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ABSTRACT: An applicative language called HOPE 
is described and discussed. The underlying goal of 
the design and implementation effort was to produce 
a very simple programming language which encourages 
the construction of clear and manipulable programs. 
HOPE does not include an assignment statement; this 
is felt to be an important simplification. The 
user may freely define his own data types, without 
the need to devise a complicated encoding in terms 
of low-level types. The language is very strongly 
typed, and as implemented it incorporates a 
typechecker which handles polymorphic types and 
overloaded operators. Functions are defined by a 
set of recursion equations; the left-hand side of 
each equation includes a pattern used to determine 
which equation to use for a given argument. The 
availability of arbitrary higher-order types allows 
functions to be defined which 'package' recursion. 
Lazily-evaluated lists are provided, allowing the 
use of infinite lists which could be used to 
provide interactive input/output and concurrency. 
HOPE also includes a simple modularisation facility 
which may be used to protect the implementation of 
an abstract data type. 

I. INTRODUCTION 
As hardware gets cheaper, people become 

increasingly aware of the high cost of software and 
particularly of those components of the cost which 
are due to bugs in programs and to inflexible 
programs. A simple yet powerful programming 

language in which one has a good chance of avoiding 
mistakes and in which programs are transparent 
enough to be easily altered would be an effective 
means of countering this trend. We believe this 
goal is worth working towards even if it requires 
radical changes in our programming habits. 

In this paper we will first list some aspects of 
programming languages which contribute to accuracy 
and flexibility. We illustrate them by describing 
an applicative language, called HOPE, which we have 
developed and implemented. This is followed by an 
example of a complete HOPE program. Finally, we 
discuss the strengths and weaknesses of HOPE. 
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2. DESIRABLE PROGRAMMING LANGUAGE FEATURES 
The following points seem important in a 

language for writing correct and flexible programs. 
They are listed rather briefly but they are 
illustrated in the description of HOPE which 
follows. 

No assignment: referential transnarencv 

Applicative languages which work in terms of 
expressions and their values, using recursion 
instead of loops, seem much clearer and less 
error-prone. The expressions are transparent in 
the sense that their value depends only on their 
textual context and not on some notion of 
computational history. Each variable is given a 
value just once where it is declared. Assignments 
which alter data structures are particularly prone 
to cause bugs; disallowing them greatly simplifies 
the language although it does slow down execution. 
Backus [2] makes this case strongly. 

Maximum use of user-defined tYPeS 

The user should define his own types whenever 
possible; thus type 'age' rather than type 
'integer'. The machine must check these types. 
The language should allow polymorphic types so that 
code can be as general as possible; for example, 
'list of alphas' rather than specifically 'list of 
numbers', where alpha is a type variable which can 
be instantiated to any type. We suspect that a 
great many errors are caused by the complications 
introduced when encoding data in terms of the 
commonly-supplied low-level types; the provision of 
a simple and powerful facility for defining types 
should greatly simplify the programmer's task. 

Overloaded oDeratoFs 

It is convenient to use common operation symbols 
such as + or eval with a variety of meanings, 
according to the type of the arguments. The 
implementation should be able to disambiguate such 
'overloaded' operators (this requires some subtlety 
for polymorphic types). 

Exhaustive case analysis 

Each data type will have a set of disjoint 
subtypes, each with a different constructor 
function; e.g., lists are made with cons or nil 
It should be easy to do case analysis with respect 
to these constructors and easy for a compiler to 
check whether the analysis is exhaustive. This 
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avoids mistakes like forgetting to include a test 
for the empty list. 

Avoidin~ unnecessary names 

It should not be necessary to introduce a large 
number of different names for functions to 
construct data structures (e.g. cons ), to test 
which subtype it is (e.g. the predicate null ), or 
to select components (e.g. car and edr ). We can 
use just the constructor name and by using pattern 
matching syntax let it denote testing and selecting 
as the context dictates. 

Abolishin~ exDlicit reeursion as far as possible 

Given that we want an assignment-free language, 
we will use recursion instead of loops. However, 
undisciplined use of recursion is not at all 
desirable. It is much better to use standard 
constructions related to the data structures; for 
example, { x2 I x •S } as in mathematics (and SETL 
[12]) instead of recursion over the elements of 
S. In a language which allows higher-order 
functions (that is, procedures taking procedures as 
parameters), we can easily define useful higher- 
order functions which 'package' recursion to save 
writing it explicitly. An example is mapcar in 
LISP. 

Making secuences into data objects 

In traditional imperative-style programming, 
sequences are sometimes represented as successive 
values of a variable; thus a sequence of integers 
is represented as values of an integer variable. 
It is also possible to represent them by an array 
or list, but this has the disadvantage that all the 
elements of the sequence must be in memory at the 
same time. An idea aptly called 'lazy evaluation' 
by Henderson and Morris [18] (due originally to 

Wadsworth [29]) enables us to deal with such 
sequences as lists but have them evaluated one 
element at a time as needed. Amongst other things, 
this enables one to achieve the same effect as 
coroutines in an imperative language but in a more 
perspicacious way, by passing a lazy list as the 
result of a function. It also enables one to 
handle interactive input/output and concurrency in 
an applicative language. 

Modularity and data abstraction 

The main trick in writing large bug-free 
programs is to construct them in smallish pieces, 
each as self-contained as possible, with the pieces 
communicating with each other in a disciplined, 
explicit manner. An important technique for 
achieving this is data abstraction (see for example 
Hoare in chapter 2 of [10]). This has been 
explored as an aid to good programming style in 
such recent languages as ALPHARD [31], CLU [25] and 
ADA [20], which may be thought of as developing one 
aspect of the SIMULA class concept [11]. 

An abstract data type, such as 'set' or 'queue', 
is defined by a collection of procedures which 
create elements of the type and operate on them. 
The implementations of these procedures and the 
representation of the type itself are hidden from 

the user; his code relies solely on the specified 
properties of the abstract type. 

Conventional block structure scope rules make it 
difficult to maintain the desired separation of use 
and implementation, so these languages adopt 
different rules for identifier scopes. 

3. THE HOPE PROGRAMMING LANGUAGE 
A programming language called HOPE which 

illustrates the features mentioned above has been 
designed and implemented at Edinburgh University. 
A brief informal description of HOPE follows; full 
details can be found in [9]. A precursor, NPL, was 
described in [5]. 

The aim throughout was to design a programming 
language which was very simple and encouraged 
clarity and manipulability of programs. Major 
influences in the design of HOPE have been LISP and 
Landin's ISWIM [24]. We were not trying to be 
original; we sought a judicious selection of well- 
understood ideas. HOPE seeks some blend of LISP 
power with the discipline of strong typing and 
modularity. It bears some resemblance to a number 
of other languages, including PROLOG [30], ML [17], 
SASL [28], OBJ [15], SCRATCHPAD [22], and languages 
by Burge [4] and Backus [2]. 

HOPE (in its present form) is an experiment in 
language design and a means of testing certain 
ideas in programming methodology rather than the 
ultimate in programming languages. It is still 
somewhat incomplete and lacks such conveniences as 
sensible input/output facilities (but see section 
3.5). 

Part of the HOPE implementation was carried out 
by Michael Levy and we express our appreciation of 
his efforts. 

3.1. DATA DECLARATIONS 

Conceptually, all data in HOPE is represented as 
terms consisting of a data constructor applied to a 
number of subterms, each of which in turn 
represents another data item. The tips of this 
tree are nullary data constructors or functional 
objects. An example is succ(suce(0)) in which suec 
is a unary constructor and 0 is a nullary one 
(i.e., a constant). Constructor functions are 
uninterpreted; they just construct. 

A d~tB declaration is used to introduce a new 
data type along with the data constructors which 
create elements of that type. For example, the 
data declaration for natural numbers would be: 

hum == 0 ++ succ(num) 

defining a data type called num with data 
constructors 0 and suco . So the elements of num 

are 0 , suco(O) , succ(succ(O)) .... ; that is, 
O, 1, 2, .... 

To define a type 'tree-of-numbers' we could say 

~numtree == empty ++ tlp(num) 
++ node(numtree#numtree) 

(the sign # gives the cartesian product of types). 
One of the elements of numtree is: 

137 



node(tip(succ(O)), 
node(tlp(succ(succ(O))),tip(O))) 

But we would like to have trees of lists and 
trees of trees as well, without having to define 
them all separately. So we declare a tYPe variable 

~y.P2XgEalpha 

which when used in a type expression denotes any 
type (including second- and higher-order types). A 
general definition of tree as a parametric type is 
now possible: 

~gJ~tree(alpha) == empty ++ tip(alpha) 
++ node(tree(alpha)#tree(alpha)) 

Now tree is not a type but a unary ~vne constructor 
-- the type numtree can be dispensed with in favour 
of tree(hum) . 

Another example of a data declaration is 

~g~graph == mkg(set vertex 
# (vertex#vertex->truval)) 

This says that a graph is (the data constructor mkg 
applied to) a set of vertices together with a 
binary relation which tells if there is an edge 
between any two vertices. 

HOPE currently comes equipped with the data 
types hum , truval , char , list , and set . 

3.2. EXPRESSIONS 

The simplest expressions of HOPE are constants 
(i.e., data constructors and functions -- the 
'usual' concept of a constant is just the class of 
nullary functions and data constructors) and 
variables. 

An ~ / i  may be formed by simply 
Juxtaposing two expressions: 

factorial 6 

For functions of several arguments we use 
tuoles, formed with commas; thus 3,4 is a 2-tuple. 
Parentheses are used for grouping, for example: 

g (3,4) 

In the expression 

( f  x) y 

the subexpression f x would have to produce a 
function; thus the types would be 

f : T I -> T 2 -> T 3 

with x : T I and y : T 2 . 

It is possible to use function symbols as infix 
or postfix operators if they are declared and given 
a precedence; for example: 

infix +, - : 8 

A similar form is used to assign a precedence to a 
prefix symbol. 

Some convenient notations have been implemented 
for built-in types; thus e1::(e2:: ... ::nil) is 

abbreviated [el,e2, ...] , ['a','b', .] is 
"ab..." and sets are written {el,e2, ..~} . Note 
that we write cons as infix :: . 

There are two equivalent forms of conditional 
expression: 

e I ~c else e 2 

and 

c then e I else e 2 

(in many languages written~c then e I else e 2 ). 

Lambda-expressions (denoting functions) are 
formed as described in section 3.3. 

Local variables may be introduced and associated 
with values using either of the equivalent forms 

e t where p == e 2 

or 

i~]~P == e2~le I 

where p is an expression formed by application of 
data constructors to a number of distinct variables 
(this is called a pattern). For example: 

a+b where a::(b::l) == f(t) 

Upon evaluation, f(t) is expected to yield a value 
which 'matches' the pattern a::(b::l) . The 
corresponding subterms in the value of f(t) are 
then bound to a , b , and 1 while evaluating a+b . 

3.3. DEFINING FUNCTIONS 
Before a function is defined, its type must be 

declared. For example: 

dee reverse : list(alpha) -> list(alpha) 

HOPE is a very strongly-typed language, and the 
HOPE system includes a polymorphic typechecker (a 
modification of the algorithm in [27]) which is 
able to detect all type errors at compile time. 
Function symbols may be overloaded. When this is 
done, the typechecker is able to determine which 
function definition belongs to each instance of the 
function symbol. 

Functions are defined by a sequence of one or 
more eeuations, where each equation specifies the 
function over some subset of the possible argument 
values. This subset is described by a pattern (see 
section 3.2) on the left-hand side of the equation. 
For example: 

--- reverse(nil) <= nil (I) 
--- reverse(a::l) <= reverse(l) <> [a] (2) 

(the symbol <> is infix append ). This defines the 
(top-level) reverse of a list; for example: 

reverse(1::(2::nil)) = reverse(2::nil) <> [I] 
= (reverse(nil) <> [2]) <> [I] 
: (nil <> [2]) <> [I] 

So reverse [I,2] = [2,1] (by two applications of 
equation 2 followed by a single application of 
equation I). The left-hand-side patterns will 
normally be disjoint and be related to the 
structure of the type definition: 
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~ list alpha == nil ++ alpha :: list alpha 

The set of equations defining a function should 
exhaust the possibilities given in the data- 
statement introducing the argument types. For 
example, a definition of the Fibonacci numbers: 

dec fib : hum -> mum 
--- fib(O) <= I 
--- fib(succ(O)) <: 1 
--- fib(succ(suec(n))) <= fib(succ(n)) ÷ fib(n) 

In this case the three patterns 0 , succ(O) , and 
succ(succ(n)) exhaust the set of values belonging 
to num. The pattern ; may be used as shorthand 

for succ(O) . 

Nullary 'functions' may also be defined; for 

example: 

dec pi : rational 
--- pi <= mkrational(22,7) 

which assumes that the type rational has been 

defined. 

Lambda-expressions are defined similarly. For 
example, a function to compute the conjunction of 
two truth values (already available as the function 

and ): 

~g~j~true,p => p 
I false,p => false 

Another example of a lambda-expression occurs in 
the definition of functional composition: 

~XE~x~lalpha,beta,tau 
~.qcompose : (alpha->beta)#(beta->tau) 

-> (alpha->tau) 
--- compose(f,g) <=.l.~ll,~tx => f(g(x)) 

3.4. MODULES 
Any sequence of statements may be made into a 

module by surrounding it with the statements 

~.~J~name 

and 

end 

Data types defined in a module may be referred 
to outside only if a statement 

oubtvne tname 

is included in the module. Similarly, constants 
(including data constructors) may be referenced 

only if a statement 

nubeonst cname 

is included. 

Nothing defined outside a module may be 
referenced within it, unless the module includes 
the statement 

uses mname 

In this case, all of the types and constants 
declared as public to the indicated module are 
available. In addition, certain global types and 
constants (num, truval , char , list , and set , 

together with some primitive operations) may be 
referenced within any module. 

This is an effective tool for the encapsulation 
of data abstractions; if the primitive constructors 
and low-level operations on the data representation 
are not declared public, then the implementation of 
the abstraction is hidden from the rest of the 

program. 

3.5. LAZY EVALUATION AND INPUT/OUTPUT 
Lazy evaluation was mentioned briefly in section 

2; there we described it as a desirable language 
feature. In HOPE, lazy evaluation has thus far 
only been implemented for lists, which makes 
available most of the power of the mechanism. Lazy 
lists are created using the special constructor 
icons in place of the usual :: . This constructs a 
list which is identical to a normal list (in 
particular, the pattern a::l will match 
icons(c,d) ) except that the arguments to icons 
remain unevaluated until their values are required 
during subsequent use of the list. 

Consider the function which produces the 
(potentially) infinite list consisting of a number 

and all its successors: 

dec allsuccs :num -> list num 
--- allsuccs(n) <= icons(n,allsuccs(n÷1)) 

Now if we define a 'lazy mapcar' function 

/.Ep.~y~lalpha, beta 
dec <e> : (alpha->beta)#list alpha -> list beta 
l~/J~<*> : 6 

--- f <*> nil <= nil 
___ f <,> (a::al) <= lcons(f(a),(f <*> al)) 

then the infinite list of the squares of all 
numbers is just 

square <,> allsuccs(0) 

We can use lazy lists to provide interactive 
input/output in HOPE. The first step would be for 
the system to provide two new functions, input and 
output (not yet available). Input takes an 
argument of type device specifying an input device, 

where 

data device == tty ++ file(list(char)) ++ ... 

and produces a lazy list where new items are read 
from the device when needed. A special character 
(control/Z) signals end of input, and consequently 
the end of the lazy list. Output is a function of 
type device->(list(alpha)->vold) . Given a list, 
output(dev) evaluates each element and produces it 
as output on the indicated device. 

As a simple example, here is a program to read a 
number from the terminal, output its square, and 
then repeat (until control/Z is typed): 

output("tty") (square <*> input("tty")) 

Since input("tty") in this expression is of type 
list(num) , the teletype will accept as input only 
expressions of type hum . 

This is a special example of the general problem 
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of communication between concurre, processes. 
Lazy lists provide a means of implementing 
communication channels, but at present the notation 
of HOPE is not adequate to specify an arbitrary 
network of communicating processes. We have not 
yet given much thought to this problem; however, 
notations exists which are sufficient and which 
could be adapted for our purposes (see for example 
[26]). 

3.6. IMPLEMENTATION NOTES 
The HOPE system consists of a compiler (from 

HOPE programs to code for an abstract stack 
machine) and an implementation of the target 
machine. The system is written in POP-2, and 
currently runs in approximately 55K words (plus a 
15K shareable segment) on a DEC KI-IO. The 
compiled code should be quite portable, as the 
abstract machine simulator could easilybe written 
for a new machine. The compiler itself is less 
portable since it requires availability of POP-2. 

Our preliminary tests indicate that a program 
written in HOPE runs approximately 9 times slower 
than the same algorithm coded in LISP running under 
the Rutgers/UCI interpreter (and 23 times slower 
than compiled LISP). A large program run recently 
ran more slowly, presumably because of page 
thrashing. A machine code implementation of the 
interpreter should run a lot faster. 

4. EXAMPLES 
An example of a complete HOPE program is given 

in figure I. This illustrates how we can use HOPE 
to implement a data type (ordered trees), and then 
how that type can be used in a program for 

treesort. 

Ordered trees 

The first module contains an implementation of 
the abstract type ordered-tree-of-numbers (data 
type otree in the program). An otree is defined to 
be either empty , a tip (containing a number), or a 
node containing two otrees and a number. The 
special property of otree is that for any term 
node(tl,n,t2) , all numbers contained in tl are 
less than n , which is in turn less than or equal 
to all numbers contained in t2 . We define three 

public constants: 

empty the empty otree 

insert adds a number to an otree, preserving 
the 'orderedness' of the otree 

flatten inorder traversal of an otree 

Ordinarily an abstract data type would have a few 
more operations; we have only included those which 
are used in the remainder of the program. 

Note that the data constructor node is not 
public. Consequently, the only functions available 
to the 'outside world' for constructing and 
modifying otrees are empty and insert . Both of 
these preserve the properties of otrees, so the 
integrity of the implementation is assured. 
However, insert is not a data constructor, and 
hence may not be used in patterns. 

~.~MJ~orderecl_trees 
nubtvDe otree 
nubnonst empty, insert, flatten 

~t~otree == empty ++ tip(num) 
++ node(otree#num#otree) 

dec insert : num#otree -> otree 
~.q flatten : otree -> list num 

--- insert(n,empty) <= tip(n) 
--- insert(n,tip(m)) 

<= n<m then node(tip(n),m,empty) 
else node(empty,m,tip(n)) 

--- insert(n,node(tl,m,t2)) 
<= n<m then node(insert(n,tl),m,t2) 

else node(tl,m,insert(n,t2)) 

--- flatten(empty) <= nil 
--- flatten(tip(n)) <= [n] 
--- flatten(node(tl,n,t2)) 

<= flatten(tl) <> (n::flatten(t2)) 

end 

~.~Alglist_iterators 

/d.pfj_~ialpha, beta 

~.q• : (alpha->beta)#1ist alpha -> list beta 
~** : (alpha#beta->beta)#(list alpha#beta) 

j~j~ |, ** : 6 

--- f • nil <= nil 
--- f • (a::al) <= (f a)::(f * al) 

--- g ** (nil,b) <= b 
--- g ** (a::al,b) <= g ** (al,g(a,b)) 

end 

-> beta 

~j~igtree_sort 
~_gg~_~sort 
uses ordered_trees, list iterators 

~j~sort : list num -> list num 

--- sort(l) <= flatten(insert ,, (l,empty)) 

end 

Figure I: A HOPE Program 

This module defines two second-order functions 
which apply a given function to every element of a 
list and collect the results. These two functions 
are representatives of a group of functions which 
are widely used in HOPE programs in an attempt to 
eliminate explicit recursion as far as possible. 
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The first function, * , is identical to mapear  
in LISP. It produces a list containing the results 
of applying the function supplied to each element 
of the given list. This operation is not actually 
used in the example. (A version of this function, 
producing a lazy list, was given in section 3.5.) 

The function .e is slightly more complicated. 
When supplied with a function g of type 
alpha#beta -> beta , a list of alphas, and an 

'initial' beta-object, it applies g to each element 
of the list, beginning with the given beta-object 
as a second argument and subsequently recycling the 
result of the previous application. This operation 
is analogous to the 'reduction' operator of APL 
[21]; an example of its use would be to compute the 
union of a list of sets: 

union ** (setlist,emptyset) 

In this case, the module facility is used as a 
means of packaging a number of related functions 
rather than as a device for protecting a delicate 
abstraction. However, if one of the operations 
requires an auxiliary function which has no utility 
of its own, then it might be desirable to keep this 
function local to the module. 

Tree sort 

A function for sorting a list of numbers is now 
defined using the primitives developed in the 
preceding modules. The ** operation from 
llst_iterators is used to successively insert the 
llst elements into an initially empty otree . The 
result is then flattened to produce the final 
answer. 

A number of nontrivial HOPE programs (most of 
them much larger than this example) have been 
produced. These include the following: 

- Compiler for a simple language (translation of 
a program in [13]) 

- Graph isomorphism 

- Implementation of the denotational semantics 
of a simple language (TINY from [~6]) 

- Several abstract data types (bags, maps, ... ) 

- Colimits of finite diagrams in a cocomplete 
category, and in a kind of comma oategory 
(discussed in [6]) 

- Telegram problem (in [13]; problem from [19]) 

- Text formatter (in [13]; problem from [23]) 

The last two of these are written in an earlier 
(and syntactically incompatible) version of HOPE 
called NPL; translation would be tedious but 
straightforward. 

5. DISCUSSION 

Some desirable features for programming 
languages were discussed in section 2. Since HOPE 
was designed with these in mind, it not 
surprisingly displays them all, although some are 
exhibited better than others (an exception is set 
expressions [12], still to be implemented). But 
more important is the question of whether the 
resulting language provides a better interface with 
the computer than the one presented by existing 
languages. 

Probably the most pleasing result of our efforts 
has been the observation that it really is 
significantly easier to construct programs in HOPE 
than in any other programming language we know. In 
particular, we have found that it is rather easy to 
write programs which are absolutely correct the 
first time they are run. It seems quite difficult 
to commit an error which remains undiscovered for 
long -- the simple errors are caught during 
compilation by the typechecker, while the more 
fundamental errors (stemming usually from an 
insufficient understanding of the problem) display 
themselves glaringly during even a casual test. 
Since testing and debugging account for more than 
half the cost of many software projects, this could 
yield enormous savings. 

An important aim of language design is to make 
it easier to verify that a program meets a given 
specification. In this respect applicative 
languages such as HOPE seem to offer considerable 
advantages; the absence of assignment statements 
and the consequent replacement of iteration by 
recursion gives programs a simple and easy to 
analyse form. Powerful verification systems for 
applicative languages have been written by Boyer 
and Moore [3] and by Aubin [I]. 

Another advantage of an applicative language is 
the fact that programs lend themselves very well to 
the technique of program transformation [7], 
whereby a simple but inefficient program is 
transformed into an acceptably efficient one by 
steps which maintain its correctness. A very 
simple example of program transformation would be 
the production of the following linear-time program 
for generating Fibonacci numbers from the 
equivalent program in section 3.3 which requires 
exponential time. 

dec g :num -> num#nnm 
- - -  g(O) <= 1,1 
--- g(succ(n)) <= (a + b),a where a,b == g(n) 

dec fib' : hum -> num 
--- fib'(O) <= I 
--- fib'(1) <= I 
--- fib'(succ(succ(n))) 

<= a + b where a,b == g(n) 

Feather [13] has produced a system for transforming 
large programs, which is connected to an earlier 
version of the HOPE system. 

A very high-level language such as HOPE pays 
penalties of inefficiency because it is remote from 
the machine level. It could be thought of as a 
specification language in which the specifications 
are 'walkable' (if not 'runnable'), or as a 
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language for making a first try at a programming 
project. But the program transformation approach 
discussed above gives us some hope that we can 
produce tolerably efficient programs with less 
effort than in a conventional language. 

In addition, there is another (as yet 
unmentioned) advantage of applicative languages 
which may come to our rescue: applicative languages 
are not so tightly bound to the notion of a 
sequential machine as are imperative languages. 
The value of the function application 

e0(e I .... ,e n) 

is independent of the order of evaluation of the 
expressions eo, ... ,e n (if parameters are passed 
'by value'); ~his is guaranteed by the absence of 
an assignment statement. If a parallel machine is 

available, Co, ... ,e n may be evaluated 
simultaneously. Not onIy that, but if Co, ... ,e n 
are themselves function applications, then their 
arguments may all be evaluated simultaneously. 
With the rapidly falling cost of hardware, this is 
feasible, although we would have to build the 
machine ourselves. 

HOPE has faults, too; one is illustrated in 
figure I .  The sorting program will only sort a 
list of numbers, because otree is 'ordered-tree-of- 
numbers'. We want a more general sorting program, 
and this depends on a more general definition of 
ordered trees; we would like to define 'ordered- 
tree-of-alphas'. The data declaration is easy to 
generalise. But to generalise insert to type 

alpha#otree(alpha)->otree(alpha) 

we must have a more general order relation than < , 
which is defined only for numbers. 

One solution to this problem would be to require 
otree users to supply the appropriate order 
relation explicitly when dealing with an otree. 
It could be added as an extra argument to insert , 
or alternatively it could be built into the otrees 
themselves (supplied as an argument to empty , and 
propagated to new tips and nodes by insert ). 
Unfortunately, a 'bad' order relation (for example, 
one which is not transitive) would violate the 
integrity of the data type, causing unpredictable 
results. 

Another possibility would be to define a general 
order relation as a new HOPE primitive. This was 
our solution to the analogous problem involving the 
equality relation = . Two data values are equal if 
they have the same representation as terms of 
constructors, except that for a newly-defined data 
type the user may provide a nonstandard equality 
which is automatically incorporated into the 
standard system equality. For example, we might 
want to define equality for otrees so that 
tip(n) = node(empty,n,empty) . Allowing an order 
to be associated with each type would be a 
satisfactory solution to our present difficulties. 
But how many more such operations should be 
associated with a type? 

The best solution is of course to associate a 
collection of operations with each data type (so 
types become al~ebras instead of simply sets). 

Rather than generalising to otree(alpha) we could 
generalise to otree(alpha[<]) , requiring an order 
relation to exist on the parameter type. This is 
the approach taken in CLU [25] and in the 
specification language CLEAR [8]. We really want 
HOPE modules to have ~r.~_~r_~., a collection of 
types and operators, just as CLU clusters have 
parameters. 

As a further example, refer again to figure I 
and note that the module tree_sort does not depend 
on the fact that otrees are trees, but just on 
certain properties of insert and flatten . We may 
substitute a module ordered_lists for 
ordered_trees , where empty becomes nil , insert 
becomes the obvious order-preserving insertion in 
an ordered list, and flatten is the identity 
function. Essentially, tree_sort is a parametrised 
module which may be 'applied' to any module 
satisfying certain (nontrivial) properties. 

The CLU cluster parameter, however, is just an 
explicit list of types and operators, 

T with < : T#T -> truval 

In CLEAR such an entity (called a theory and 
provided with axioms) can be named, thus 
'Ordered-Set'; what is more various operations for 
building such theories are provided. We would llke 
to extend HOPE to have parameterised modules where 
the parameters and the interfaces between modules 
are nameable and manipulable as in CLEAR. Further 
work in this direction is being carried out in 
collaboration with J.A. Goguen [14]. We hope it 
will contribute to a better understanding of the 
structure of large programs and their development. 
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