
HOPE: AN EXPERIMENTAL APPLICATIVE LANGUAGE

R.M° Burstall
D.B° MaeQueenl
D.T. Sannella

Department of Computer Science
University of Edinburgh

Edinburgh, Scotland

ABSTRACT: An applicative language called HOPE
is described and discussed. The underlying goal of
the design and implementation effort was to produce
a very simple programming language which encourages
the construction of clear and manipulable programs.
HOPE does not include an assignment statement; this
is felt to be an important simplification. The
user may freely define his own data types, without
the need to devise a complicated encoding in terms
of low-level types. The language is very strongly
typed, and as implemented it incorporates a
typechecker which handles polymorphic types and
overloaded operators. Functions are defined by a
set of recursion equations; the left-hand side of
each equation includes a pattern used to determine
which equation to use for a given argument. The
availability of arbitrary higher-order types allows
functions to be defined which 'package' recursion.
Lazily-evaluated lists are provided, allowing the
use of infinite lists which could be used to
provide interactive input/output and concurrency.
HOPE also includes a simple modularisation facility
which may be used to protect the implementation of
an abstract data type.

I. INTRODUCTION
As hardware gets cheaper, people become

increasingly aware of the high cost of software and
particularly of those components of the cost which
are due to bugs in programs and to inflexible
programs. A simple yet powerful programming

language in which one has a good chance of avoiding
mistakes and in which programs are transparent
enough to be easily altered would be an effective
means of countering this trend. We believe this
goal is worth working towards even if it requires
radical changes in our programming habits.

In this paper we will first list some aspects of
programming languages which contribute to accuracy
and flexibility. We illustrate them by describing
an applicative language, called HOPE, which we have
developed and implemented. This is followed by an
example of a complete HOPE program. Finally, we
discuss the strengths and weaknesses of HOPE.

ICurrent address: USC Information Sciences
Institute, Marina del Rey, California

2. DESIRABLE PROGRAMMING LANGUAGE FEATURES
The following points seem important in a

language for writing correct and flexible programs.
They are listed rather briefly but they are
illustrated in the description of HOPE which
follows.

No assignment: referential transnarencv

Applicative languages which work in terms of
expressions and their values, using recursion
instead of loops, seem much clearer and less
error-prone. The expressions are transparent in
the sense that their value depends only on their
textual context and not on some notion of
computational history. Each variable is given a
value just once where it is declared. Assignments
which alter data structures are particularly prone
to cause bugs; disallowing them greatly simplifies
the language although it does slow down execution.
Backus [2] makes this case strongly.

Maximum use of user-defined tYPeS

The user should define his own types whenever
possible; thus type 'age' rather than type
'integer'. The machine must check these types.
The language should allow polymorphic types so that
code can be as general as possible; for example,
'list of alphas' rather than specifically 'list of
numbers', where alpha is a type variable which can
be instantiated to any type. We suspect that a
great many errors are caused by the complications
introduced when encoding data in terms of the
commonly-supplied low-level types; the provision of
a simple and powerful facility for defining types
should greatly simplify the programmer's task.

Overloaded oDeratoFs

It is convenient to use common operation symbols
such as + or eval with a variety of meanings,
according to the type of the arguments. The
implementation should be able to disambiguate such
'overloaded' operators (this requires some subtlety
for polymorphic types).

Exhaustive case analysis

Each data type will have a set of disjoint
subtypes, each with a different constructor
function; e.g., lists are made with cons or nil
It should be easy to do case analysis with respect
to these constructors and easy for a compiler to
check whether the analysis is exhaustive. This

136

avoids mistakes like forgetting to include a test
for the empty list.

Avoidin~ unnecessary names

It should not be necessary to introduce a large
number of different names for functions to
construct data structures (e.g. cons), to test
which subtype it is (e.g. the predicate null), or
to select components (e.g. car and edr). We can
use just the constructor name and by using pattern
matching syntax let it denote testing and selecting
as the context dictates.

Abolishin~ exDlicit reeursion as far as possible

Given that we want an assignment-free language,
we will use recursion instead of loops. However,
undisciplined use of recursion is not at all
desirable. It is much better to use standard
constructions related to the data structures; for
example, { x2 I x •S } as in mathematics (and SETL
[12]) instead of recursion over the elements of
S. In a language which allows higher-order
functions (that is, procedures taking procedures as
parameters), we can easily define useful higher-
order functions which 'package' recursion to save
writing it explicitly. An example is mapcar in
LISP.

Making secuences into data objects

In traditional imperative-style programming,
sequences are sometimes represented as successive
values of a variable; thus a sequence of integers
is represented as values of an integer variable.
It is also possible to represent them by an array
or list, but this has the disadvantage that all the
elements of the sequence must be in memory at the
same time. An idea aptly called 'lazy evaluation'
by Henderson and Morris [18] (due originally to

Wadsworth [29]) enables us to deal with such
sequences as lists but have them evaluated one
element at a time as needed. Amongst other things,
this enables one to achieve the same effect as
coroutines in an imperative language but in a more
perspicacious way, by passing a lazy list as the
result of a function. It also enables one to
handle interactive input/output and concurrency in
an applicative language.

Modularity and data abstraction

The main trick in writing large bug-free
programs is to construct them in smallish pieces,
each as self-contained as possible, with the pieces
communicating with each other in a disciplined,
explicit manner. An important technique for
achieving this is data abstraction (see for example
Hoare in chapter 2 of [10]). This has been
explored as an aid to good programming style in
such recent languages as ALPHARD [31], CLU [25] and
ADA [20], which may be thought of as developing one
aspect of the SIMULA class concept [11].

An abstract data type, such as 'set' or 'queue',
is defined by a collection of procedures which
create elements of the type and operate on them.
The implementations of these procedures and the
representation of the type itself are hidden from

the user; his code relies solely on the specified
properties of the abstract type.

Conventional block structure scope rules make it
difficult to maintain the desired separation of use
and implementation, so these languages adopt
different rules for identifier scopes.

3. THE HOPE PROGRAMMING LANGUAGE
A programming language called HOPE which

illustrates the features mentioned above has been
designed and implemented at Edinburgh University.
A brief informal description of HOPE follows; full
details can be found in [9]. A precursor, NPL, was
described in [5].

The aim throughout was to design a programming
language which was very simple and encouraged
clarity and manipulability of programs. Major
influences in the design of HOPE have been LISP and
Landin's ISWIM [24]. We were not trying to be
original; we sought a judicious selection of well-
understood ideas. HOPE seeks some blend of LISP
power with the discipline of strong typing and
modularity. It bears some resemblance to a number
of other languages, including PROLOG [30], ML [17],
SASL [28], OBJ [15], SCRATCHPAD [22], and languages
by Burge [4] and Backus [2].

HOPE (in its present form) is an experiment in
language design and a means of testing certain
ideas in programming methodology rather than the
ultimate in programming languages. It is still
somewhat incomplete and lacks such conveniences as
sensible input/output facilities (but see section
3.5).

Part of the HOPE implementation was carried out
by Michael Levy and we express our appreciation of
his efforts.

3.1. DATA DECLARATIONS

Conceptually, all data in HOPE is represented as
terms consisting of a data constructor applied to a
number of subterms, each of which in turn
represents another data item. The tips of this
tree are nullary data constructors or functional
objects. An example is succ(suce(0)) in which suec
is a unary constructor and 0 is a nullary one
(i.e., a constant). Constructor functions are
uninterpreted; they just construct.

A d~tB declaration is used to introduce a new
data type along with the data constructors which
create elements of that type. For example, the
data declaration for natural numbers would be:

hum == 0 ++ succ(num)

defining a data type called num with data
constructors 0 and suco . So the elements of num

are 0 , suco(O) , succ(succ(O)) ; that is,
O, 1, 2,

To define a type 'tree-of-numbers' we could say

~numtree == empty ++ tlp(num)
++ node(numtree#numtree)

(the sign # gives the cartesian product of types).
One of the elements of numtree is:

137

node(tip(succ(O)),
node(tlp(succ(succ(O))),tip(O)))

But we would like to have trees of lists and
trees of trees as well, without having to define
them all separately. So we declare a tYPe variable

~y.P2XgEalpha

which when used in a type expression denotes any
type (including second- and higher-order types). A
general definition of tree as a parametric type is
now possible:

~gJ~tree(alpha) == empty ++ tip(alpha)
++ node(tree(alpha)#tree(alpha))

Now tree is not a type but a unary ~vne constructor
-- the type numtree can be dispensed with in favour
of tree(hum) .

Another example of a data declaration is

~g~graph == mkg(set vertex
(vertex#vertex->truval))

This says that a graph is (the data constructor mkg
applied to) a set of vertices together with a
binary relation which tells if there is an edge
between any two vertices.

HOPE currently comes equipped with the data
types hum , truval , char , list , and set .

3.2. EXPRESSIONS

The simplest expressions of HOPE are constants
(i.e., data constructors and functions -- the
'usual' concept of a constant is just the class of
nullary functions and data constructors) and
variables.

An ~ / i may be formed by simply
Juxtaposing two expressions:

factorial 6

For functions of several arguments we use
tuoles, formed with commas; thus 3,4 is a 2-tuple.
Parentheses are used for grouping, for example:

g (3,4)

In the expression

(f x) y

the subexpression f x would have to produce a
function; thus the types would be

f : T I -> T 2 -> T 3

with x : T I and y : T 2 .

It is possible to use function symbols as infix
or postfix operators if they are declared and given
a precedence; for example:

infix +, - : 8

A similar form is used to assign a precedence to a
prefix symbol.

Some convenient notations have been implemented
for built-in types; thus e1::(e2:: ... ::nil) is

abbreviated [el,e2, ...] , ['a','b', .] is
"ab..." and sets are written {el,e2, ..~} . Note
that we write cons as infix :: .

There are two equivalent forms of conditional
expression:

e I ~c else e 2

and

c then e I else e 2

(in many languages written~c then e I else e 2).

Lambda-expressions (denoting functions) are
formed as described in section 3.3.

Local variables may be introduced and associated
with values using either of the equivalent forms

e t where p == e 2

or

i~]~P == e2~le I

where p is an expression formed by application of
data constructors to a number of distinct variables
(this is called a pattern). For example:

a+b where a::(b::l) == f(t)

Upon evaluation, f(t) is expected to yield a value
which 'matches' the pattern a::(b::l) . The
corresponding subterms in the value of f(t) are
then bound to a , b , and 1 while evaluating a+b .

3.3. DEFINING FUNCTIONS
Before a function is defined, its type must be

declared. For example:

dee reverse : list(alpha) -> list(alpha)

HOPE is a very strongly-typed language, and the
HOPE system includes a polymorphic typechecker (a
modification of the algorithm in [27]) which is
able to detect all type errors at compile time.
Function symbols may be overloaded. When this is
done, the typechecker is able to determine which
function definition belongs to each instance of the
function symbol.

Functions are defined by a sequence of one or
more eeuations, where each equation specifies the
function over some subset of the possible argument
values. This subset is described by a pattern (see
section 3.2) on the left-hand side of the equation.
For example:

--- reverse(nil) <= nil (I)
--- reverse(a::l) <= reverse(l) <> [a] (2)

(the symbol <> is infix append). This defines the
(top-level) reverse of a list; for example:

reverse(1::(2::nil)) = reverse(2::nil) <> [I]
= (reverse(nil) <> [2]) <> [I]
: (nil <> [2]) <> [I]

So reverse [I,2] = [2,1] (by two applications of
equation 2 followed by a single application of
equation I). The left-hand-side patterns will
normally be disjoint and be related to the
structure of the type definition:

138

~ list alpha == nil ++ alpha :: list alpha

The set of equations defining a function should
exhaust the possibilities given in the data-
statement introducing the argument types. For
example, a definition of the Fibonacci numbers:

dec fib : hum -> mum
--- fib(O) <= I
--- fib(succ(O)) <: 1
--- fib(succ(suec(n))) <= fib(succ(n)) ÷ fib(n)

In this case the three patterns 0 , succ(O) , and
succ(succ(n)) exhaust the set of values belonging
to num. The pattern ; may be used as shorthand

for succ(O) .

Nullary 'functions' may also be defined; for

example:

dec pi : rational
--- pi <= mkrational(22,7)

which assumes that the type rational has been

defined.

Lambda-expressions are defined similarly. For
example, a function to compute the conjunction of
two truth values (already available as the function

and):

~g~j~true,p => p
I false,p => false

Another example of a lambda-expression occurs in
the definition of functional composition:

~XE~x~lalpha,beta,tau
~.qcompose : (alpha->beta)#(beta->tau)

-> (alpha->tau)
--- compose(f,g) <=.l.~ll,~tx => f(g(x))

3.4. MODULES
Any sequence of statements may be made into a

module by surrounding it with the statements

~.~J~name

and

end

Data types defined in a module may be referred
to outside only if a statement

oubtvne tname

is included in the module. Similarly, constants
(including data constructors) may be referenced

only if a statement

nubeonst cname

is included.

Nothing defined outside a module may be
referenced within it, unless the module includes
the statement

uses mname

In this case, all of the types and constants
declared as public to the indicated module are
available. In addition, certain global types and
constants (num, truval , char , list , and set ,

together with some primitive operations) may be
referenced within any module.

This is an effective tool for the encapsulation
of data abstractions; if the primitive constructors
and low-level operations on the data representation
are not declared public, then the implementation of
the abstraction is hidden from the rest of the

program.

3.5. LAZY EVALUATION AND INPUT/OUTPUT
Lazy evaluation was mentioned briefly in section

2; there we described it as a desirable language
feature. In HOPE, lazy evaluation has thus far
only been implemented for lists, which makes
available most of the power of the mechanism. Lazy
lists are created using the special constructor
icons in place of the usual :: . This constructs a
list which is identical to a normal list (in
particular, the pattern a::l will match
icons(c,d)) except that the arguments to icons
remain unevaluated until their values are required
during subsequent use of the list.

Consider the function which produces the
(potentially) infinite list consisting of a number

and all its successors:

dec allsuccs :num -> list num
--- allsuccs(n) <= icons(n,allsuccs(n÷1))

Now if we define a 'lazy mapcar' function

/.Ep.~y~lalpha, beta
dec <e> : (alpha->beta)#list alpha -> list beta
l~/J~<*> : 6

--- f <*> nil <= nil
___ f <,> (a::al) <= lcons(f(a),(f <*> al))

then the infinite list of the squares of all
numbers is just

square <,> allsuccs(0)

We can use lazy lists to provide interactive
input/output in HOPE. The first step would be for
the system to provide two new functions, input and
output (not yet available). Input takes an
argument of type device specifying an input device,

where

data device == tty ++ file(list(char)) ++ ...

and produces a lazy list where new items are read
from the device when needed. A special character
(control/Z) signals end of input, and consequently
the end of the lazy list. Output is a function of
type device->(list(alpha)->vold) . Given a list,
output(dev) evaluates each element and produces it
as output on the indicated device.

As a simple example, here is a program to read a
number from the terminal, output its square, and
then repeat (until control/Z is typed):

output("tty") (square <*> input("tty"))

Since input("tty") in this expression is of type
list(num) , the teletype will accept as input only
expressions of type hum .

This is a special example of the general problem

139

of communication between concurre, processes.
Lazy lists provide a means of implementing
communication channels, but at present the notation
of HOPE is not adequate to specify an arbitrary
network of communicating processes. We have not
yet given much thought to this problem; however,
notations exists which are sufficient and which
could be adapted for our purposes (see for example
[26]).

3.6. IMPLEMENTATION NOTES
The HOPE system consists of a compiler (from

HOPE programs to code for an abstract stack
machine) and an implementation of the target
machine. The system is written in POP-2, and
currently runs in approximately 55K words (plus a
15K shareable segment) on a DEC KI-IO. The
compiled code should be quite portable, as the
abstract machine simulator could easilybe written
for a new machine. The compiler itself is less
portable since it requires availability of POP-2.

Our preliminary tests indicate that a program
written in HOPE runs approximately 9 times slower
than the same algorithm coded in LISP running under
the Rutgers/UCI interpreter (and 23 times slower
than compiled LISP). A large program run recently
ran more slowly, presumably because of page
thrashing. A machine code implementation of the
interpreter should run a lot faster.

4. EXAMPLES
An example of a complete HOPE program is given

in figure I. This illustrates how we can use HOPE
to implement a data type (ordered trees), and then
how that type can be used in a program for

treesort.

Ordered trees

The first module contains an implementation of
the abstract type ordered-tree-of-numbers (data
type otree in the program). An otree is defined to
be either empty , a tip (containing a number), or a
node containing two otrees and a number. The
special property of otree is that for any term
node(tl,n,t2) , all numbers contained in tl are
less than n , which is in turn less than or equal
to all numbers contained in t2 . We define three

public constants:

empty the empty otree

insert adds a number to an otree, preserving
the 'orderedness' of the otree

flatten inorder traversal of an otree

Ordinarily an abstract data type would have a few
more operations; we have only included those which
are used in the remainder of the program.

Note that the data constructor node is not
public. Consequently, the only functions available
to the 'outside world' for constructing and
modifying otrees are empty and insert . Both of
these preserve the properties of otrees, so the
integrity of the implementation is assured.
However, insert is not a data constructor, and
hence may not be used in patterns.

~.~MJ~orderecl_trees
nubtvDe otree
nubnonst empty, insert, flatten

~t~otree == empty ++ tip(num)
++ node(otree#num#otree)

dec insert : num#otree -> otree
~.q flatten : otree -> list num

--- insert(n,empty) <= tip(n)
--- insert(n,tip(m))

<= n<m then node(tip(n),m,empty)
else node(empty,m,tip(n))

--- insert(n,node(tl,m,t2))
<= n<m then node(insert(n,tl),m,t2)

else node(tl,m,insert(n,t2))

--- flatten(empty) <= nil
--- flatten(tip(n)) <= [n]
--- flatten(node(tl,n,t2))

<= flatten(tl) <> (n::flatten(t2))

end

~.~Alglist_iterators

/d.pfj_~ialpha, beta

~.q• : (alpha->beta)#1ist alpha -> list beta
~** : (alpha#beta->beta)#(list alpha#beta)

j~j~ |, ** : 6

--- f • nil <= nil
--- f • (a::al) <= (f a)::(f * al)

--- g ** (nil,b) <= b
--- g ** (a::al,b) <= g ** (al,g(a,b))

end

-> beta

~j~igtree_sort
~_gg~_~sort
uses ordered_trees, list iterators

~j~sort : list num -> list num

--- sort(l) <= flatten(insert ,, (l,empty))

end

Figure I: A HOPE Program

This module defines two second-order functions
which apply a given function to every element of a
list and collect the results. These two functions
are representatives of a group of functions which
are widely used in HOPE programs in an attempt to
eliminate explicit recursion as far as possible.

140

The first function, * , is identical to mapear
in LISP. It produces a list containing the results
of applying the function supplied to each element
of the given list. This operation is not actually
used in the example. (A version of this function,
producing a lazy list, was given in section 3.5.)

The function .e is slightly more complicated.
When supplied with a function g of type
alpha#beta -> beta , a list of alphas, and an

'initial' beta-object, it applies g to each element
of the list, beginning with the given beta-object
as a second argument and subsequently recycling the
result of the previous application. This operation
is analogous to the 'reduction' operator of APL
[21]; an example of its use would be to compute the
union of a list of sets:

union ** (setlist,emptyset)

In this case, the module facility is used as a
means of packaging a number of related functions
rather than as a device for protecting a delicate
abstraction. However, if one of the operations
requires an auxiliary function which has no utility
of its own, then it might be desirable to keep this
function local to the module.

Tree sort

A function for sorting a list of numbers is now
defined using the primitives developed in the
preceding modules. The ** operation from
llst_iterators is used to successively insert the
llst elements into an initially empty otree . The
result is then flattened to produce the final
answer.

A number of nontrivial HOPE programs (most of
them much larger than this example) have been
produced. These include the following:

- Compiler for a simple language (translation of
a program in [13])

- Graph isomorphism

- Implementation of the denotational semantics
of a simple language (TINY from [~6])

- Several abstract data types (bags, maps, ...)

- Colimits of finite diagrams in a cocomplete
category, and in a kind of comma oategory
(discussed in [6])

- Telegram problem (in [13]; problem from [19])

- Text formatter (in [13]; problem from [23])

The last two of these are written in an earlier
(and syntactically incompatible) version of HOPE
called NPL; translation would be tedious but
straightforward.

5. DISCUSSION

Some desirable features for programming
languages were discussed in section 2. Since HOPE
was designed with these in mind, it not
surprisingly displays them all, although some are
exhibited better than others (an exception is set
expressions [12], still to be implemented). But
more important is the question of whether the
resulting language provides a better interface with
the computer than the one presented by existing
languages.

Probably the most pleasing result of our efforts
has been the observation that it really is
significantly easier to construct programs in HOPE
than in any other programming language we know. In
particular, we have found that it is rather easy to
write programs which are absolutely correct the
first time they are run. It seems quite difficult
to commit an error which remains undiscovered for
long -- the simple errors are caught during
compilation by the typechecker, while the more
fundamental errors (stemming usually from an
insufficient understanding of the problem) display
themselves glaringly during even a casual test.
Since testing and debugging account for more than
half the cost of many software projects, this could
yield enormous savings.

An important aim of language design is to make
it easier to verify that a program meets a given
specification. In this respect applicative
languages such as HOPE seem to offer considerable
advantages; the absence of assignment statements
and the consequent replacement of iteration by
recursion gives programs a simple and easy to
analyse form. Powerful verification systems for
applicative languages have been written by Boyer
and Moore [3] and by Aubin [I].

Another advantage of an applicative language is
the fact that programs lend themselves very well to
the technique of program transformation [7],
whereby a simple but inefficient program is
transformed into an acceptably efficient one by
steps which maintain its correctness. A very
simple example of program transformation would be
the production of the following linear-time program
for generating Fibonacci numbers from the
equivalent program in section 3.3 which requires
exponential time.

dec g :num -> num#nnm
- - - g(O) <= 1,1
--- g(succ(n)) <= (a + b),a where a,b == g(n)

dec fib' : hum -> num
--- fib'(O) <= I
--- fib'(1) <= I
--- fib'(succ(succ(n)))

<= a + b where a,b == g(n)

Feather [13] has produced a system for transforming
large programs, which is connected to an earlier
version of the HOPE system.

A very high-level language such as HOPE pays
penalties of inefficiency because it is remote from
the machine level. It could be thought of as a
specification language in which the specifications
are 'walkable' (if not 'runnable'), or as a

141

language for making a first try at a programming
project. But the program transformation approach
discussed above gives us some hope that we can
produce tolerably efficient programs with less
effort than in a conventional language.

In addition, there is another (as yet
unmentioned) advantage of applicative languages
which may come to our rescue: applicative languages
are not so tightly bound to the notion of a
sequential machine as are imperative languages.
The value of the function application

e0(e I ,e n)

is independent of the order of evaluation of the
expressions eo, ... ,e n (if parameters are passed
'by value'); ~his is guaranteed by the absence of
an assignment statement. If a parallel machine is

available, Co, ... ,e n may be evaluated
simultaneously. Not onIy that, but if Co, ... ,e n
are themselves function applications, then their
arguments may all be evaluated simultaneously.
With the rapidly falling cost of hardware, this is
feasible, although we would have to build the
machine ourselves.

HOPE has faults, too; one is illustrated in
figure I . The sorting program will only sort a
list of numbers, because otree is 'ordered-tree-of-
numbers'. We want a more general sorting program,
and this depends on a more general definition of
ordered trees; we would like to define 'ordered-
tree-of-alphas'. The data declaration is easy to
generalise. But to generalise insert to type

alpha#otree(alpha)->otree(alpha)

we must have a more general order relation than < ,
which is defined only for numbers.

One solution to this problem would be to require
otree users to supply the appropriate order
relation explicitly when dealing with an otree.
It could be added as an extra argument to insert ,
or alternatively it could be built into the otrees
themselves (supplied as an argument to empty , and
propagated to new tips and nodes by insert).
Unfortunately, a 'bad' order relation (for example,
one which is not transitive) would violate the
integrity of the data type, causing unpredictable
results.

Another possibility would be to define a general
order relation as a new HOPE primitive. This was
our solution to the analogous problem involving the
equality relation = . Two data values are equal if
they have the same representation as terms of
constructors, except that for a newly-defined data
type the user may provide a nonstandard equality
which is automatically incorporated into the
standard system equality. For example, we might
want to define equality for otrees so that
tip(n) = node(empty,n,empty) . Allowing an order
to be associated with each type would be a
satisfactory solution to our present difficulties.
But how many more such operations should be
associated with a type?

The best solution is of course to associate a
collection of operations with each data type (so
types become al~ebras instead of simply sets).

Rather than generalising to otree(alpha) we could
generalise to otree(alpha[<]) , requiring an order
relation to exist on the parameter type. This is
the approach taken in CLU [25] and in the
specification language CLEAR [8]. We really want
HOPE modules to have ~r.~_~r_~., a collection of
types and operators, just as CLU clusters have
parameters.

As a further example, refer again to figure I
and note that the module tree_sort does not depend
on the fact that otrees are trees, but just on
certain properties of insert and flatten . We may
substitute a module ordered_lists for
ordered_trees , where empty becomes nil , insert
becomes the obvious order-preserving insertion in
an ordered list, and flatten is the identity
function. Essentially, tree_sort is a parametrised
module which may be 'applied' to any module
satisfying certain (nontrivial) properties.

The CLU cluster parameter, however, is just an
explicit list of types and operators,

T with < : T#T -> truval

In CLEAR such an entity (called a theory and
provided with axioms) can be named, thus
'Ordered-Set'; what is more various operations for
building such theories are provided. We would llke
to extend HOPE to have parameterised modules where
the parameters and the interfaces between modules
are nameable and manipulable as in CLEAR. Further
work in this direction is being carried out in
collaboration with J.A. Goguen [14]. We hope it
will contribute to a better understanding of the
structure of large programs and their development.

Acknowledgements

We would like to thank the Science Research
Council and Edinburgh University for supporting
this work. Michael Levy did part of the
implementation. Robin Milner and Michael Gordon
showed us how to handle polymorphic types. John
Darlington helped develop NPL, the precursor of
HOPE. Peter Landin's influence was pervasive.

REFERENCES

1. Aubin, R. Strategies for Mechanizing Structural
Induction. Proc. 5th Int. Joint Conf. on
Artificial Intelligence, Cambridge, Massachusetts,
August, 1977, pp. 363-369.

2. Backus, J. Can Programming Be Liberated from
the von Neumann Style? A Functional Style and Its
Algebra of Programs. ~_Q~. ACM~_i, 8 (August
1978), 613-641.

3. Boyer, R.S. and Moore, J.S. ~ Computational
Logic. Academic Press, 1980.

4. Burge, W.H. Recursi7~ Pro~rammin~ Technicue~.
Addison-Wesley, 1975.

5. Burstall, R.M. Design Considerations for a
Functional Programming Language. Infotech State of
the Art Conference: The Software Revolution,
Copenhagen, October, 1977.

142

6. Burstall, R.M. Electronic Category Theory.
Proc. 9th Int. Symp. on Mathematical Foundations of
Computer Science, Rydzyna, Poland, September, 1980.
7. Burstall, R.M. and Darlington, J. A
Transformation System for Developing Recursive
Programs. ~. ACM~, I (January 1977), 44-67.
8. Burstall, R.M. and Goguen, J.A. Putting
Theories Together to Make Specifications. Proc.
5th Int. Joint Conf. on Artificial Intelligence,
Cambridge, Massachusetts, August, 1977, pp.
1045-1058.
9. Burstall, R.M. and Sannella, D.T. HOPE User's
Manual. In preparation.
10. Dahl, O-J., Dijkstra, E.W. and Hoare C.A.R.
Structured Programming. Academic Press, 1972.
11. Dahl, O-J., Myhrhaug, B. and Nygaard, K. The
SIMULA 67 Common Base Language. Publication $22,
Norwegian Computing Centre, Oslo, 1970.
12. Dewar, R.B.K., Grand, A., Liu, S-C. and
Schwartz, J.T. Programming by Refinement, as
Exemplified by the SETL Representation Sublanguage.
ACM Trans. Er_QgEg~iDgLan~ua~es and Systems !, I
(July 1979), 27-49.
13. Feather, M.S. A System for Dev@loDin~
~_r_qgr~./~tI2gD~/.~D~. Ph.D. Th., University
of Edinburgh, 1979.
14. Goguen, J.A. and Burstall, R.M. CAT, a System
for the Structured Elaboration of Correct Programs
from Structured Specifications. In preparation.
15. Goguen, J.A. and Tardo, J.J. An Introduction
to OBJ: A Language for Writing and Testing Formal
Algebraic Program Specifications. Specifications
of Reliable Software Conf. Proc., Cambridge,
Massachusetts, April, 1979.
16. Gordon, M.J.C. /]ig Denotational DescriDion 9_~
~_r_qgr_~_gLan~ua~es. Sprlnger-Verlag, 1979.
17. Gordon, M.J.C., Milner, A.J.R.G., Morris, L.,
Newey, M. and Wadsworth, C. A Metalanguage for
Interactive Proof in LCF. Proe. 5th ACM Symp. on
Principles of Progrsmming Languages, Tucson,
Arizona, 1978.
18. Henderson, P. and Morris, J. A Lazy Evaluator.
Proc. 3rd ACM Symp: on Principles of Programming
Languages, Atlanta, Georgia, 1976, pp. 95-103.
19. Henderson, P. and Snowdon, R. An Experiment in
Structured Programming. BIT /2~, I (1972), 38-53.
20. Ichbiah, J.D. et al. Preliminary ADA
Reference Manual. SIGPLAN Notices/_4, 6A (June
1979).
21. Iverson, K. A Programming Lanzua~e. John Wiley
and Sons, 1962.
22. Jenks, R.D. The SCRATCHPAD Language. Proc.
Symp. on Very High Level Languages, April, 1974.
23. Kernighan, B.W. and Plauger, P.J. Software
Tools. Addison-Wesley, 1976.
24. Landin, P.J. The Next 700 Programming
Languages. Comm. ACM ~, 3 (March 1966), 157-166.
25. Liskov, B., Snyder, A., Atkinson, R. and
Schaffert, C. Abstraction Mechanisms in CLU. Comm.
ACM2dl, 8 (August 1977), 564-576.
26. Milne, G. and Milner, R. Concurrent Processes
and Their Syntax. ~. ~_~, 2 (April 1979),
302-321.
27. Milner, R. A Theory of Type Polymorphism in
Programming. Journal 9j~f~gJK~L~9/I and System
~.qJ~Jlg_g~..1Y., 3 (December 1978), 348-375.

28. Turner, D.A. SASL Language Manual.
University of St. Andrews, 1979.
29. Wadsworth, C.P. ~ and~r_gg~jLiQ.~h~
the L~_~.~iD_~i/L%. Ph.D. Th., Programming
Research Unit, Oxford University, 1971.
30. Warren, D.H.D, Pereira, L.M. and Pereira,
F.C.N. PROLOG -- The Language and Its
Implementation Compared With LISP. Proc. ACM Symp.
on Artificial Intelligence and Programming
Languages, Rochester, New York, August, 1977.
31. Wulf, W.A., London, R.L. and Shaw, M. An
Introduction to the Construction and Verification
of Alphard Programs. IEEE Trans. 9JiSoftware Eng.
~]i-~, 4 (December 1976), 253-265.

143

