of the original specification. The correctness
of the final outcome follows from the correctness of the individual constructor
implementation steps via vertical composition.

Proposition 4.6. Given a chain of constructor implementation steps

SP0 κ1

� SP1 κ2

� · · · κn

� SPn =
���	���
�

we have (κn; · · · ;κ2;κ1)(empty) ∈ Mod(SP0).

11

Many approaches to implementation in the literature make use of a restrictive
kind of constructor defined by a parameterised program having a particular
rigid form: for example, the notion of implementation in [EKMP82] corresponds
to the use of a constructor obtained by composing a free construction with a
reduct, then a restriction to a subalgebra, and finally a quotient, in that order.
Then the vertical composition of two implementations is required to yield an
implementation of the same form, which is only possible under certain additional
conditions on the specifications involved. This amounts to a requirement that the
composition of parameterised programs be forced into some given normal form,
which corresponds to requiring programs to be written in a rather restricted
programming language.

5 Horizontal composition

In Sect. 3 we have recalled a few basic specification-building operations, which
form the backbone of many specification languages. Since the pioneering work on
Clear [BG80], a number of such languages have been designed and used, with
Casl [BM04,CoF04] as a prime recent example. They all aim at providing a con-
venient way to build specifications in a structured manner, where specification-
building operations are used to gradually construct more and more complex
specifications out of simpler component specifications. This horizontal structure

of specifications (in the terminology of [GB80]) is indispensable for facilitating
the understanding and use of any practical (hence: large and complex) specifi-
cation. Typical ways in which the horizontal structure of specifications has been
successfully exploited include the compositional semantics of complex specifica-
tions languages like Casl [BCH+04] and compositional proof systems for con-
sequences of specifications, as introduced in [ST88a] and analyzed in [Bor02],
even if for practical specification languages compositionality may sometimes be
sacrified [MHAH04].

Under a mild assumption of monotonicity of the specification-building oper-
ations involved, the horizontal structure of specifications may also be exploited
in the development process:

Proposition 5.1. Suppose that op is a monotone n-ary specification-building

operation. If SP1
� SP ′

1, . . . , SPn
� SP ′

n then op(SP1, . . . ,SPn) �

op(SP ′

1, . . . ,SP ′

n).

For simple implementations, Prop. 5.1 captures the essence of horizontal com-
position, as introduced in [GB80]. For constructor implementations this takes the
following form:

Proposition 5.2. Suppose that op is a monotone n-ary specification-building

operation. If SP1 κ1

� SP ′

1, . . . , SPn κn

� SP ′

n then op(SP1, . . . ,SPn) �

op(κ1(SP ′

1), . . . , κn(SP ′

n)).

Note that κ1 in κ1(SP ′

1) refers to the specification-building operation determined
by the constructor κ1—see Sect. 3—and similarly for the other constructors.

12

The strength and usefulness of Props. 5.1 and 5.2 are severely limited by two
fundamental problems.

First, the consistency of specifications is not preserved under such refinement
in general. In Prop 5.1, op(SP1, . . . ,SPn) may be a perfectly implementable
(consistent) specification, while op(SP ′

1, . . . ,SP ′

n) is inconsistent, and hence can-
not be implemented, even if implementation of each of the refined individual
component specifications SP ′

1, . . . , SP ′

n is unproblematic.

Example 5.3. Consider the following trivial example:

specification EVEN =

spec val a : int

axiom exists k : int . a = 2 * k

end

specification SMALL =

spec val a : int

axiom a > 0 andalso a < 10

end

specification SMALL_EVEN = SMALL and EVEN

The last specification is formed as a union of two simpler specifications, and thus
combines the requirements they impose. (Obviously, algebras in [[SMALL EVEN]]
have a ∈ {2, 4, 6, 8}.)

Since and is monotone, Prop. 5.1 allows one to refine SMALL EVEN by refining
its component specifications independently. Consider for instance:

specification VERY_EVEN =

spec val a : int

axiom exists k : int . a = 8 * k

end

specification VERY_SMALL =

spec val a : int

axiom a > 0 andalso a < 5

end

specification VERY_SMALL_VERY_EVEN = VERY_SMALL and VERY_EVEN

Clearly, we have then EVEN � VERY EVEN and SMALL � VERY SMALL, and so
by Prop. 5.1,

SMALL EVEN
�

VERY SMALL VERY EVEN.

However, even though both VERY SMALL and VERY EVEN are consistent and sep-
arately can be easily implemented, the specification VERY SMALL VERY EVEN is
inconsistent, and so taking this implementation step cannot lead to a final real-
ization of SMALL EVEN.

The above problem with consistency of the refined specification may arise
even with a unary specification-building operation op (for instance, consider
translation along a non-injective signature morphism). However, it does not arise
if the operation op is determined by a constructor.

13

The other problem with refinement based on horizontal composability is per-
haps even more fundamental. Although the horizontal structure of a specification
is crucial for its understanding and use, in general this structure may well be
quite different from the modular structure of the final program that implements
it. The aims of horizontal structure at the level of the original, high-level, ab-
stract requirements specification are quite separate from the aims of modular
structure in the final program. An interesting and convincing example is pre-
sented in [FJ90] in a somewhat different framework, but the case study and
the general line of reasoning carry over here as well. The conclusion from this
is that while horizontal composability (with respect to monotone specification-
building operations) yields sound refinements and so may be used when appro-
priate, it cannot be the only way to implement structured specifications. We
need separate means to explicitly mark design decisions that fix the final mod-
ular structure of the program under development, which requires the top-level
specification-building operations to be determined by constructors. Once such a
design specification [AG97] has been fixed, this top-level horizontal structure is
to be preserved in programs resulting from the development process, and further
development proceeds for each component specification separately. The final re-
sult is then obtained by applying the top-level constructors to the outcomes of
these separate developments.

Consider for instance an n-ary constructor op. Abusing slightly the notation
of architectural specifications [BST02] as provided by Casl [BM04,CoF04], a
design specification that designates the top-level constructor op to be preserved
and used at the top level of the modular structure of the final program may take
the following form:

arch spec OP_DESIGN =

units U_1 : SP_1

...

U_n : SP_n

result op(U_1,...,U_n)

This introduces names (U 1, . . . , U n) of units (or modules) to be further de-
veloped as realizations of their specifications (SP 1, . . . , SP n, respectively) and
then put together using the constructor op to yield the overall realization of the
system.6 An architectural specification can be compared with ordinary specifica-
tions by defining its models to be all the possible result units that may be built
in this way. Then one may consider refinements involving architectural specifi-
cations, like SP �

OP DESIGN. This captures a design decision to implement
the specification SP by a modular system, where the top-level modules U 1, . . . ,
U n, fulfilling specifications SP 1, . . . , SP n, respectively, are put together using
the constructor op.

In particular, we always have: op(SP 1, . . . , SP n) �
OP DESIGN. Note that

op refers here to the specification-building operation determined by the con-
structor op, see Sect. 3.

6 If op is partial, it is necessary to ensure that no tuple of models which may potentially
be given as an argument to op is outside its domain. See [BST02].

14

For unary constructors K, the constructor implementation SP
K

� SP ′ cor-
responds exactly to the refinement SP � K DESIGN, where

arch spec K_DESIGN = unit U : SP’ result K(U)

An important twist in Casl architectural specifications is that the units
used here may in fact be generic modules, that is, constructors with specifica-
tions taking the form discussed in Sect. 3. This allows one to delegate “coding”
of constructors (as, say, Standard ML functors) to further development of the
corresponding units, and to limit the vocabulary of the constructors in use in
the result unit expression to a few basic constructs including the application of
a generic unit to an argument.

Example 5.4. Recall the specifications in Examples 3.1–3.7. Note that the spec-
ification SORTELEMSPEC requires a sorting program sort for some realization for
the type elem and ordering predicate ord chosen by the implementor. The fol-
lowing architectural specification decomposes this task by separating out on one
hand the task to build such a realization for elem and ord, and on the other
hand, the task of providing a sorting program sort that will work for any such
realization. The overall result is then given by instantiating the outcome of the
latter task to the outcome of the former one.

arch spec SORT_SPEC =

units E : ELEMSPEC

S : ELEMSPEC -> SORTELEMSPEC

result S(E)

Then SORTELEMSPEC � SORT SPEC. We also have STRUCTSORTELEMSPEC �

SORT SPEC even though the structure of SORT SPEC does not match the structure
of STRUCTSORTELEMSPEC.

The main point of architectural specifications as sketched above is that fur-
ther developments of the specified units may proceed independently from each
other, and the final results of these developments, which fulfill the unit specifi-
cations, may then be put together as prescribed by the result unit expression.
Soundness of this procedure is guaranteed by the horizontal composability of
implementations, Props. 5.1 and 5.2—however, with the additional effect that
consistency of the result is ensured provided that each refined component spec-
ification remains consistent.

Note that horizontal composability follows from the following properties of
implementation steps involving individual component specifications. Let op be
a monotone n-ary specification-building operation.

– If SP1
� SP ′

1 then op(SP1, . . . ,SPn) � op(SP ′

1, . . . ,SPn).
. . .
– If SPn

� SP ′

n then op(SP1, . . . ,SPn) � op(SP1, . . . ,SP ′

n).

Prop. 5.1 then follows by a simple application of vertical composability (Prop. 4.2).
Similarly, for constructor implementations we have:

15

– If SP1 κ1

� SP ′

1 then op(SP1, . . . ,SPn) � op(κ1(SP ′

1), . . . ,SPn).
. . .
– If SPn κn

� SP ′

n then op(SP1, . . . ,SPn) � op(SP1, . . . , κn(SP ′

n)).

Prop. 5.2 now follows easily by Prop. 4.2.
The refinements of component specifications here are entirely independent

from each other, and so may be taken in an arbitrary order. “Composition” of
such independent refinements in any chosen order always yields the same result.

The key case here is when op is a constructor, and the specification considered
is the architectural specification OP DESIGN as above. In the notation of [MST04],
refinements of individual unit specifications can be defined as follows:

refinement R_1 = U_1: SP_1 refined to arch spec

unit X_1 : SP’_1

result K_1(X_1)

...

refinement R_n = U_n: SP_n refined to arch spec

unit X_n : SP’_n

result K_n(X_n)

In [MST04], we have introduced the possibility of composing refinements, and
indeed, according to the formal semantics given there, the above refinements can
be composed in an arbitrary order, and each such composition yields the same
result. For instance:

refinement R_1_to_n = R_1 then ... then R_n

refinement R_n_to_1 = R_n then ... then R_1

yields R 1 to n = R n to 1. The fact that these refinements coincide in the case
n = 2 captures the “double law” of [GB80], see Sect. 2.

In fact, [MST04] provides for the possibility of writing down the correspond-
ing fragment of a development tree as follows:

arch spec DEVELOP =

units U_1 : SP_1 refined to arch spec

unit X_1 : SP’_1

result K_1(X_1)

...

U_n : SP_n refined to arch spec

unit X_n : SP’_n

result K_n(X_n)

result op(U_1,...,U_n)

It should be clear (and this can be formally proved within the framework of
[MST04]) that this is equivalent to the following architectural specification:

arch spec OP_DESIGN’ =

units X_1 : SP’_1

...

X_n : SP’_n

result op(K_1(X_1),...,K_n(X_n))

16

This explicitly captures the composition of the design decision to use op as the
top-level constructor (captured by OP DESIGN) with the constructor implemen-
tations for components in an arbitrary order. Note that this easily generalises to
implementations of individual components that lead to further decomposition,
again given by architectural specifications.

Example 5.5. Continuing Examples 5.4 and 3.1–3.7, consider the following ad-
ditional specification:

specification INSERTELEMLISTSPEC =

ELEMLISTSPEC then

val insert : elem * listelem -> listelem

axiom ... (* if l is ordered then insert(e,l) puts e into l

so that the result is ordered *) ...

Then the architectural specification SORT SPEC may be refined as follows:

arch spec SORT_SPEC’ =

units E: ELEMSPEC

S: ELEMSPEC -> SORTELEMSPEC

refined to

arch spec

units L: ELEMSPEC -> ELEMLISTSPEC

I: ELEMLISTSPEC -> INSERTELEMLISTSPEC

IS: INSERTELEMLISTSPEC -> SORTELEMSPEC

result lambda X: ELEMSPEC . IS(I(L(X)))

result S(E)

We can also make the resulting overall design explicit as follows:

arch spec SORT_SPEC’’ =

units E: ELEMSPEC

L: ELEMSPEC -> ELEMLISTSPEC

I: ELEMLISTSPEC -> INSERTELEMLISTSPEC

IS: INSERTELEMLISTSPEC -> SORTELEMSPEC

result IS(I(L(E)))

Of course, we then have SORTELEMSPEC � SORT SPEC’’. Further development
may involve for instance direct implementations of the generic units L, I and IS

as Standard ML functors, entirely independent from each other.

The above example is misleadingly simple since there is no requirement for
sharing between the units involved in the design. In general this need not be the
case. Suppose that the task of implementing a specification SP big is decomposed
into the tasks of implementing specifications SP 1 and SP2 where [[SP1 and

SP2]] ⊆ [[SPbig]] but the signatures of SP1 and SP2 overlap. If a realization of
SPbig is to be obtained by combining realizations of SP 1 and SP2, these two
realizations need to share the realization of their common part. This is handled
as in [Bur84]: we provide a specification SP of the common part and add its
realization as a new task, and then use (persistent) generic units to separately

17

extend the resulting unit to realizations of SP 1 and SP2, thus ensuring that they
share this common part and so can be put together.

Formalizing this: if Sig(SP) ⊇ Sig(SP 1) ∩ Sig(SP2) and [[SP and SP1 and

SP2]] ⊆ [[SPbig]], then SPbig
� SHARING SPEC where

arch spec SHARING_SPEC =

units U: SP

F1: SP->SP1

F2: SP->SP2

result F1(U) and F2(U)

Here, “and” is a partial binary constructor which amalgamates two models pro-
vided that they coincide on their common subsignature—see footnote 4 and note
that the requirement mentioned in footnote 6 is satisfied. Note again that further
refinements of the components may proceed independently from each other.

6 Conclusions

What emerged from [GB80] was a powerful and stimulating view of the process of
systematic development of software from high-level formal specifications. What
was insightful, new and perhaps ahead of its time then was the stress on structure

as the only realistic means to master the size and complexity of practical software
development projects.

The Cat paper identified formally two orthogonal aspects of structure in
the process of software development: the vertical dimension, the structure of the
development process as such; and the horizontal dimension, the structure of the
specifications involved in development. Making this distinction was crucial to
separating the two dimensions, for separate study, with vertical and horizontal
composability as the key result to aim for. These separate lines of research re-
sulted in a lot of interesting work, crucial for an adequate formalisation of the
development process.

The vertical dimension proved easier for the theory: in spite of technical dif-
ficulties, in many frameworks the key vertical compositionality result has been
established, with our composition of constructor implementations (further gen-
eralised to composition of abstractor implementations, not discussed here, see
[ST88b,ST97]) covering the previous work as special cases—with the results re-
called in Sect. 4.

The horizontal dimension attracted much work and research as well (includ-
ing the pioneering work by Goguen and Burstall themselves on Clear [BG80])
with many specification languages designed that included various forms of hor-
izontal structuring of specifications, and many key results on the use of this
horizontal structure for proper understanding and use of large specifications.
However, the interaction of the horizontal structure with development, formu-
lated in [GB80] as horizontal composability, and the double law used to capture
the interplay between the two dimensions, proved much tougher. In fact, there
are hints in [GB80] which indicate that the authors viewed this idea as some-
what speculative, and foresaw potential obstacles in making it effective. We have

18

already quoted their thought that the task to design implementation composi-
tion operations corresponding to all specification-building operations in Clear

might be difficult. They also mention that the structure of a specification, with
horizontal composition as the way to build its implementations, may constitute
an “implementation bias”, thus (perhaps unnecessarily) preventing implementa-
tions having a different structure. From our current perspective, it seems a bit
unrealistic to claim that “this kind of bias seems to be actually desirable for large
specifications, because it helps the implementer in his difficult task of structur-
ing the overall program design.” Indeed, this may well be the case sometimes,
but it is certainly not always true.

As presented at length in Sect. 5, we are very far from the view that horizon-
tal composability is unimportant. However, we believe that one should carefully
distinguish and keep separate two conceptually different roles that the horizontal
structure of a specification may play. One is the usual structuring of specifica-
tions, used to present the concepts of the problem space in a clear and perspicu-
ous way. The horizontal structure obtained in this way is in principle irrelevant
for vertical development, although it may be used when appropriate. The other
role is the design of the modular structure of the system to be developed. This
may be viewed as a very special kind of horizontal structure, which indeed is re-
quired to be preserved throughout development. Horizontal composability with
respect to this structure is crucial, of course, and the double law is a natural
and useful consequence. We proposed architectural specifications as a tool for
capturing horizontal structure of this latter kind. We feel that the overall pic-
ture of vertical development and its interplay with this horizontal structure, as
imposed by architectural specifications and sketched in Sects. 4 and 5, give a
well-founded account of the ideas that were put forward in [GB80].

Acknowledgements: Hearty congratulations to Joseph on his 65th birthday
and our thanks to him for the many novel ideas that over the years have stimu-
lated much of our own work as well!

References

[AG97] R. Allen and D. Garlan. A formal basis for architectural connection.
ACM Transactions on Software Engineering and Methodology, 6(3):213–
249, 1997.

[BCH+04] H. Baumeister, M. Cerioli, A. Haxthausen, T. Mossakowski, P.D. Mosses,
D. Sannella, and A. Tarlecki. Casl semantics. [CoF04], part III, pages
115–273. D. Sannella and A. Tarlecki, editors.

[BG80] R.M. Burstall and J.A. Goguen. The semantics of Clear, a specifica-
tion language. In Proceedings of the Abstract Software Specifications, 1979
Copenhagen Winter School, Springer LNCS 86, pages 292–332, 1980.

[BM04] M. Bidoit and P.D. Mosses. Casl User Manual. Springer LNCS 2900
(IFIP Series). 2004. With chapters by T. Mossakowski, D. Sannella, and
A. Tarlecki.

[Bor02] T. Borzyszkowski. Logical systems for structured specifications. Theoretical
Computer Science, 286:197–245, 2002.

19

[BST02] M. Bidoit, D. Sannella, and A. Tarlecki. Architectural specifications in
Casl. Formal Aspects of Computing, 13:252–273, 2002.

[Bur84] R.M. Burstall. Programming with modules as typed functional program-
ming. In Proc. Intl. Conference on Fifth Generation Computing Systems,
Tokyo, pages 103–112, 1984.

[CoF04] CoFI (The Common Framework Initiative). Casl Reference Manual.
Springer LNCS 2960 (IFIP Series). 2004.

[Ehr82] H.-D. Ehrich. On the theory of specification, implementation and parame-
terization of abstract data types. Journal of the Association for Computing
Machinery, 29:206–227, 1982.

[EKMP82] H. Ehrig, H.-J. Kreowski, B. Mahr, and P. Padawitz. Algebraic implemen-
tation of abstract data types. Theoretical Computer Science, 20:209–263,
1982.

[FJ90] J. Fitzgerald and C.B. Jones. Modularizing the formal description of a
database system. In Proc. 3rd Intl. Symp. VDM Europe: VDM and Z,
Formal Methods in Software Development, Springer LNCS 428, pages 189–
210, 1990.

[GB80] J.A. Goguen and R.M. Burstall. Cat, a system for the structured elabora-
tion of correct programs from structured specifications. Technical Report
CSL-118, Computer Science Laboratory, SRI International, 1980.

[GB92] J.A. Goguen and R.M. Burstall. Institutions: Abstract model theory for
specification and programming. Journal of the Association for Computing
Machinery, 39(1):95–146, January 1992. An early version appeared under
the title “Introducing Institutions” in Logics of Programs, Springer LNCS
164, 221–256, 1984.

[Gog96] J.A. Goguen. Parameterized programming and software architecture. In
Proc. 4th Intl. IEEE Conf. on Software Reuse, pages 2–11, 1996.

[GT79] J.A. Goguen and J. Tardo. An introduction to OBJ: A language for writing
and testing software specifications. In M. K. Zelkowitz, editor, Specification
of Reliable Software, pages 170–189. IEEE Press, Cambridge (MA, USA),
1979. Reprinted in Software Specification Techniques, N. Gehani and A.
McGettrick, editors, Addison-Wesley, 1985, pages 391–420.

[GT00] J.A. Goguen and W. Tracz. An implementation-oriented semantics for
module composition. In Foundations of Component-Based Systems, pages
231–263. Cambridge University Press, 2000. Edited by G. Leavens and M.
Sitaraman.

[GTW78] J.A. Goguen, J.W. Thatcher, and E.G. Wagner. An initial algebra approach
to the specification, correctness and implementation of abstract data types.
In Current Trends in Programming Methodology, Vol. 4: Data Structuring,
pages 80–149. 1978. Edited by R.T. Yeh.

[Hoa72] C.A.R. Hoare. Correctness of data representations. Acta Informatica,
1:271–281, 1972.

[Jon80] C.B. Jones. Software Development: A Rigorous Approach. Prentice Hall,
1980.

[KST97] S. Kahrs, D. Sannella, and A. Tarlecki. The definition of Extended ML: A
gentle introduction. Theoretical Computer Science, 173:445–484, 1997.

[LF97] A. Lopes and J. Fiadeiro. Preservation and reflection in specification. In
Proc. 6th Intl. Conference on Algebraic Methodology and Software Technol-
ogy, AMAST 1997, Springer LNCS 1349, pages 380–394, 1997.

20

[LPRS88] P. Lee, F. Pfenning, G. Rollins, and W. Scherlis. The Ergo support system:
An integrated set of tools for prototyping integrated environments. In
Proc. 3rd ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, pages 25–34, 1988.

[Mac71] S. MacLane. Categories for the Working Mathematician. Springer, 1971.
[MHAH04] T. Mossakowski, P. Hoffman, S. Autexier, and D. Hutter. Casl logic.

[CoF04], part IV, pages 275–361. T. Mossakowski, editor.
[Mil71] R. Milner. An algebraic definition of simulation between programs. In

Proc. 2nd Intl. Joint Conf. on Artificial Intelligence, pages 481–489, 1971.
[MST04] T. Mossakowski, D. Sannella, and A. Tarlecki. A simple refinement lan-

guage for Casl. In Recent Trends in Algebraic Development Techniques:
Selected Papers from WADT 2004, Springer LNCS 3423, pages 162–185,
2004.

[MTHM97] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997.

[SS83] W. Scherlis and D. Scott. First steps towards inferential programming. In
IFIP Congress, pages 199–212, 1983.

[SST92] D. Sannella, S. Soko lowski, and A. Tarlecki. Toward formal development
of programs from algebraic specifications: Parameterisation revisited. Acta
Informatica, 29(8):689–736, 1992.

[ST88a] D. Sannella and A. Tarlecki. Specifications in an arbitrary institution.
Information and Computation, 76:165–210, 1988.

[ST88b] D. Sannella and A. Tarlecki. Toward formal development of programs
from algebraic specifications: Implementations revisited. Acta Informatica,
25:233–281, 1988.

[ST89] D. Sannella and A. Tarlecki. Toward formal development of ML programs:
Foundations and methodology. In Proc. Colloq. on Current Issues in Pro-
gramming Languages. Intl. Joint Conf. on Theory and Practice of Software
Development (TAPSOFT’89), Springer LNCS 352, pages 375–389, 1989.

[ST97] D. Sannella and A. Tarlecki. Essential concepts of algebraic specification
and program development. Formal Aspects of Computing, 9:229–269, 1997.

[ST99] D. Sannella and A. Tarlecki. Algebraic preliminaries. In E. Astesiano,
H.-J. Kreowski, and B. Krieg-Brückner, editors, Algebraic Foundations of
Systems Specification, chapter 2. Springer, 1999.

[SW83] D. Sannella and M. Wirsing. A kernel language for algebraic specification
and implementation. In Proc. 1983 Intl. Conf. on Foundations of Compu-
tation Theory, Springer LNCS 158, pages 413–427, 1983.

21

