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Abstract

In the theory of algebraic specifications, many-sorted algebras are used to
model programs: the representation of data is arbitrary and operations are mod-
elled as ordinary functions. The theory that underlies the formal development
of programs from specifications takes advantage of the many useful properties
that these models enjoy.

The models that underlie the semantics of programming languages are dif-
ferent. For example, the semantics of Standard ML uses rather concrete models,
where data values are represented as closed constructor terms and functions are
represented as “closures”. The properties of these models are quite different
from those of many-sorted algebras.

This discrepancy brings into question the applicability of the theory of speci-
fication and formal program development in the context of a concrete program-
ming language, as has been attempted in the Extended ML framework for the
formal development of Standard ML programs. This paper is a preliminary
study of the difference between abstract and concrete models of specifications,
inspired by the kind of concrete models used in the semantics of Standard ML,
in an attempt to determine the consequences of the discrepancy.

1 Introduction

The starting point for work on algebraic specification is the use of many-sorted alge-
bras as models of programs. Thus the representation of data values is arbitrary and
operations on data are modelled as ordinary set-theoretic functions. This is a natural
choice since the primary aim of this work is to provide foundations for the develop-
ment of programs that are correct with respect to a given specification of requirements.
Correctness is a property of the input/output behaviour of a program, and in study-
ing correctness it is convenient to abstract away from all other aspects of program
behaviour. Models of programs more complicated than many-sorted algebras have
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been used to deal with advanced features of programming languages (higher-order
functions, infinite behaviour, etc.) but the idea is still to abstract away from details
of code and algorithms insofar as this is possible.

There is a well-developed theory of algebraic specification which provides syntax
for specifications, a formalization of concepts involved in going from specifications
to programs by stepwise refinement, methods for proving correctness of refinement
steps, etc. Some recent references are [Wir90], [BKLOS91], [LEW96], [ST95] and
[ST9?]. This theory takes full advantage of the properties of many-sorted algebras
and uses various standard constructions (quotient, free extension, etc.) for building
new algebras by adding to and/or combining others. It is mature enough to be
applied to the specification and formal development of programs written using “pure”
fragments of programming languages.

Of course, programs that have been formally developed are entirely useless unless
they are expressed in some implemented programming language. Since the models
that underlie the semantics of programming languages are often rather different from
many-sorted algebras, there is a potential problem in ensuring that arguments about
correctness in the theory of formal development are valid for the semantics of the
programming language.

A concrete instance of this problem arises in our work on specification and formal
development of Standard ML (SML) programs [Pau91] using the Extended ML (EML)
framework [ST89], [San91], [KST95]. SML has an operational semantics [MTH90]
which uses rather concrete models of programs, with data represented as closed con-
structor terms and functions represented as closures (a closure is a λ-term together
with an environment binding its free variables). Although it is not difficult to map
these concrete models to many-sorted algebras, there is a priori no guarantee that
this map would preserve and/or reflect important properties of algebras. There are
concrete models that do not correspond to any SML program, as well as many alge-
bras that do not correspond to any concrete model, so one question concerns closure of
these classes under various algebraic constructions. It is by no means obvious that the
concrete models enjoy the particular properties of algebras that are used to explain
why formal development in EML yields correct programs.

The situation in SML/EML is an example of a possibly worrying discrepancy
between the abstract models used to reason about correctness and the more or less
concrete models used to give semantics to programming languages. It seems neces-
sary to check that the process of abstraction has not led us to make false conclusions
about the underlying reality. This paper attempts to study this issue, looking to SML
and EML for inspiration. This is an awkward thing to study because of the complex-
ity of real programming languages (and SML is no exception) so that some degree
of abstraction is unavoidable in the study itself. We therefore proceed by analogy,
studying what happens when computability restrictions inspired by those arising in
SML are placed on algebras. Even when we refer to SML, we will be considering a
“pure” fragment which excludes complications like real numbers, input/output, and
polymorphic types. We argue that the analogy is strong enough so that the answers
we obtain are valid for SML.

This issue is by no means unique to the specification and formal development of
programs using algebraic specifications. The same question arises for any theory of
specification and formal development, and more generally whenever an abstract view



is taken of a real system, whether it is a set of differential equations describing the
forces acting on a bridge or a mathematical model of program behaviour.

Much of the paper is devoted to the development of a satisfactory notion of “alge-
bra coded by a program” and an investigation of its properties. We begin with modest
algebras: partial algebras that come equipped with a computable implementation us-
ing natural number encodings of data (Sect. 2). A special case is the A0-extensions,
modest algebras in which the implementation of certain types is fixed (Sect. 3), which
appear to capture SML-codable algebras closely enough for the purposes of this paper.
The meaning of formulae in modest algebras is defined in Sect. 4, and then in Sect. 5
we explore which constructions on partial algebras carry over to modest algebras. In
Sect. 7 we consider the question of which partial algebras can be given the structure
of a modest algebra. We proceed to define a simple specification language (Sect. 8)
which can be interpreted in various institutions of partial and modest algebras (cf.
Sect. 6) and then finally examine the gap between the interpretation of specifications
using partial algebras and using modest algebras or modest A0-extensions (Sect. 9).
Our conclusion is that the discrepancy has no alarming consequences, but the analysis
reveals some interesting choices which influence the completeness and flexibility of the
formal program development process (Sect. 10).

2 Modest algebras

This section is devoted to the search for a formalization of the concept of “algebra
coded by a program”. Since this is sensitive to (at least) what we mean by “program”,
we cannot give a definitive answer. The notion of modest A0-extension, presented in
the next section, is an approximation that seems to be adequate for our purposes.

The reader is assumed to be familiar with usual notions of many-sorted signature,
signature morphism, many-sorted algebra, homomorphism, reduct of a Σ′-algebra
A′ along a signature morphism σ : Σ → Σ′ to yield the Σ-algebra A′ σ (written A′ Σ

when σ is an inclusion) and similarly for Σ′-homomorphisms, etc.; see e.g. [Wir90]. We
use ordinary many-sorted signatures with first-order operation symbols, but restrict
to signatures having a countable number of operation symbols. Call the category of
such signatures AlgSig, and let Σ = 〈S,Ω〉 be a signature in |AlgSig|. We use partial
algebras having countable carrier sets, and so-called strong homomorphisms between
such algebras, which preserve and reflect definedness of operations. The category
of such Σ-algebras and Σ-homomorphisms is called PAlg(Σ). We also use strong
congruences on partial algebras, which are closed under application of operations and
preserve and reflect their definedness. Throughout, we use the arrow → for total
functions (and in types of operation symbols) and the arrow ⇀ for partial functions.

A modest algebra is a partial algebra equipped with a computable “implementa-
tion”: its data values are encoded as natural numbers, and its operations are mirrored
by partial recursive functions over these encodings.

Definition 2.1 A modest Σ-algebra A is a partial Σ-algebra A together with:

• a recursive set s̄ ⊆ N of codes for each s ∈ S;

• a total surjective decoding function [·]s : s̄→ |A|s for each s ∈ S; and



• a partial recursive tracking function f̄ : s̄1× · · ·× s̄n ⇀ s̄ for each f : s1× · · · ×
sn → s in Ω

such that for any such f and m1 ∈ s̄1, . . . ,mn ∈ s̄n, f̄ (m1, . . . ,mn) is defined iff
fA([m1]s1, . . . , [mn]sn) is defined and then [f̄(m1, . . . ,mn)]s = fA([m1]s1, . . . , [mn]sn).
We drop subscripts from decoding functions when they are determined by the context.
We write |A| for A and say that A is over A, and we write s̄A, [·]A and f̄A when A
is not obvious.

This definition is intended to reflect the way that programs in a language like
Standard ML “code” algebras. Think of each sort s as an SML type, with the codes
in s̄ being Gödel-style encodings of constructor terms of this type. If s is a function
type, the codes in s̄ are encodings of λ-terms. The requirement that s̄ be recursive
stems from the fact that typechecking in SML is decidable: given an SML term,
we can decide whether or not it is a constructor term (or λ-term) of a given type
over a given set of constructors. The tracking functions need to be partial recursive
to make them SML-implementable. For any built-in type or user-defined concrete
data type s whose definition does not involve abstract types or function types (in
SML parlance, an “eqtype”), [·] is a bijection and so equality in |A|s corresponds to
identity of constructor terms of type s. SML then provides a function = : s×s→ bool
that decides the equality. But for a function type s→ t, if the interpretation taken in
|A|s→t is the usual set-theoretic function space (restricted to denotable functions) then
[·]s→t : s→ t → |A|s→t is in general no longer a bijection since it maps extensionally
equal λ-terms to the same set-theoretic function. The kernel of [·]s→t, ≡[·]s→t =def

{〈m,m′〉 ∈ s→ t× s→ t | [m] = [m′]}, is typically not even semi-decidable.
The term “modest algebra” comes from the term “modest set” [Ros90] where

however the requirement that the sets of codes be recursive is absent. The function
space used there would not satisfy such an assumption even if its domain and range
did, since it is not decidable whether or not a given partial recursive function on N is
a function between two given recursive sets. As explained above, we think of (codes
of) statically well-typed λ-terms as codes for values of the function space.

The restriction to countable algebras is forced by the definition of modest alge-
bra: obviously, uncountable carrier sets cannot be encoded using natural numbers
(although see [SHT95] for a theory of computable approximations of uncountable al-
gebras). Some other simple properties of modest algebras follow directly from the
definition. We start with an alternative formulation of the definition itself.

Proposition 2.2 The families S̄ = 〈recursive s̄ ⊆ N〉s∈S, [·] = 〈[·]s : s̄ → |A|s〉s∈S
and Ω̄ = 〈partial recursive f̄ : s̄1×· · ·×s̄n ⇀ s̄〉f :s1×···×sn→s∈Ω form a modest Σ-algebra
A over a partial Σ-algebra A iff [·] : Ā → A is a surjective Σ-homomorphism, where
Ā is the partial Σ-algebra with carriers S̄ and operations Ω̄. �

This means that we can view any modest algebra A as a surjective homomorphism
from Ā to |A|, and vice versa. It also says that one may view Ā as a concrete
implementation of |A|, with [·] as the so-called “abstraction function” [Hoa72].

Corollary 2.3 Let Ā together with [·] form a modest Σ-algebra over A. If j : A→ B
is a surjective Σ-homomorphism then Ā together with j ◦ [·] : Ā → B forms a modest
Σ-algebra over B. �



Proposition 2.4 Let A be a partial Σ-algebra and Ā be as above. There is a surjective
Σ-homomorphism [·] : Ā → A (i.e. a modest Σ-algebra over A with codes Ā and
decoding function [·]) iff there is a Σ-congruence ≈ on Ā such that A ∼= Ā/≈. �

Proposition 2.5 Let Ā and [·] : Ā → A be as in Prop. 2.2, but with S̄ = 〈r.e. s̄ ⊆
N〉s∈S. Then there is a modest Σ-algebra over A.

Proof: Since each s̄ is r.e. there is a recursive bijection es : s̄′ → s̄ where s̄′ ⊆ N
is recursive. Define the decoding functions [·]′ = 〈[·]′s : s̄′ → |A|s〉s∈S by [·]′s =
[·]s ◦ es, and the tracking functions Ω̄′ = 〈f̄ ′〉f :s1×···×sn→s∈Ω by f̄ ′(m′1, . . . ,m′n) =
e−1
s (f̄(es1(m′1), . . . , esn(m′n))) for m′1 ∈ s̄′1, . . . ,m′n ∈ s̄′n. It is easy to see that S̄ ′ =
〈s̄′〉s∈S, Ω̄′ and [·]′ form a modest Σ-algebra over A. �

Definition 2.6 A modest Σ-homomorphism h : A → B is a Σ-homomorphism
between the underlying partial algebras |h| : |A| → |B| together with a family of partial
recursive tracking functions 〈h̄s : N ⇀ N〉s∈S such that for each s ∈ S and m ∈ s̄A,
h̄s(m) is defined, h̄s(m) ∈ s̄B, and [h̄s(m)]B = |h|s([m]A). We say that h is over
|h|. Modest Σ-algebras and modest Σ-homomorphisms (with the obvious composition)
form a category called MAlg(Σ), and | · | : MAlg(Σ)→ PAlg(Σ) is a functor.

Proposition 2.7 A modest Σ-isomorphism h : A → B (i.e. an isomorphism in
MAlg(Σ)) is an isomorphism |h| : |A| → |B| in PAlg(Σ) together with a (total)
recursive S-sorted bijection on N that tracks |h|. �

The usual definitions of reduct of a partial Σ′-algebra and Σ′-homomorphism along
a signature morphism σ : Σ→ Σ′ extend to modest Σ′-algebras and their homomor-
phisms, e.g. using the formulation of modest algebras given by Prop. 2.2: the σ-reduct
of [·] : Ā′ → A′ is [·] σ : Ā′ σ → A′ σ. We write A′ σ, or A′ Σ when σ is an inclusion.
This, together with the category MAlg(Σ) for each signature Σ, gives a contravariant
functor MAlg : AlgSigop → Cat.

There is a well-developed theory of computable algebra, beginning with the work
of Mal’cev [Mal61] (cf. [Rab60]) and including many papers on the expressive power
of algebraic specification methods by Bergstra and Tucker, see e.g. [BT87]. For a
recent overview see [SHT95]. Although the total modest algebras are exactly the
so-called “effectively numbered algebras” of [SHT95], there has been little attention
paid to the counterpart for partial algebras. Furthermore, it is common to impose
computability restrictions on the decoding functions (e.g. the “computably numbered
algebras” of [SHT95] are total modest algebras such that the kernel ≡[·]s is decidable
for all sorts s ∈ S); these apply to all sorts while we have seen that in the SML context
such restrictions are appropriate for some sorts (for example, those corresponding
to eqtypes) but not for others (for example, those corresponding to function types).
Another difference is that while [SHT95] concentrates on modestizable algebras, where
the encoding structure remains implicit (see Sect. 7 below), we deal with modest
algebras, which contain the encoding structure explicitly.

3 Modest A0-extensions

Despite the comments above concerning the relationship between modest algebras and
SML, modest algebras do not capture only SML-codable algebras.



Counterexample 3.1 Let A be a two-sorted algebra with carriers |A|s = |A|t = N
such that fA : |A|s → |A|t is a total non-computable bijection and f is the only
operation symbol. A modest algebra over A is given by taking s̄ = t̄ = N, [·]s = f−1

and [·]t and the tracking function f̄ to be the identity. �

The question of which partial algebras can and cannot be given the structure of a
modest algebra will be treated in Sect. 7.

A further reason for the mismatch is that SML insists on a particular interpret-
ation of certain types, the so-called “pervasive” types like string and bool whose
implementation is fixed by the system. Suppose that Σ0 = 〈S0,Ω0〉 is a signature
containing the sorts and operation symbols whose interpretation we want to fix as
the one given by a particular modest Σ0-algebra A0. We assume that ≡[·]s is de-
cidable for all s ∈ S0; then there is no loss of generality in assuming that [·]s is a
bijection for all s ∈ S0 so we make this assumption. We assume that Σ0 contains at
least the sorts bool (Booleans) and nat (natural numbers) with the usual operations
(true, false :→ bool , 0 :→ nat , + : nat×nat → nat , etc.) and that the interpretations
of these in |A0| are as usual. It follows that all values in |A0| are Σ0-reachable. We
restrict attention to signatures Σ that extend Σ0. Let AlgSigΣ0 be the category of
signatures extending Σ0, with signature morphisms that are the identity on Σ0.

Definition 3.2 Let Σ be a signature extending Σ0. A modest Σ-algebra A extends
A0 (A is a modest A0-extension) if there is a modest Σ0-isomorphism h : A Σ0 →A0
such that h̄ is the S0-sorted identity function on N.

Note that this fixes the concrete implementation of Σ0 while fixing its interpretation
on the abstract level only up to isomorphism: if A is an A0-extension then Ā Σ0 = A0
while |A Σ0| ∼= |A0|.

IfA0 is the built-in implementation of the pervasive types of SML, then for the pur-
poses of this paper we will identify SML-codable algebras with modest A0-extensions.
The correspondence is not exact — there are modest A0-extensions that are not SML-
codable, since we have placed no computability restrictions on the kernel ≡[·]s for
s 6∈ S0 — but because of the complexity of the semantics of SML [MTH90], capturing
exactly the class of SML-codable algebras (and proving that we have done so) would
be very difficult. However, the match is close enough that the ideas and results in the
sequel should apply to SML. On one hand, the class of modest A0-extensions is small
enough to expose some problems when compared with the class of partial algebras
(see Sects. 7 and 9 below); on the other hand it is large enough to cover the SML-
codable algebras. The reader is encouraged to check that the class of SML programs
is closed under the main constructions on modest A0-extensions we consider: reduct,
amalgamation and definitional extension, cf. Sect. 5.

Definition 3.3 Let Σ be a signature extending Σ0. MAlgA0(Σ) is the subcategory
of MAlg(Σ) with modest A0-extensions as objects, and as morphisms modest Σ-
homomorphisms h such that h Σ0 is tracked by the S0-sorted identity function. This
extends to a contravariant functor MAlgA0 : AlgSigop

Σ0 → Cat.

At the abstract level of partial algebras we will similarly concentrate on extensions
(up to isomorphism) of the abstract interpretation of built-in sorts and operations
given by A0 =def |A0|.



Definition 3.4 Let Σ ∈ |AlgSigΣ0| be a signature extending Σ0. A partial Σ-algebra
extends A0 if A Σ0

∼= A0. PAlgA0(Σ) is the subcategory of PAlg(Σ) with partial A0-
extensions as objects, and as morphisms all Σ-homomorphisms h such that h Σ0 is a
Σ0-isomorphism. This extends to a contravariant functor PAlgA0 : AlgSigop

Σ0 → Cat.

Proposition 3.5 For any signature Σ ∈ |AlgSigΣ0| extending Σ0, | · | : MAlg(Σ)→
PAlg(Σ) from Def. 2.6 restricts to a functor | · | : MAlgA0(Σ)→ PAlgA0(Σ). �

4 Terms and formulae in modest algebras

Let X be an S-sorted set of variables. The (total) algebra TΣ(X) of Σ-terms with
variables in X and the value tvA of a term t in a partial Σ-algebra A under a (total)
valuation v : X → |A| are as usual. With evaluation of Σ-terms in a modest Σ-
algebra A, we have a choice between evaluation in the underlying partial algebra or
using the tracking functions. The latter corresponds to ordinary evaluation in the
partial algebra Ā given by Prop. 2.2.

Definition 4.1 A valuation of variables X in A is an S-sorted (total) function v =
〈vs : Xs → s̄〉s∈S. The (extensional) value of t under v in A, written tvA, is t[·]◦v|A| . If t
is ground (does not contain any variables) then we can write tA.

We use formulae of first-order logic where the atomic formulae are definedness
formulae and (strong) equations. Satisfaction of Σ-formulae in a modest Σ-algebra A
may be defined either on the level of the underlying partial algebra or on the level of
the tracking functions; the latter corresponds to satisfaction in Ā.

Definition 4.2 Let ϕ be a formula with free variables in X and let v be a valuation
of X in A. We define (extensional) satisfaction of ϕ by A under v, written A |=v ϕ,
by induction on the structure of ϕ. Here are the cases for atomic formulae:

A |=v D(t) iff tvA is defined
A |=v t = u iff tvA, u

v
A are both undefined, or are both defined and equal

Thus A |=v ϕ iff |A| |=[·]◦v ϕ in the usual sense. As usual, A |= ϕ iff A |=v ϕ for all
valuations v.

5 Constructions on modest algebras

In this section we will discuss some constructions on modest algebras (reduct, defini-
tional extension, and amalgamation) that are used in the formal development process
to be presented in Sect. 10. We will also have a look at some other standard con-
structions (quotient and subalgebra). Although these do not appear explicitly in our
formalization of the development process, they are taken for granted in work on alge-
braic specification. Some of these standard constructions carry over easily to modest
algebras; others carry over only under certain additional conditions.

We have already seen that the reduct of a partial Σ′-algebra and Σ′-homomorphism
along a signature morphism σ : Σ → Σ′ extend to modest Σ′-algebras and modest
Σ′-homomorphisms. Likewise for modest A0-extensions and their homomorphisms,
provided that σ is the identity on Σ0.



Definition 5.1 Let ≈ be a congruence on |A|, where A is given by the surjective
homomorphism [·] : Ā → |A|. The quotient of A by ≈, written A/≈, is the modest
Σ-algebra given by the surjective homomorphism [·]≈ ◦ [·] : Ā → |A|/≈.

Proposition 5.2 If A extends A0 and ≈s is the identity for all s ∈ S0 then A/≈
extends A0. �

Definition 5.3 B is a modest subalgebra of a modest Σ-algebra A if: |B| is a subal-
gebra of |A|; B̄ is a subalgebra of Ā; and ([·]B)s = ([·]A)s � s̄B for all s ∈ S. A modest
Σ-algebra A is reachable if for any s ∈ S and m ∈ s̄, there is a ground Σ-term t such
that tĀ = m.

Proposition 5.4 If A is reachable then A has no proper modest subalgebra. �

For partial Σ-algebras, the converse of Prop. 5.4 holds as well, but this does not extend
to modest Σ-algebras as the following counterexample shows.

Counterexample 5.5 Let Σ have sorts s and s′ and operation symbols 0 : → s,
succ : s→ s, f : s→ s′ and g : s′ × s→ s′. For any two r.e. sets X, Y ⊆ N, let AX,Y

be the Σ-algebra such that |A|s = |A|s′ = N with 0 and succ interpreted as usual and

fAX,Y (n) =
{
n if n ∈ X
undefined otherwise gAX,Y (n,m) =

{
m if n ∈ Y
undefined otherwise

Let A be the modest Σ-algebra over A with s̄ = s̄′ = N, [·]s and [·]s′ the identity,
and the evident tracking functions for 0, succ, f and g (fAX,Y and gAX,Y are partial
recursive since X and Y are r.e.). AX,Y is not reachable if X is a proper subset of N.

Now choose X and Y so that they are disjoint and not recursively separable, that
is, for any recursive set Q ⊆ N, if X ⊆ Q then Q ∩ Y 6= ∅ (such sets X and Y
exist, see e.g. [Rog67], Chap. 7, Th. XII). Let B be a modest subalgebra of AX,Y .
Then X ⊆ |B|s′, and so there exists y ∈ Y such that y ∈ |B|s′ (since |B|s′ = s̄′B is a
recursive subset of N and X and Y are not recursively separable). But then, for each
n ∈ N, g|B|(y, n) = n, and so n ∈ |B|s′. Thus |B|s′ = N = |AX,Y |s′ , and so B = AX,Y .
Therefore AX,Y has no proper modest subalgebra. �

Any partial algebra has a unique reachable subalgebra. Counterexample 5.5 shows
that this is not the case for modest algebras. For any modest Σ-algebra A, the sets
〈{tĀ | t ∈ |TΣ|s} ⊆ s̄〉s∈S are r.e., and so using Prop. 2.5 it is possible to construct a
reachable modest algebra from A and this family of r.e. sets. But the construction
involves a re-coding so the result will not be a modest subalgebra of A in general.

The amalgamated union construction, used to combine algebras over different
signatures having a common reduct, generalizes to modest algebras.

Proposition 5.6 Consider a pushout in the category AlgSig:
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Then, for any modest Σ1-algebra A1 and modest Σ2-algebra A2 such that A1 σ1 =
A2 σ2, there exists a unique modest Σ′-algebra A′ such that A′ σ′1 = A1 and A′ σ′2 =
A2. If A1, A2 and A1 σ1 are all modest A0-extensions then so is A′. �

In Sect. 4 we have introduced formulae, which can be used as axioms to specify
required properties of modest algebras. The quotient construction and amalgamation
as discussed above are examples of how modest algebras can be modified and com-
bined. To build modest algebras “from scratch” we need some elementary ways to
define new modest algebras and/or their components. As a simple example, let us
now consider definitions of operations.

Given a signature Σ, a Σ-definition has the form

fun f(x1:s1, . . . , xn:sn) = t:s

where f does not occur in Σ, t is a term of sort s over the signature Σ[f ] =def Σ∪{f :
s1 × · · · × sn → s} (so t may refer to f) with variables {x1 : s1, . . . , xn : sn}. Mutual
recursion is not provided but adding it should not introduce any new problems.

Such a definition determines an extension of an ordinary partial algebra, which
can be used to explain the effect of definitions on modest algebras.

Definition 5.7 Given a partial Σ-algebra A, a Σ-definition

fun f(x1:s1, . . . , xn:sn) = t:s

determines a sequence of partial Σ[f ]-algebras A0, A1, A2, . . . extending A. For each
j ≥ 0, Aj Σ = A, and for every a1 ∈ |A|s1, . . . , an ∈ |A|sn, fA0(a1, . . . , an) is un-

defined and for j ≥ 0, fAj+1(a1, . . . , an) = t{x1 7→a1,...,xn 7→an}
Aj

. The extension of A by
fun f(x1:s1, . . . , xn:sn) = t:s, written (somewhat imprecisely) A[f←t], is the partial
Σ[f ]-algebra such that A[f←t] Σ = A and for every a1 ∈ |A|s1, . . . , an ∈ |A|sn and
a ∈ |A|s, fA[f←t](a1, . . . , an) = a iff fAj (a1, . . . , an) = a for some j ≥ 0.

(This is well-defined, since fAj , j ≥ 0, form a chain w.r.t. the evident ordering between
partial functions.)

Proposition 5.8 Given a Σ-homomorphism h : A → B between partial Σ-algebras
and a Σ-definition fun f(x1:s1, . . . , xn:sn) = t:s, h : A[f←t] → B[f←t] is a Σ[f ]-
homomorphism. �

Notice that for any modest Σ-algebra A, fĀ[f←t] is a partial recursive function.
Then, since by Prop. 2.2 any modest Σ-algebra Amay be identified with the surjective
homomorphism [·] : Ā → |A|, Prop. 5.8 justifies the following definition:

Definition 5.9 Given any modest Σ-algebra A and Σ-definition

fun f(x1:s1, . . . , xn:sn) = t:s

the extension of A by fun f(x1:s1, . . . , xn:sn) = t:s, written (somewhat imprecisely)
A[f←t], is the modest Σ[f ]-algebra given by the surjective Σ[f ]-homomorphism [·] :
Ā[f←t]→ |A|[f←t].

Proposition 5.10 If A is a modest A0-extension then so is A[f←t]. �



6 Institutions

In the previous sections we have introduced concepts which can be put together to
form a number of logical systems we might want to use in the process of software
specification and development. To systematize this a bit, let us first recall the notion
of an institution, which formalizes the concept of a logical system based on a model-
theoretic view of logic. This will also allow us to take advantage of “institution-
independent” concepts and results in the literature.

Definition 6.1 ([GB92]) An institution I consists of: a category SignI of signa-
tures; functors SenI : SignI → Set and ModI : SignopI → Cat, giving for each signa-
ture Σ ∈ |SignI| a set SenI(Σ) of Σ-sentences and a category ModI(Σ) of Σ-models
respectively; and a family 〈|=I,Σ ⊆ |ModI(Σ)| × SenI(Σ)〉Σ∈|SignI| of satisfaction re-
lations such that for any signature morphism σ : Σ → Σ′, Σ-sentence ϕ ∈ SenI(Σ)
and Σ′-model M ′ ∈ |ModI(Σ′)|, M ′ |=I,Σ′ SenI(σ)(ϕ) iff ModI(σ)(M ′) |=I,Σ ϕ.

We will omit the subscript I when the institution is obvious, and then for any sig-
nature morphism σ : Σ → Σ′ and Σ′-model M ′ ∈ |Mod(Σ′)|, we will write M ′ σ for
Mod(σ)(M ′). Then, for any Σ-model M ∈ |Mod(Σ)|, Σ-sentence ϕ ⊆ Sen(Σ) and
set of Σ-sentences Φ ⊆ Sen(Σ), we will write M |= Φ and Φ |= ϕ with the usual
meaning. The latter notation introduces the crucial concept of semantic entailment.

In the previous sections we have in effect defined four institutions:

IP (partial algebras): The category of signatures is AlgSig; sentences are closed
first-order formulae with equality and definedness formulae; the model functor is
PAlg : AlgSigop → Cat; and the satisfaction relation is the usual satisfaction
of first-order formulae in partial algebras.

IA0 (partial A0-extensions): Like IP, but the category of signatures is AlgSigΣ0
and the model functor is PAlgA0 : AlgSigop

Σ0 → Cat.

IM (modest algebras): Like IP, but the model functor is MAlg : AlgSigop → Cat
and the satisfaction relation is the extensional satisfaction of first-order formulae
in modest algebras.

IA0 (modest A0-extensions): Like IM, but the category of signatures is AlgSigΣ0
and the model functor is MAlgA0 : AlgSigop

Σ0 → Cat.

An important property of institutions is whether they admit amalgamation of
models, used in the process of modular composition of programs, cf. [EM85], [ST88b].

Definition 6.2 An institution I admits amalgamation1 if its category of signatures
Sign has pushouts and its model functor Mod : Signop → Cat maps pushouts in
Sign to pullbacks in Cat.

The most important consequence of this property is that amalgamation of models
(and of model morphisms), as spelled out in Prop. 5.6 for modest algebras, is then
unambiguously defined.

Proposition 6.3 IP, IA0, IM and IA0 admit amalgamation. �
1Such institutions were called semiexact in [DGS93].



7 Modestizable algebras

In Sect. 2 we suggested that modest algebras (or, to be more precise, modest A0-
extensions) can be viewed as a representation of the structures that arise in a real
programming language like SML. Another approach would be to use partial algebras,
but restrict attention only to those that are codable in the real programming language.

Definition 7.1 A partial Σ algebra A ∈ |PAlg(Σ)| is modestizable if there exists
a modest Σ-algebra A ∈ |MAlg(Σ)| so that |A| = A. PAlg∃M(Σ) denotes the cat-
egory of modestizable partial Σ-algebras, and there is an obvious functor PAlg∃M :
AlgSigop → Cat.

The first question to investigate is how many partial algebras are modestizable.
We begin with two easy positive statements:

Proposition 7.2 Any finite partial algebra is modestizable. �

Proposition 7.3 Any total algebra A ∈ PAlg(Σ) is modestizable.

Proof: Suppose A ∈ |PAlg(Σ)| is total. Fix an enumeration Ns = {a1, a2, . . . }
of |A|s for each s ∈ S; this is possible since |A|s is required to be countable. Let
N = 〈Ns〉s∈S. Define A ∈ |MAlg(Σ)|: |A| = A; for any s ∈ S, let s̄ be the set
of Gödel-style encodings ptq of terms t ∈ |TΣ(N)|s and [ptq]s = tidA ; and for any
f : s1 × · · · × sn → s in Ω, f̄ (pt1q, . . . , ptnq) = pf(t1, . . . , tn)q. �

Of course, the carrier of any modestizable algebra is countable — this is why we
have restricted attention to countable algebras only. But even under this assumption,
not all partial algebras are modestizable:2

Counterexample 7.4 Let Σnonmod have sort s and operation symbols 0 :→ s and
succ : s → s. Consider the partial Σnonmod -algebra A with |A|s = N, 0 and succ
interpreted as usual, and where fA : N⇀ N is a function with non-r.e. domain, e.g.

fA(n) =
{

0 if the nth TM doesn’t halt
undefined otherwise.

Now suppose that A is modestizable. Then n ∈ dom(fA) iff fA(n) is defined iff
fA(succnA(0A)) is defined iff f̄(succn(0̄)) is defined iff n ∈ dom(λx.f̄(succx(0̄))). But
f̄ and succ are partial recursive, so dom(λx.f̄(succx(0̄))) is r.e., and this contradicts
the assumption that dom(fA) is non-r.e. �

The essence of this counterexample is that in any modest algebra, the set of ground
terms with defined values is always a recursively enumerable subset of all terms, and
so partial algebras for which this property fails are not modestizable.

The situation is even more delicate when modest A0-extensions are considered.
One might expect that any modestizable partial A0-extension A ∈ PAlgA0(Σ) is
modestizable so as to extend A0. Unfortunately, the following counterexample shows
that this is not the case, even if A Σ0 = A0.

2This example is due to Martin Hofmann and Thomas Streicher.



Counterexample 7.5 Consider an algebra Ahalt with Ahalt Σ0 = A0 which contains
a total function halt : nat → bool that solves the halting problem. Ahalt is modestizable
by Prop. 7.3 (assuming that A0 is total), but there is no modest algebra extending A0
over Ahalt . �

On an abstract level, what is happening when we try to work with modestizable
algebras is that we start with an institution I (in this case, the institution IP) and then,
for each signature Σ ∈ |Sign|, identify a class of “admissible” Σ-models (in this case,
the modestizable algebras) which then may be identified with a full subcategory of
Mod(Σ). In general, this need not yield an institution: for some signature morphisms
σ : Σ→ Σ′ and admissible Σ′-models M ′ ∈ |Mod(Σ′)|, the reduct M ′ σ ∈ |Mod(Σ)|
may not be admissible. Fortunately, in our case this is not a problem since reducts
of modest algebras are well-defined and “commute” with reducts of partial algebras.
Consequently, we have an institution:

I∃M (modestizable partial algebras): Like IP, but the model functor is PAlg∃M :
AlgSigop → Cat.

However, the institution induced by choosing a class of admissible models of an
institution may lose some of the properties enjoyed by the original institution:3

Proposition 7.6 I∃M does not admit amalgamation.

Proof: The partial Σnonmod -algebra A of Counterexample 7.4 is not modestizable,
but can easily be presented as the amalgamated union of two modestizable partial
algebras: its reduct to the subsignature of Σnonmod with f removed and its reduct
to the subsignature of Σnonmod with 0 and succ removed. �

Similarly, in general we might lose the existence of reachable subalgebras, free exten-
sions, quotients, etc.

When we restrict the class of models of an institution, its logical properties may
also change. In general, the logical entailments of the original institution remain valid
in the institution of “admissible models”.

Proposition 7.7 For any signature Σ, set of Σ-sentences Φ and Σ-sentence ϕ, if
Φ |=IP ϕ then Φ |=I∃M ϕ. �

However, the opposite implication does not hold, since over a smaller class of models
more entailments might become true:

Counterexample 7.8 Consider any enumeration 〈Rn〉n∈N of all the recursively enu-
merable subsets of N. Let Σ be a signature with one sort s, constant 0 : → s and two
unary operations succ, f : s→ s. Put:

Φ = {D(f(succn(0))) | n ∈ N ∧ n 6∈ Rn} ∪
{¬D(f(succn(0))) | n ∈ N ∧ n ∈ Rn} ∪
{D(0), ∀x:s.D(succ(x))}.

Then, Φ is a set of sentences that is consistent in IP, and so e.g. Φ 6|=IP false.

3This point arose in a discussion with José Fiadeiro.



But Φ is inconsistent in I∃M, since no partial algebra satisfying Φ is modestizable,
by an argument similar to that in Counterexample 7.4: given any modest Σ-algebra
A, X = dom(λn.f̄(succn(0̄))) is an r.e. subset of N. Moreover, n ∈ X iff A |=
D(f(succn(0))), and if A |= Φ then this holds iff n 6∈ Rn. So, for A |= Φ, n ∈ X iff
n 6∈ Rn for all n ∈ N. Therefore X cannot be r.e., and this contradiction proves that
Φ has no modest model. Thus Φ |=I∃M ϕ for any Σ-sentence ϕ. �

8 Specifications

In [ST88a] we presented a powerful specification framework based on ASL [SW83]
which can be used for writing specifications in an arbitrary institution. For the pur-
poses of this paper, let us concentrate on a fragment of this formalism:

Definition 8.1 The syntax of specifications in an institution I is given by the fol-
lowing grammar:

SP ::= 〈Σ,Φ〉 basic specification
| SP ∪ SP ′ combination of specifications
| translate SP by σ renaming and/or adding symbols
| derive from SP by σ hiding and/or renaming symbols

where Σ ranges over signatures, Φ ranges over sets of sentences, and σ ranges over
signature morphisms, all from I.

As usual, SP ∪SP ′ combines the requirements that are expressed separately in SP
and SP ′, and then in typical institutions like the ones defined above, translate SP by σ
renames sorts and operation symbols in SP and/or adds new sorts and operation
symbols without constraining them at all, and derive from SP by σ hides and/or
renames sorts and operation symbols in SP .

Definition 8.2 The signature Sig(SP) of a specification SP is determined as follows:

Sig(〈Σ,Φ〉) = Σ if Φ ⊆ Sen(Σ)
Sig(SP ∪ SP ′) = Sig(SP ) if Sig(SP ) = Sig(SP ′)
Sig(translate SP by σ) = Σ′ if σ : Sig(SP )→ Σ′

Sig(derive from SP ′ by σ) = Σ if σ : Σ→ Sig(SP ′)

A specification is well-formed if it has a signature; otherwise it is ill-formed. We will
implicitly require all specifications below to be well-formed.

The semantics of specifications is defined by associating a class of Sig(SP)-models
to every well-formed specification SP , as follows.

Definition 8.3 The model class of a specification SP in an institution I is the class
of Sig(SP)-models Mod(SP ) ⊆ |Mod(Sig(SP ))| determined as follows:

Mod(〈Σ,Φ〉) = {M ∈ |Mod(Σ)| |M |=Σ Φ}
Mod(SP ∪ SP ′) = Mod(SP ) ∩Mod(SP ′)
Mod(translate SP by σ) = {M ′ |M ′ σ ∈ Mod(SP)}
Mod(derive from SP ′ by σ) = {M ′ σ |M ′ ∈ Mod(SP ′)}



This semantics is compositional: the class of models of a specification is determined
from the class of models of its immediate constituents.

The above definitions of specifications in an arbitrary institution can now be in-
stantiated to the framework of each of the institutions of interest here, as defined in
Sect. 6. These institutions share a common “syntax” and so they share the class of
specifications. The model classes of specifications differ though. For each specification
SP in IP, we will write ModP(SP) for the class of models of SP in IP and ModM(SP)
for its class of models in IM. Moreover, if SP is a specification in IA0 then we will
write ModA0(SP ) for its class of models in IA0 and ModA0(SP) for its class of models
in IA0.

The model classes ModA0(SP ) and ModP(SP ), and similarly ModA0(SP ) and
ModM(SP ), are related in the obvious way:

Proposition 8.4 For any specification SP in IA0,

1. ModA0(SP ) = ModP(SP) ∩ |PAlgA0(Sig(SP))|, and

2. ModA0(SP ) = ModM(SP) ∩ |MAlgA0(Sig(SP ))|. �

The distinction between ModP(SP ) and ModM(SP ) is more interesting, and will be
studied in detail in Sect. 9. Here, let us only recall that for any signature Σ ∈ |AlgSig|,
we have introduced a functor |·|Σ : MAlg(Σ)→ PAlg(Σ) (in Def. 2.6 written without
the subscript Σ). This extends to classes of models in the obvious way, which allows
us to compare ModP(SP) and ModM(SP ).

Proposition 8.5 For any specification SP in IP, |ModM(SP)| ⊆ModP(SP ).

Proof: By easy induction on the structure of SP. The key to the proof is that the
family of functors | · |Σ : MAlg(Σ) → PAlg(Σ), Σ ∈ |AlgSig|, is “smooth” w.r.t.
change of signature, so that we have a natural transformation | · | : MAlg → PAlg.
Moreover, for any signature Σ, Σ-sentence ϕ and modest Σ-algebra A, A |=Σ ϕ (in
the institution IM) iff |A|Σ |=Σ ϕ (in the institution IP). �

In fact, the remarks in the proof show that we have an “institution representation”
ρ : IP → IM [Tar96], or “plain map of institutions” [Mes89] (which here is trivial on
signatures and sentences, but non-trivial on models) and a similar fact may be proved
for structured specifications translated by an arbitrary institution representation.

Corollary 8.6 For any specification SP in IA0, |ModA0(SP )| ⊆ ModA0(SP ). �

9 Mind the gap!

The institution IP of partial algebras provides a basic abstract framework for program
specification and development, and has for this reason been extensively studied. But if
we consider the fact that actual programs are written in real programming languages,
and accordingly take issues of computability into account, then we are in fact working
in the more restricted framework of the institution of modest (or at least modestizable)
algebras. This raises the question of whether there is an appropriate correspondence
between the world of programs and the abstract world of algebras studied in the



literature. If there is a mismatch, then in the worst case there is the danger of a
program being certified as “verified” even though it contains errors. We will try to
answer these questions in this section by comparing the meanings of specifications in
the institutions of partial and modest algebras.

First, for any specification SP we have |ModM(SP)| ⊆ ModP(SP) (Prop. 8.5) and
|ModA0(SP )| ⊆ ModA0(SP ) (Cor. 8.6), and so any program represented as a modest
algebra that correctly realizes a specification SP in the framework of the institution
IM (or IA0), correctly realizes SP in the more abstract framework of the institution IP

(or IA0) as well. This shows that it is sound to develop programs in the framework of
modest algebras, and so that there is no dangerous gap between the two frameworks.

Definition 9.1 A specification SP witnesses a gap between IP and IM if ModP(SP ) 6=
|ModM(SP)|. The gap is worrying if for some modestizable algebra A, A ∈ ModP(SP)
but A 6∈ |ModM(SP)|. SP witnesses a consistency gap if ModP(SP) 6= ∅ while
ModM(SP ) = ∅. Similar definitions apply to gaps between IA0 and IA0.

Clearly, gaps between IP and IM exist and are witnessed by the trivial specification
〈Σ, ∅〉 for any signature Σ ∈ |AlgSig| that is sufficiently rich to ensure that the functor
| · |Σ : MAlg(Σ) → PAlg(Σ) is not surjective (cf. Counterexample 7.4). However,
such a gap is in itself not a cause for alarm, since it might be that in the process
of constructing modest algebras it would remain invisible. This is in contrast with
worrying gaps: if for some specification SP there is a modest algebra A 6∈ ModM(SP)
such that |A| ∈ ModP(SP ) then the gap exhibited by SP should worry us, as there is a
danger that by interpreting the specification SP in the institution of modest algebras
we exclude some perfectly acceptable realizations of SP .

Unfortunately, we have consistency gaps between IP and IM (Counterexample 7.8;
translating this to a signature including Σ0 we can also exhibit a consistency gap
between IA0 and IA0). The specification formalism described in Sect. 8 is rich enough
to exploit consistency gaps in a worrying way:

Proposition 9.2 If there is a consistency gap between IP and IM (resp. between IA0

and IA0) then there is also a worrying consistency gap between IP and IM (resp.
between IA0 and IA0).

Proof: Let SP witness a consistency gap between IP and IM, and let ι : Σ∅ ↪→
Sig(SP ) be the inclusion of the empty signature Σ∅ into Sig(SP). Then the specifi-
cation derive from SP by ι witnesses a worrying consistency gap between IP and IM:
ModM(derive from SP by ι) = ∅ while ModP(derive from SP by ι) = |PAlg(Σ∅)|, and
the latter contains the trivial empty algebra, which is modestizable.

The construction of a worrying consistency gap out of a consistency gap between
IA0 and IA0 is similar: just let ι : Σ0 ↪→ Sig(SP) be the inclusion of Σ0 into the
signature of the specification which witnesses the consistency gap. �

Corollary 9.3 There are worrying consistency gaps between IP and IM, as well as
between IA0 and IA0. �

The reader might feel that the use of the empty algebra over the empty signature
in the proof of Prop. 9.2 is a little dubious, but the same pattern applies in the case of
any other signature. More significantly, Counterexample 7.8 is not very convincing:



we doubt that a specification like this would ever be written in practice (especially
since it is essentially infinite). Unfortunately, we do not know at present if there is a
finite first-order specification witnessing a worrying gap between IP and IM.

However, we can exhibit quite natural specifications that witness a worrying con-
sistency gap between IA0 and IA0. For instance, looking at Counterexample 7.5,
since the halting function is arithmetical and so is first-order axiomatizable over the
standard model of the natural numbers, there is a sentence ϕhalt (over the signa-
ture Σhalt which extends Σ0 by the operation symbol halt : nat → bool) such that
Ahalt is (up to isomorphism) the only partial A0-extension satisfying ϕhalt . Thus,
repeating the argument from Counterexample 7.5, ModA0(〈Σhalt , {ϕhalt}〉) 6= ∅ while
ModA0(〈Σhalt , {ϕhalt}〉) = ∅ and then by Prop. 9.2 a worrying consistency gap can be
obtained. Similarly but perhaps more convincingly:

Example 9.4 Let Σequiv extend Σ0 by equiv : nat × nat → bool, and let ϕequiv be
a sentence such that for any A ∈ ModA0(〈Σequiv , {ϕequiv}〉), equivA(n,m) = true iff
the nth and mth Turing machines are equivalent (such a sentence exists, since the
equivalence of TMs is arithmetical).

This can be used as the basis for a specification of functions that perform trans-
formations on Turing machines. For example, let Σopt extend Σ0 by opt : nat → nat,
and let ι1 : Σequiv ↪→ (Σequiv ∪ Σopt ) and ι2 : Σopt ↪→ (Σequiv ∪ Σopt ) be signature
inclusions. Then a specification SP opt defined as:

derive from
translate 〈Σequiv , {ϕequiv}〉 by ι1 ∪
〈Σequiv ∪ Σopt , {∀n:nat .equiv(opt(n), n) = true}〉

by ι2

specifies an optimizing function opt transforming TMs. (Axioms could be added to
require that the output of opt is at least as efficient as its input.) This specification
witnesses a worrying consistency gap between IA0 and IA0: ModA0(SP opt) = ∅ since
ModA0(〈Σequiv , {ϕequiv}〉) = ∅, while ModA0(SP opt) is not empty and contains many
modestizable algebras. �

In contrast to some of our other examples, the pattern in Example 9.4 actually
arises in practice. The notation used in SP opt hides the idea; in a higher-level speci-
fication language it might look like this:

local val equiv : nat × nat → bool
axiom ϕequiv

in val opt : nat → nat
axiom ∀n:nat .equiv(opt(n), n) = true

end

The example is expressed in terms of Gödel encodings of Turing machines where its
practical utility may not be immediately obvious, but exactly the same example could
be phrased in terms of program fragments in a real programming language and the
above specification could then appear as part of the specification of an optimizing
compiler or program transformation system.

Examples of realistic specifications where a similar worrying consistency gap arises
lead us to the conclusion that we do in fact want to interpret specifications at the



abstract level of partial algebras, i.e. in the institution IP. However, the construction
of programs satisfying requirements specifications happens at the more concrete level
of programs, modelled here by modest algebras. In effect, the development process
(see Sect. 10) will use yet another semantics of specifications:

Definition 9.5 For any specification SP in IP, define

ModP→M(SP ) = {A ∈ |MAlg(Sig(SP))| | |A| ∈ ModP(SP )}.

Similarly, for any specification SP in IA0, define

ModA0→A0(SP) = {A ∈ |MAlgA0(Sig(SP))| | |A| ∈ ModA0(SP )}.

Neither of these two semantics is compositional, as is shown by the examples we have
just been discussing. However, the validation of specifications (proving their logical
consequences) and the verification of correctness of refinement steps may be carried
out at the abstract level, where the semantics of specifications is compositional:

Proposition 9.6 For any specification SP in the institution IP and Sig(SP )-sentence
ϕ, ModP→M(SP ) |= ϕ whenever ModP(SP) |= ϕ.

For any two specifications SP and SP ′ in IP, ModP→M(SP ′) ⊆ ModP→M(SP)
whenever ModP(SP ′) ⊆ModP(SP ). �
Similar facts hold for specifications in IA0 and their model classes given by ModA0→A0

and ModA0.

10 Formal software development

In [ST88b] (cf. [ST95]) we have proposed to view the process of software development
as the production of a sequence of constructor implementation steps, starting from
a specification of requirements and gradually adding design and implementation de-
cisions expressed as constructions on algebras, and leading to a stage where nothing is
left to be implemented. Then the sequence of constructions used in the development
determines a program that correctly implements the original specification.

In this section we will recast these ideas in the framework of this paper, paying
special attention to the effects of considering both abstract and concrete models of
programs (partial and modest algebras, respectively). We will explicitly work with
modest A0-extensions only; but of course everything can be repeated for arbitrary
modest algebras if needed.

In the framework discussed here, constructions involved in implementation steps
work on modest A0-extensions and so can be modelled as functions on modest A0-
extensions. But in view of the gaps exhibited in Sect. 9, correctness of constructor
implementation steps should involve the more permissive semantics of specifications
from the institution of partial algebras to ensure that some possible constructions are
not excluded:

Definition 10.1 Given specifications SP and SP ′ in IA0 and a construction κ :
|MAlgA0(Sig(SP ′))| → |MAlgA0(Sig(SP ))| on modest A0-extensions, we say that
SP ′ implements SP via κ, written SP κ∼∼∼>SP ′, if for all modest A0-extensions A ∈
|MAlgA0(Sig(SP ′))|, |κ(A)| ∈ ModA0(SP) whenever |A| ∈ ModA0(SP ′), that is:
κ(ModA0→A0(SP ′)) ⊆ ModA0→A0(SP ).



Developments viewed as sequences of such steps ensure that correctness of the
final program may be inferred from the correctness of all the individual steps:

Theorem 10.2 Given a sequence SP 0 κ1
∼∼∼>SP 1 κ2

∼∼∼> · · · κn
∼∼∼>SPn = 〈Σ0, ∅〉, we have

|κ1(κ2(. . . κn(A0) . . . ))| ∈ ModA0(SP0). �

We have defined various constructions on modest A0-extensions, including defini-
tional extension, reduct along a signature morphism (available in any institution) and
amalgamation. The latter typically arises when the task of implementing a speci-
fication is decomposed into a number of subtasks, each to implement some simpler
specification, and the results must then be combined to build an implementation of
the original specification. Of course, this is the essence of a modular approach to soft-
ware development, and consequently institutions which do not admit amalgamation
can only be of limited use as frameworks for such a development methodology. In
fact, this is an important technical argument against the use of the institution I∃M of
modestizable algebras. However, in the framework we adopted above — the institu-
tion IA0 of modest A0-extensions with the semantics of specifications based on their
interpretation in the institution IA0 of partial A0-extensions — all these constructions
are well defined and everything works fine!

A further refinement of the development methodology, enhancing its practical
flexibility in an essential way, involves taking a behavioural interpretation of specifica-
tions [ST88b]. This is based on the notion of behavioural equivalence between partial
algebras, which can easily be generalized to modest algebras.

Definition 10.3 Let OBS be a set of observable sorts in a signature Σ.
Partial Σ-algebras A and B are behaviourally equivalent ( with respect to OBS ),

written A ≡OBS B, if there is an OBS -sorted set X of variables and valuations vA in
A and vB in B that are surjective on sorts in OBS such that: for any term t ∈ TΣ(X),
A |=vA D(t) iff B |=vB D(t); and for any terms t, u ∈ TΣ(X) of the same sort in OBS ,
A |=vA t = u iff B |=vB t = u.

Modest Σ-algebras A and B are (extensionally) behaviourally equivalent ( with
respect to OBS ), written A ≡OBS B, if there is an OBS -sorted set X of variables and
valuations vA in A and vB in B that are surjective on sorts in OBS such that: for
any term t ∈ TΣ(X), A |=vA D(t) iff B |=vB D(t); and for any terms t, u ∈ TΣ(X) of
the same sort in OBS , A |=vA t = u iff B |=vB t = u.

We will omit the set of observable sorts if it is unimportant or obvious. For instance,
when we work with A0-extensions it is natural to choose the sorts S0 as observable.

Proposition 10.4 For any modest Σ-algebras A and B, A ≡ B iff |A| ≡ |B|. �
The behavioural interpretation of a specification is simply the closure of its usual class
of models under behavioural equivalence:

Definition 10.5 The behavioural interpretation of any specification SP in IA0 is
BehA0→A0(SP) = {A ∈ |MAlgA0(Sig(SP))| | A ≡ B for some B ∈ ModA0→A0(SP )}.

Prop. 10.4 might suggest that it is not important whether the behavioural closure
of specifications is taken at partial algebra or at modest algebra level. But this is not
the case: given a modest algebra A, a partial algebra that is behaviourally equivalent
to |A| need not be modestizable. A consequence of this is that behavioural correctness
of implementations must be based on behavioural equivalence of modest algebras.



Definition 10.6 Given two specifications SP and SP ′ in IA0 and a construction
κ : |MAlgA0(Sig(SP ′))| → |MAlgA0(Sig(SP))| on modest A0-extensions, we say
that SP ′ behaviourally implements SP via κ, written SP ≡

κ∼∼∼>SP ′, if for all modest
A0-extensions A ∈ |MAlgA0(Sig(SP ′))|, κ(A) ∈ BehA0→A0(SP ) whenever |A| ∈
ModA0(SP ′), that is κ(ModA0→A0(SP ′)) ⊆ BehA0→A0(SP).

Developments viewed as sequences of such steps should again ensure that correct-
ness of the final program may be inferred from the correctness of all the individual
steps. But this holds only if the constructions available are stable [Sch87], [ST89]:

Definition 10.7 A construction κ : |MAlg(Σ′)| → |MAlg(Σ)| on modest algebras
is stable if κ(A) ≡ κ(B) for all modest Σ′-algebras A,B such that A ≡ B.

Theorem 10.8 If SP0
≡
κ1
∼∼∼>SP1

≡
κ2
∼∼∼> · · · ≡

κn
∼∼∼>SPn = 〈Σ0, ∅〉 and all the construc-

tions used are stable, then κ1(κ2(. . . κn(A0) . . . )) ∈ BehA0→A0(SP0). �

In the above we have been rather sloppy in omitting the subscript OBS every-
where. The subtleties of stability and local and global correctness of constructions,
as introduced in [Sch87] and discussed in [ST89], apply here without change.

11 Future work

We have studied the apparent conflict between the use of abstract models in theories
of specification and formal program development (here, partial algebras) and the
use of more or less concrete models of programs in semantics of real programming
languages (here, approximated by modest algebras and modest A0-extensions). We
conclude that all is well, but note the need for certain adjustments to the theory of
specification and formal development to take account of the difference between the
world of programs and the world of abstract models.

The picture is not yet complete. For instance, we have shown that the con-
structions needed for formal program development using constructor implementations
(definitional extension, reduct, amalgamation) extend from partial algebras to modest
algebras. But we have not yet explored the consequences of the fact that some other
familiar constructions on partial algebras (e.g. existence of reachable subalgebras) do
not carry over. Further constructions should be studied, such as closure under arrow
types. The difficulty here is that (as explained in Sect. 2) we would like the underly-
ing values of arrow type to be extensional functions, restricted to those that can be
expressed using well-typed λ-terms.

The framework of specification and formal development on which the presentation
in Sects. 8 and 10 is based was generalized to specification and development of (higher-
order) parameterized algebras in [SST92]. A similar generalization should go through
here, but this would have to be based on the ModP→M (or ModA0→A0) semantics
of specifications. However, the computability restrictions in modest algebras do not
seem to extend easily to computability restrictions on parameterised modest algebras.
For the case of first-order parameterised algebras, this corresponds to the (unposed
but interesting) question of the computability of constructions like those in Sect. 5.

In the case of EML, the picture we have been painting is complicated by the
fact that the semantics of EML [KST94] uses models that are based on, but more



expressive than, those used in the semantics of SML. The main difference between
the two is that the closures used to represent functions in EML may contain “logical”
constructs such as universal and existential quantifiers. Thus we need to consider
three levels: that of SML programs and their models; that of EML specifications and
their models; and that of partial algebras. It seems that EML models are captured
by relaxing the requirement in modest algebras that the tracking functions be partial
recursive, and require them to be merely arithmetical. Call these immodest algebras;
then EML models are approximated by immodest A0-extensions. Since closures in
EML models may be formed using a recursion operator as well as quantifiers, it is not
clear if this is expressive enough. But it is possible to show, using Gödel’s Fixpoint
Theorem, that if the satisfaction of closed EML formulae can be defined in EML,
then EML is inconsistent.4 Thus in any case there is a gap between the level of EML
models and partial algebras. This means that we have two separate gaps. It seems
likely that our analysis applies to both, but there may be interesting complications in
dealing with both at once.

Finally, this paper treats just one kind of abstract model, namely partial algebras.
The same study could be repeated for other kinds of abstract models. Although we
expect that the results would be much the same, there may be interesting variations
in the details in some cases.

Acknowledgements: Thanks to Stefan Kahrs, Martin Hofmann and Thomas
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