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The properties of a simple and natural notion of observational equivalence of algebras and 
the corresponding specification-building operation are studied. We begin with a defmition of 
observational equivalence which is adequate to handle reachable algebras only, and show how 
to extend it to cope with unreachable algebras and also how it may be generalised to make 
sense under an arbitrary institution. Behavioural equivalence is treated as an important 
special case of observational equivalence, and its central role in program development is 
shown by means of an example. ( 1987 Academic Press. Inc 

1. INTRODUCTJ~N 

Probably the most exciting potential application of formal specifications is to the 
formal development of programs by gradual refinement from a high-level 
specification to a low-level “program” or “executable specification” as in OBJ [30] 
or HOPE [lo]. Each refinement step embodies some design decisions (such as 
choice of data representation) under the requirement that behaviour must be 
preserved. If each refinement step can be proved correct, then the program which 
results is guaranteed to satisfy the original specification. 

This paper studies what is meant by ‘behaviour” in the context of algebraic 
specifications. Intuitively, the behaviour of a program is determined just by the 
answers which are obtained from computations the program may perform. We may 
say (informally) that two C-algebras are hehauiouralfy equivalent with respect to a 
set OBS of observable sorts if it is not possible to distinguish between them by 
evaluating C-terms which produce a result of observable sort. For example, suppose 
C contains the sorts nat, boo/, and bunch and the operations empty: -+ bunch, add: 
nat, bunch -+ bunch and E: nat, bunch + boo1 (as well as the usual operations on nut 
and bool), and suppose A and B are C-algebras with 

IAhunChj = the set of finite sets of natural numbers 

IBbunChl = the set of finite lists of natural numbers 
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with the operations and the remaining carriers defined in the obvious way (but B 
does not contain operations like cons, cur, and cdr). Then A and B are 
behaviourally equivalent with respect to {bool}, since every term of sort boo1 has 
the same value in both algebras (the interesting terms are of the form m E 
add(a, )...) add(a,, empty)...)). Note that A and B are not isomorphic. 

In the above we assume that the only observations (or experiments) we are 
allowed to perform are to test whether the results of computations are equal. In this 
paper we deal with the more general situation in which observations may be 
arbitrary logical formulae. We discuss a notion of observational equivalence in which 
two algebras are observationally equivalent if they both give the same answers to 
any observation from a prespecilied set. Similar ideas have appeared in [41], and a 
related approach to observational equivalence of concurrent processes was studied 
in [12]. 

Observational equivalence (or more specifically, behavioural equivalence) seems 
to be a concept which is fundamental to programming methodology. For example: 

Data Abstraction 

A practical advantage of using abstract data types in the construction of 
programs is that the implementation of abstractions by program modules need not 
be fixed. A different module using different algorithms and/or different data struc- 
tures may be substituted without changing the rest of the program provided that 
the new module is behaviourally equivalent to the module it replaces (with respect 
to the non-encapsulated types). ADJ [31] have suggested that “abstract” in 
“abstract data type” means “up to isomorphism”; we understand it to mean “up to 
behavioural equivalence.“’ 

Program Spectyication 

One way of specifying a program is to describe the desired input/output 
behaviour in some concrete way, e.g., by constructing a very simple program which 
exhibits the desired behaviour. Any program which is behaviourally equivalent to 
the sample program with respect to the primitive types of the programming 
language satisfies the specification. This is called an abstract model specifi:cation 
[37]. In general, specifications under the usual algebraic approaches are not 
abstract enough; it is either difficult, as in Clear [8] or impossible, as in the initial 

i It is not our intention to quibble over terminology here. We only wish to suggest that the use of the 
word “abstract” in “abstract data type,” meaning “independent of representation” according to [31], is 
more accurately reflected by the notion of behavioural equivalence than by isomorphism as was 
suggested there. This seems to be consistent with the use of the term in languages like CLU [36] (where 
abstract data types are called chers). In 128, 291 it has been suggested that “abstract data type” is an 
appropriate term for an isomorphism class of algebras while “abstract machine” refers to a behavioural 
equivalence class of algebras. Then a CLU cluster would correspond to an abstract machine. Since the 
motivation is really to capture algebraically the idea embodied in CLU clusters, we are in agreement 
with Goguen and Meseguer although we choose to use a different terminology. 
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algebra approach of [3 1 ] and the final algebra approach of [52] to specify sets of 
natural numbers in such a way that both A and B above are models. The kernel 
specification language ASL [47] provides a specification-building operation 
abstract which when applied to a specification SP relaxes interpretation to all those 
algebras which are observationally equivalent to a model of SP with respect to the 
given set of “equational” observations. With a properly chosen set of observations, 
this gives hehavioural abstraction. 

Stepwise Refinement 

A formalisation of stepwise refinement requires a precise definition of the notion 
of refinement, i.e., of the implementation of one specification by a lower level 
specification. In the context of a specification language which includes an operation 
like behavioural abstraction, it is possible to adopt a very simple definition of 
implementation (see Sect. 5 for details). This notion of implementation has two very 
desirable properties (vertical and horizontal composability, see [25]) which permit 
the development of programs from specifications in a gradual and modular fashion. 
An alternative approach which illustrates the same point is to use a definition of 
implementation which implicitly involves behavioural equivalence, as in [28,48]. 

This paper establishes a number of basic definitions and results concerning obser- 
vational equivalence in an attempt to provide a sound foundation for its 
application to problems such as those indicated above. We begin by treating in Sec- 
tion 2 the case in which observations are logical formulae containing no free 
variables. We define observational equivalence of algebras and prove that it has 
properties such as antimonotonicity (with respect to the set of observations) and 
coherence with translation of algebras and formulae along signature morphisms. 
We define in terms of observational equivalence a specification-building operation 
(abstract) which performs observational abstraction and prove that it is, e.g., idem- 
potent and satisfies certain identities. We try to characterise the effect that abstract 
has on the model class of a specification; in the case of first-order logic and 
specifications having a simple form we can characterise it exactly. It turn out that 
observations without free variables are sufficient if we are only interested in 
reachable algebras, and if we are willing to use the infmitary logic L,,, then such 
observations are sufficient to deal with all algebras. 

We generalise this material in two different dimensions; Section 3 discusses obser- 
vations which contain free variables (to handle “junk” in unreachable algebras 
without resorting to inlinitary logic) and Section 6 shows how the definitions can 
be generalised to make sense under an arbitrary logical system (or institution [26]). 
Almost all the results of Section 2 continue to hold under both of these 
generalisations. Section 4 deals with the problem of proving theorems about struc- 
tured specifications in the context of observational abstraction, and gives an 
inference rule for reasoning about specifications built using the abstract operation. 
Section 5 discusses behavioural equivalence as an important special case of obser- 
vational equivalence. A simple notion of implementation is defined, and we 
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demonstrate the role of behavioural equivalence in program development by 
carrying out one refinement step in the development of a fragment of an optimising 
compiler from its specification. 

We assume that the reader is familiar with the basic algebraic notions presented 
in, e.g., [31] (cf. [9]) as well as basic notions of logic as in, e.g., [lS] including 
some inlinitary logic, see [35].* In addition, Section 6 assumes some knowledge of 
category theory, see [l or 381. 

2. OBSERVATIONAL EQUIVALENCE: THE GROUND CASE 

What is an observation on an algebra? In the axiomatic framework, the most 
natural choice is to take logical formulae as observations; the result of an obser- 
vation on an algebra is just the truth or falsity of the formula in the algebra. The 
kind of formulae we use dictates the kinds of observations we are allowed to make 
on algebras. On the other hand, the kinds of observations we want to make on 
algebras dictates the kind of formulae we need, that is, the logic we should use. 

For example, if we want only to examine results of computations, the natural 
choice is equations which allow us to compare the values of terms. Another natural 
choice is first-order predicate calculus which allows us to distinguish between, e.g., 
closed and open intervals of rationals (the observation/formula Vx.3y.x < y yields 
true in the latter and false in the former). Another choice is an infinitary logic such 
as L,,, which allows us to check, e.g., reachability of algebras (that is, whether all 
elements of the algebra are values of ground terms). Note that the latter two kinds 
of observations are not computationally based; they are at a more abstract level, 
i.e., they describe algebras rather than computations in algebras. Still another kind 
of formulae is necessary if we want to deal with problems of concurrency or other 
non-functional “facets” of programming languages (see [40] ), but we do not 
consider such issues in this paper. 

For the moment, we do not want to commit ourselves to any particular logic, 
and so we leave the notion of “formula” undefined. (In fact, all our definitions work 
in an even more general setting; see Sect. 6.) The reader may feel more comfortable 
imagining that we are talking about first-order logic. 

We use the term “formula” rather than “sentence” to indicate the possible 
presence of free variables to name elements which are not values of ground terms 
(“junk”). Free variables introduce some complications which we postpone to the 
next section. We will assume for the remainder of this section that formulae contain 
no free variables; we call these ground observations or sentences. The following 
definition corresponds directly to the definition of elementary equivalence in [41]. 

* In fact, as far as intinitary logic is concerned we use only the convention that if a is a regular intinite 
cardinal and /3 is a cardinal either 0 or o < /If m, then L,, denotes the language of first-order logic 
extended by allowing formulae to include conjunctions and disjunctions of sets of formulae of cardinality 
<G( and quantification over sets of variables of cardinality </I. So, L,,,,,, includes countable ( <ol) 

conjunctions and disjunctions but quantification is allowed only for tinite (<w) sets of variables. 
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DEFINITION. Let C be a signature, @ a set of C-sentences, and let A, B be 
C-algebras. A and B are observationally equivalent with respect to @, written 
A-,B, iffor any VE@, A k cp iff B/= q. 

Easy Facts 

FACT 1. For any signature C and set CD of’ C-sentences, = G is an equivalence 
relation on the class qf C-algebras. 

FACT 2. For any signature .Z and sets CD, @’ of C-sentences, @ 2 @’ implies 
E@C 3*.. 

FACT 3. For any signature C, family { @i}rtl OJ sets of Z-sentences, and 
C-algebras A, B, A +, B for all iE I implies A =@ B, where @ = UIEl @,. 

Two algebras are observationally equivalent w.r.t. @ if they satisfy exactly the 
same sentences of @. Note that this remains true if we consider not only the senten- 
ces of @ but also their negations and conjunctions, possibly infinite or empty (A@ 
is true). We can also add to @ sentences equivalent to the ones already in @, and so 
everything which is definable in terms of negation and conjunction as well (dis- 
junctions, implications, etc.). For any set Q, of C-sentences, let Cl(@) denote the 
closure of @ under negation, conjunction, and equivalence, insofar as the logic in 
use allows. 

FACT 4. = @ = -(J(Q). 

Note that this implies that the premise @z @’ in Fact 2 may be replaced by the 
weaker condition Cl( @) 2 @‘. 

A signature morphism 0: .Z + 2:’ is a renaming of the sorts and operations in C to 
those of Z’ which preserves the argument and result sorts of operations. This 
induces in a natural way a translation of Z-terms to C’-terms and of C-sentences to 
Z-sentences; if cp is a Z-sentence, then a(q) denotes its translation to a Z-sentence. 
A signature morphism cr: Z-+2’ also induces a a-reduct functor translating 
Z-algebras to Z-algebras; if A’ is a Z-algebra then A’ Id denotes its o-reduct. For 
the exact definitions of these notions see, e.g., [44, Sect. 21. These translations 
satisfy the following condition (see [26] and also Section 6): 

SATISFACTION CONDITION. For any C-sentence cp and C’-algebra A’, A’ 1 d t= cp iff 
A’ I= 4~). 

This gives immediately 

FACT 5. For any signature morphism a: .T -+Z’, set @ of Z-sentences and 
Z-algebras A’, B’, A’ z,(~, B’ iff A’l,r@ B’J,, where a(@)= {Olin@}. 
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This says that observational equivalence is coherent with translation along 
signature morphisms. We can also show that observational equivalence is preserved 
under combination of “independent” algebras. 

Let Zl and C2 be disjoint signatures and let Cl + C2 be their (disjoint) union.3 
For any Cl-algebra A 1 and CZalgebra A2, let (A 1, A2 ) be the unique (El + Z2)- 
algebrasuch that (Al,A2)1,,=,41 and (Al,A2)1,,=.42, where11 and 12are the 
inclusions of Cl and C2 (respectively) into Cl + C2. Note that all (Cl + C2)- 
algebras are of this form. 

FACT 6. For any disjoint signatures Cl, C2, sets of Ll-sentences @l and CZsen- 
tences @2, Cl-algebras Al, Bl and CZalgebras A2, B2, 

(AL AZ) --11(m)u,2(c~2) (Bl, B2) ifs Al =@I Bl and A2 =e2 82. 

Proof. (e) By Fact 5, if Al E@, Bl then (Al, A2) G,,(~,) (Bl, B2). Similarly, 
if A2 sab2 82 then (Al, A2) -,2,02J (Bl, B2), and so by Fact 3, 
(AL AZ:, =11(91)ur2(e2) (Bl, B2). 

(*I BY Fact 2, <Al, AZ) =,l(Gl)u,2(G2) (BL B2) implies (Al, AZ) =rlcGl) 
(Bl, B2), and so by Fact 5, Al z,,,~ Bl. By the same argument, A2-,, 82. 1 

A specification describes a collection of models of the same signature. To for- 
malise this, for any specification SP let Sig[SP] denote its signature and Mod[SP] 
denote the class of its models, which are Sig[SP]-algebras. The notion of obser- 
vational equivalence give rise to a very powerful specification-building operation: 

DEFINITION. For any specification SP and set @ of Sig[SP]-sentences 

Sig[abstract SP w.r.t. @] = Sig[SP] 

Mod[abstract SPw.r.t.@]= (AlA=@ Bforsome B~Mod[Spl}. 

Informally, abstract SP w.r.t. @ is a specification which admits any model which is 
observationally equivalent to some model of SP. This provides a way of abstracting 
away from certain details of a specification (see [44,47]). 

Easy Facts 

FACT 7. For any specification SP and set 8 of Sig[SP]-sentences, 

Mod [ SP] c Mod [abstract SP w.r.t. @] 

FACT 8. For any specification SP and set 8 of Sig[SP]-sentences, 

Mod[abstract (abstract SP w.r.t. @) w.r.t. @] = Mod[abstract SP w.r.t. @I. 

3 Or coproducr in categorical terms; this footnote is for the benefit of Sect. 6. 
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FACT 9. For any spec$cation SP and sets 8, @’ of Sig[SP]-sentences, 

Cl(@) 2 @’ implies Mod[abstract SP w.r.t. @] c Mod[abstract SP w.r.t. @‘I. 

FACT 10. For any specfications SP, SP’ such that Sig[SP] = Sig[ SP’] and sei 
@ of Sig[SP]-sentences, Mod[SP] c Mod[SP’] implies 

Mod[abstract SP w.r.t. Qb] c Mod[abstract SP’ w.r.t. @I. 

Using the above facts we may derive simple identities which allow us to trans- 
form specifications involving abstract. For example: 

FACT 11. For any spectjkation SP and sets 8, @’ of Sig[SP]-sentences, 

(a) Mod[abstract SP w.r.t. @ u @‘I E Mod[abstract (abstract SP w.r.t. @) w.r.t. @‘I 
c Mod[abstract SP w.r.t. Cl(@) n Cl(W)]. 

(b) Cl(@) 2 @’ implies 

Modcabstract SP w.r.t. @‘I = ModEabstract (abstract SP w.r.t. @) w.r.t. @‘I 
= Mod[abstract (abstract SP w.r.t. W) w.r.t. Q, J. 

Proof Example (first part of(b)). 

Mod[abstract SP w.r.t. Q’] E Mod[abstract (abstract SP w.r.t. @) w.r.t. @‘I 
by Facts 7 and 10; 

Modcabstract SP w.r.t. @‘I 2 Mod[abstract SP w.r.t. @] 
by Fact 9, since Cl(@) 2 @‘; 

so 

Modcabstract SP w.r.t. @‘I = Mod[abstract (abstract SP w.r.t. @‘) w.r.t. @‘I 
by Fact 8, 

1 Mod[abstract (abstract SP w.r.t. @) w.r.t. @‘I 
by Fact 10. 1 

The following counterexample shows that the second equality in (b) above need not 
hold if Cl(@) & @‘: 

COUNTEREXAMPLE. Consider the signature 2 having one sort and three 
constants a, 6, c. Let SP be a specification with Sig[SPJ =Z such that 
Mod[SP]= {AI,4 k a=b=c}. Let @= {a=b, b=c} and @‘= (a=c}. 
Now, Mod[abstract SP w.r.t. @] = Mod[SP] and so any algebra in 
Mod[abstract (abstract SP w.r.t. @) w.r.t. @‘I satisfies a = c. On the other hand, 
Mod[abstract SP w.r.t. @‘I contains, for example, algebras in which a = c but a # b 
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( #c). Thus Mod[abstract (abstract SP w.r.t. @‘) w.r.t. @] contains algebras in 
which all three constants have different values. This shows 

Mod[abstract (abstract SP w.r.t. @) w.r.t. W] 

# Mod[abstract (abstract SP w.r.t. @‘) w.r.t. CD]. 

Note that this counterexample also shows that the inclusions in (a) above may be 
proper. 

Every algebraic specification language provides an operation for specifying the 
class of models of a given signature which satisfy a given set of axioms, that is, 

DEFINITION. For any signature C and set A of Z-sentences, (C, A) is a basic 
specification and 

Sig[(C, A)] =C 

Mod[(C,A)]={AIAisaZ-algebraandA k A}. 

For any signature Z and class K of C-algebras, let Th(K) denote the set of all Z- 
sentences which hold in K. Note that Kc Mod[ (C, Th(K))] but the converse 
inclusion is true only for classes K definable by basic specifications. 

FACT 12. For any specification SP with Sig[SP] = C and set CD of C-sentences, 

Mod[abstract SP w.r.t. @] 2 Mod[ (C, Th(Mod[SP]) n Cl(@))]. 

ProoJ: Let A E Mod[abstract SP w.r.t. @I, i.e., A z9 B for some BE Mod[SP]. 
Obviously, B + Th(Mod[SP]) and so for any cp E Th(Mod[SP]) n Cl(@), B j= cp. 
Hence, by Fact 4, A /= cp so A E Mod[ (C, Th(Mod[SP]) n Cl(@))]. 1 

In the following, we try to further characterise how abstract works for classes of 
models definable by basic specifications. For any signature C and set A of C-senten- 
ces, let A* = Th(Mod[ (C, A)]) be the closure of A under consequence. 

FACT 13. In first-order logic, for any signature C and sets A, @ of C-sentences, 

Mod[abstract (L’, A) w.r.t. @] = Mod[(C, A* n Cl(@))]. 

Proof: (E ) Obvious by the previous fact. 
(2) Since for unsatisfiable A the containment holds (because falser Cl(@)), we 

assume that A has a model. Let AE Mod[(C, A* nCl(@))]. Consider !P = 
{cp~Cl(@)lA ‘F cp>. W e want to show that A* v Y has a model. Suppose not, i.e., 
that A* u !P is not satisfiable. Then by the compactness theorem of first-order logic 
and by the fact that Y is closed under conjunction there is a II/ E !P such that 
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d* u {II/ } has no model. Hence d * /= 1 II/, which, since A* is closed under logical 
consequence implies that l+ E A *. Thus lII/ E A* n Cl(@) (Cl(@) is closed under 
negation) and so A k l+, which contradicts Ic/ E Y. 

This proves that A* u Y has a model, say B. Let cp E @. If A /= cp then cp E Y 
andsoB~=cp.IfA~~,i.e.,A~l~,thenlcpE~andsoB~lcp,i.e.,B~cp. 
Thus A =@ B, which shows that A E Mod[abstract (C, A) w.r.t. @I, since 
BEMod[(C, A)]. 1 

The above fact may be interpreted as a statement that Cl(@) gives a complete 
characterisation of observational equivalence with respect to @. Another for- 
mulation of this is 

FACT 14. In first-order logic, ,for any signature Z and sets @l, @2 of Z-sentences, 

30, = -,#Q iff Cl(@l)=C1(@2). 

Prooj (+) Follows directly from Fact 4. 
(a) Assume that Cl(@l) # C1(@2). By symmetry, we may assume that there is 

cp E Cl(@l) such that cp $C1(@2). To complete the proof it is enough to show that 

Mod[abstract (C, {q}) w.r.t. @l ] # Mod[abstract (C, { cp > ) w.r.t. @2]. 

By Fact 13, Mod[abstract (C, {q}) w.r.t. @l] =Mod[(C, {cp}* nCl(@l))] 
On the other hand, 

= Mod[(C, {cp)*nC1(@2))]. We show that 
such that A v cp. Suppose otherwise, i.e., 

Then by the compactness theorem 
for first-order logic, since { cp}* n C1(@2) is closed under finite conjunctions, for 
some sentence $ E { cp 1* n C1(@2), $ t= cp. Thus cp and II/ are equivalent (cp b Ic/ by 
the definition of { cp>*) and so since $ ~C1(@2), cp ~C1(@2) as well, which con- 
tradicts our assumptions. 1 

Ground observations are powerful enough if we are only interested in reachable 
(subalgebras of) algebras and we do not want to distinguish between isomorphic 
algebras, provided that our logic is at least capable of expressing ground equations 
(i.e., equations between terms without variables). 

FACT 15. For any signature Z and C-algebras A, B, A +EQ(Z, B iff' A and B 
have isomorphic reachable subalgebras, where GEQ(Z) is the set of all ground .Z- 
equations. 

Proof (+ ) Obvious. 
(+) Consider the function which maps the value of any ground Z-term in A to 

the value of this term in B. It is easy to see that since A mono B this is well 
defined and, moreover, that this function is an isomorphism between the reachable 
subalgebras of A and B. 1 
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3. OBSERVATIONAL EQUIVALENCE: THE GENERAL CASE 

In the last section we dealt with observational equivalence based on ground 
observations only (formally, on formulae without free variables). As Fact 15 
indicates, this is quite satisfactory when we restrict our considerations to reachable 
algebras. If we want to deal with algebras containing “junk,” things become more 
complicated. 

Why do we bother about non-reachable algebras? First, when dealing with 
parameterised specifications it is usual to consider examples in which some sorts 
have no generators at all, but where we are interested in algebras having the 
associated carriers non-empty. This is shown by standard examples such as Stack- 
of-X, where X is an arbitrary set. Second, when we view algebras from different 
levels of abstraction we view them with respect to different sets of operations. It is 
then natural that an algebra which is reachable at a certain level of abstraction 
becomes non-reachable when viewed from a higher level. A more technical but 
related point is that there is no natural definition of the specification-building 
operation derive [S, 441 (which can be used to “forget” operations), if models of the 
result are required to be reachable. Finally, there are examples [47] in which 
unreachable elements can be useful in constructing specifications; an element which 
is unreachable at one stage of the construction can become reachable and useful at 
a later stage. 

It should be noted that if the logic we are working in is sufficiently powerful then 
we can identify algebras up to isomorphism using only ground observations. 
According to Scott’s theorem [49] this may be achieved using L,,, for countable 
algebras. Using an even more powerful logic the same may be done for arbitrary 
algebras. 

FACT 16. For any signature C and Z-algebras A, there is a C-sentence [(A) of 
L mm such that for any Z-algebra B, B j==. [(A) iff A z B. 

Proof: Assume that C has only one sort; the general case is similar but 
notationally more cumbersome. Consider the formula 

i(A)=,,,~IAl.(A9(A) AVx.V {x=aIaEIAl)), 

where (Al is the carrier of A, and 9(A) is the first-order diagram of the expansion 
of A to a .Z( (Al)-algebra with the natural interpretation of the new constants (in 
fact, it is enough to take all ground C( 1 Al)-equations and -inequations which are 
true in the expansion of A). If B g A then obviously B k [(A). To see this consider 
the isomorphism from A to B as the valuation of variables IAl in B. 

Conversely, assume that B satisfies [(A). Thus, there is a valuation IX IAl -+ IB( 
such that Bk./jC2(A)/jVx.V (x=alaEIAl} (Bl=.cpmeans Bsatisfiespunder 
the valuation v; we are going to use this notation throughout the paper.). It is easy 
to see that u is an isomorphism between A and B: 
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- vissurjectivesince B/==,,Vx.i/{x=ala~JAI). 
- u is l-l: for u,,u,EIAI, if a,#~, then a,#az Ed and so 

B +, a, # u2, that is, v(q) # ~(a~). 
- v satisfies the homomorphism property: for any n-argument operation 

fdZ, a, ,..., u,EIAI, ~EIAI, if fA(al ,..., ~,)=a then f(u, ,..., ~,)=a EQ(A) and 
so B k, f(ul ,..., a,) = a, that is, fJv(u,) ,..., ~(a,)) = u(a). l 

Note from the construction that in order to handle algebras of cardinality a it is 
enough to consider formulae with quantifiers binding a variables. It seems to be 
possible to sharpen this result (requiring only quantifiers binding less than a 
variables) using some kind of “back-and-forth” construction as in the proof of 
Scott’s theorem in [a]. 

However, in practice it is desirable to avoid use of inlinitary logic (although [39] 
argues for an approach to specification in which infinitary logic is central). What 
we are trying to do in the following is to obtain a balance between the power of the 
logic in use (the simpler the logic, the better) and the simplicity of the definition of 
observational equivalence. 

It is obvious that using ground equations as observations we are not able to talk 
about junk at all. If we use equations with universally quantified variables, although 
we are able to say something about junk we cannot always distinguish between 
algebras which are intuitively not equivalent. For example, the two algebras 

A: o---La / , . . . B: o-!--,0---L... 

OF o----f ..’ 
! / ocl/ 

cannot be distinguished by any equation with universally quantified variables 
(neither of them satisfy Vx.f(x) =x) although if we go to first-order logic then the 
formula lx.f(x) = x distinguishes between them. But even in the framework of first- 
order logic using only closed sentences, we are not able to deal with junk in a 
satisfactory way. We cannot even express such a basic property as is existence. For 
example, it is well-known that the standard model of arithmetic (the natural num- 
bers) and non-standard models (the natural numbers with junk) satisfy exactly the 
same set of first-order sentences. Thus, there is no set of ground first-order obser- 
vations which can distinguish between standard and non-standard models of 
arithmetic. To distinguish between these models using ground observations we 
need L,,,. 

We are going to extend the definitions of the previous section by allowing free 
variables in observations. The idea is that these provide a way of referring to 
otherwise unnameable values. For example, it should be intuitively clear (and will 
be formalised below) that the observation f(x) = x with free variable x distinguishes 
between the two algebras A and B above, and the set of observations 
(x = succ”(0) ( n 2 0} with free variable x distinguishes between standard and non- 
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standard models of arithmetic. As in logic, we need a valuation of the free variables 
into the algebra under consideration to provide these names with interpretations. 

Given a signature Z, a set X of variables (of sorts in .E), a set Q(X) of C-formulae 
with free variables in X, and two C-algebras A, B there are a number of possible 
ways to define A q,(xj B. Here are some which are not satisfactory: 

(1) For all cp E Q(X), A k VX.cp iff B k VX.cp. 

(2) For all valuations uA: X-+ IAl and 0,:.X-+ (B( and all qE@(X), A kv, cp 
iff B k.,q. 

(3) There exist valuations uA: X--P IAl and us: X-+ 1 BI such that for all 
APE@, A l==,,~iffW==,,cp. 

Comments. (1) is basically equivalent to the use of ground observations. 
(2) is too strong; the relation it defines is not even reflexive. 
(3) is too weak; uA and ug can be chosen to ignore the parts of A and B 

which are inconvenient. If A and B have isomorphic reachable subalgebras then 
they are observationally equivalent under this definition for any set of observations. 

In C47, 441, A -e(x) B was defined as follows: 

(4) There exist surjective valuations u A: X+ IAl and us: X+ IBI such that 
for all cp E Q(X), A + uA cp iff B k vg cp. 

The justification for this definition is that uA and us identify “matching parts” of A 
and B; each part of A must match some part of B and vice versa. But there are 
some problems with this definition. Technically, this relation is restricted to com- 
paring algebras of cardinality less than or equal to that of X because of the surjec- 
tivity requirement on II,,, and us. Also, we have to exclude algebras with empty 
carriers, (at least) on sorts in which X is non-empty; otherwise the valuations uA 
and/or uH cannot exist. Finally, in the “general” case in which models and the logic 
are arbitrary (see [44] and also Sect. 6) this definition is rather messy and inelegant 
because of the difficulty of formulating in abstract terms the requirement of surjec- 
tivity. 

We are going to concentrate on still another definition of observational 
equivalence. We define the observational equivalence relation in terms of a preor- 
der. 

DEFINITION. For any signature C, set X of variables of sorts in Z, set D(X) of 
C-formulae with free variables in X, and Z-algebras A, B, A is obseruationally 
reducible to B w.r.t. @i(X), written A &,CX) B, if for any valuation u, : X + ) A( there 
exists a valuation ug: X -+ I BI such that for all cp E Q(X), A k uA cp iff B k ug cp. 

FACT 17. For any signature 2, set X of uariables of sorts in C, and set Q(X) of 
C-formulae with free variables in X, G e(x, is a preorder on the class of Z-algebras. 
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DEFINITION. For any signature Z, set X of variables of sorts in Z, set G(X) of C- 
formulae with free variables in X, and C-algebras A, B, A and B are observationally 
equivalent w.r.t. Q(X), written A -Gcx) B, if A bGcx, B and B <e(X) A. 

Note that if the set X is empty, the above definition of observational equivalence 
reduces to the definition in the ground case. But if Xis nonempty then even if Q(X) 
contains no free variables it may be the case that observational equivalence with 
respect to O(X) is not the same as (ground) observational equivalence with respect 
to GJ because of problems caused by empty carriers. 

Although we are not going to restate all of them formally here again, Facts 2-6 of 
Section 2 hold for the preorder d O,(xj and Facts l-6 hold for the equivalence 
3 G(xj. For example, Fact 3 may be reformulated for d 9(x, here as follows: 

FACT 3’. For any signature C, family of mutually disjoint sets {Xi}iel of 
variables of sorts in C, family {@t } iG t of sets of C-formulae such that for i E Z, Qi has 
free variables in Xi, and z-algebras A, B, A &,Cx,, B for all ie Z implies A &,Cx) B, 
where@=Uie,@iandX=Uie,Xj. 

However, because of the problems which empty carriers may cause, we have to be 
careful with the opposite direction of this implication, that is, when discharging 
variables. Fact 2 should be reformulated as follows: 

FACT 2’. For any signature C, set X oj’ variables of sorts in C, sets Q(X) and 
Q’(X) of C-formulae with free variables in X, and C-algebras A, B, 

Q(X) 2 Q’(X) and A 6oCx, B implies A <e,(X) B. 

Note that @ and @’ must formally have the same set X of free variables, even if the 
formulae in the smaller set Cp’ do not use all of them. We can discharge such 
unnecessary variables only if X contains other variables of the same sorts, or if the 
algebras we are dealing with are guaranteed to have non-empty carriers of these 
sorts. 

As in the previous section, we can define a specification-building operation 
abstract in terms of observational equivalence with exactly the same semantics. 

DEFINITION. For any specification SP, set X of variables of sorts in Sig[SP] and 
set G(X) of Sig[SP]-formulae with free variables in X, 

Sig[abstract SP w.r.t. ‘P(X)] = Sig[ SP] 

Mod[abstract SP w.r.t. Q(X)] = {A 1 A -G(X) B for some BE Mod[SP] ). 

Facts 7-12 still hold under this more general definition. Facts 13 and 14 do not 
hold, and Fact 15 is not relevant. 

Note that we can give a sharper formulation of the facts which involve forming 
the closure Cl(@) of a set of formulae @. In the presence of free variables, besides 
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conjunctions and negations it is tempting to allow the introduction of quantifiers 
here. We can redefine Cl(@(X)) to be the closure of @p(X) under negation, con- 
junction (possibly infinite), equivalence, and uniform quantification, that is, cp E 
Cl(@(X)) implies VX.(p E Cl(@(X)) and 3X.q E Cl(@(X)). To prove that all the facts 
are still true with this new definition of Cl(@(X)), we have to show 

FACT 18. = CI(@(X)) 2 G(X). 

Proof. Let A and B be algebras with A Q~)‘B. The only problem may be with 
quantifiers, but for this note that since A -a(X) B, for cp E Q(X) we have A k LIA cp for 
all o,:X-+(A( iff B +“,,cp for all u B: X-+ IBJ. And so A + VX.Q iff B k VX.(p. 
Since 3X.p is equivalent to lVX.1 cp, this completes the proof. 1 

Note that only uniform quantification is allowed above. The above fact does not 
hold if we allow quantification over a proper subset of the set of free variables. For 
example, suppose C = sorts rat, boo1 opns <: rat, rat -+ bool. Let A and B be 
C-algebras corresponding to, respectively, open and closed intervals of rational 
numbers. Now consider Q(X) = {x < y ) x, y E X}. Obviously A E~(~, B but 
A k Vx.3y.x < y while B k Vx.3y.x < y. 

The uniform quantification allowed in the closure Cl(@(X)) is not enough to 
guarantee that Fact 13 holds for observational abstraction with respect to open 
formulae, as shown by the following counterexample. 

COUNTEREXAMPLE. Let C be a signature with one sort and one unary operation 
J Let X be a countably infinite set of variables. Consider 

A = {Vxdy.f(y) =x} 

Q(X)= (x=y,f(x)=yIx,yEX} 

,4:... f>. I’>o f ,... B:. .f,o f+n I . 

Now, 14 I= A> A f co(x) B, and B$ Mod[abstract (C, A) w.r.t. Q(X)], but 
B )= A* (7 Cl(@(X)). To prove the last of these statements we use the following 
well-known lemma. 

LEMMA. For any Z-algebra A, set of variables X, valuation v: X+ IAI, and quan- 
tifier-free (first-order logic) C-formula q(X), A/= v q(X) iff [v’(X’)lA t= L,I cp(xI), 
where x’s X is the set of variables which actually occur in cp, v’ is v restricted to x’, 
u’(X’)= (v’(x)(x~X’), and [v’(X’)lA is the least subalgebra of A which contains 
v’(Y). 

Now, for any quantifier-free Z-formula q(X), the set X’c X of variables which 
actually appear in cp is finite, and so for any valuation v: X-t 1 Al, [v’(X’)], is 
isomorphic to B. Thus, if A ‘F VX.q(X) then B + VX.(p(X) as well, and if 
A b 3X.(p(X) then B k 3X.+$X). Using this it is easy to prove that for any C-sen- 

571/34/2-3-2 
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tence $ which involves only uniform quantification, if A k $I then B /= II/ as well. 
This shows that B + A* n CI(@(X)). 

Fact 14 does not hold under the new definition of closure either, as the following 
counterexample demonstrates. 

COUNTEREXAMPLE. Let C be as in the example above. Let X=del. {x ). Consider 

@l(X)= {3X.f(X)#X, 3x.f(x)=x) 

@2(X) = @l(X) u {f(x) =x}. 

Cl(@l(X)) #Cl(@2(X)), since x=f(x)#Cl(@l(X)). But it is easy to show that for 
any two E-algebras A and B, if A =G1(Xj B then A -e2(XJ B (the implication holds in 
the opposite direction by Fact 2). 

4. PROOFS IN STRUCTURED SPECIFICATIONS 

An important issue connected with specifications is theorem proving. We would 
like to be able to prove theorems about a specification, that is, that certain senten- 
ces of the underlying logic hold in every model of a specification. As suggested by 
Guttag and Horning [33], by proving that selected theorems hold we can under- 
stand specifications and gain confidence that they express what we want. Moreover, 
in order to do any kind of formal program development or verification (or even 
specification building, if parameterised specifications with requirements are to be 
used [ 511) a theorem-proving capability is necessary. 

In the context of structured specifications, we have to cope with two separate 
problems. First is how to prove theorems in theories of the underlying logic. Note 
that this task may be eased by the fact that our theories have structure, as this 
allows us to naturally disregard information which is probably irrelevant to what 
we are trying to prove. The other problem is dealing with the structure itself. What 
we need are inference rules for every specification-building operation which allow us 
to derive theorems about a combined specification from theorems about the com- 
ponents from which it was built. Note that the latter problem is not automatically 
reducible to the former because not all specifications are equivalent to (have the 
same class of models as) theories of the underlying logic [44], let alone theories 
with finite presentations as required for use by a theorem prover. 

For simple specification-building operations appropriate inference rules are given 
in [43], for example, 

thm in SP - thm in SP + SP’, 

where “thm in SP” means thm E Th(Mod[SP]), that is, that the sentence thm holds 
in all models of the specification SP; the specification-building operation + com- 
bines the requirements on models imposed by its arguments (see [47] for details). 
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The abstract specification-building operation defined in Sections 2 and 3 is more 
difficult to handle. One problem is that in contrast to other specification-building 
operations it is not monotonic, in the sense that 

thm in SP + thm in abstract SP w.r.t. . . . . 

However, Fact 12 and its analogue for observations with free variables (see Sect. 3) 
says that the following inference rule is sound. 

INFERENCE RULE. For any set G(X) of open formulae with variables in X, 

thm in SP and thm E Cl(@(X)) =z- thm in abstract SP w.r.t. Q(X). (*) 

Moreover, for the case of ground observations (i.e., when X is the empty set), 
Fact 13 shows that in some standard logics (e.g., first-order logic) the above rule is 
in a sense complete when used together with inference rules for the underlying logic 
and the other specification-building operations. Note also that Facts 7-11 provide 
us with some subsidiary inference rules; for example, Fact 9 implies 

thm in abstract SP w.r.t. @ and @ E Cl(@) =s- thm in abstract SP w.r.t. @‘. 

A consequence of the inference rule (*) is that a proof of thm in SP is also a valid 
proof of thm in abstract SP w.r.t. Q(X) provided that there is a “cut” across the 
proof tree containing only observable sentences (i.e., sentences in Cl(@(X))). In 
other words, every path in the proof from thm to a fact in SP must contain at least 
one observable sentence. 

For example, consider the following specification of sets: 

Set = sorts elem, set 
opns a: -+ set 

add: elem, set + set 
predicates E: elem, set 
axioms Vx:elem, S:set. add(x, add(x, S)) = add(x, S) 

Vx,y:elem, S:set. add(x, add(y, S)) = add(y, add(x, S)) 
Vx:elem.i (x E 0) 
Vx:elem, S:set. x E add(x, S) 
Vx,y:elem, S:set. x # y j (x E add(y, S) ox E S) 

(for this example we use first-order predicate logic with equality). We abstract from 
Set with respect to an appropriate set of observable formulae: 

SetAbs = abstract Set w.r.t. {x E t 1 t is of the form add(x, ,..., add(x,, a)...) for n 2 o}. 

We then enrich this specification by a function choose which selects some arbitrary 
element from any non-empty set: 
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SetChoose = enrich SetAbs by 
opns choose: set -+ elem 
axioms V,S:set. S # /zI = choose(S) E S 

(the notation enrich SP by . . . axioms E is an abbreviation for SP + 
(sig(SP) u . . . . E)). 

Suppose we want to prove the following simple theorem in SetChoose: 

Vx, y:elem. choose(add(x, add(y, 0))) E add(y, add(x, 0)). 

A naive proof which ignores the use of abstract in SetAbs (i.e., imagining that 
SetChoose is built directly from Set instead of via SetAbs) might go as in Fig. 1. 

To transform this into a valid proof (taking abstract into account) we have to 
transform the indicated subproofs Pl and P2 from proofs in Set to proofs in 
SetAbs. According to the discussion above, Pl is a proof in SetAbs since the 
underlined sentences are observable. This is not the case with P2. In fact, the con- 

\ i 

P3 

vs: set. s+#-b 
choose(S) l S 
in SetChoose 

Wx,y:elem. addk, add(y,@)) = 
addly, add(x,&)) in SetChoose 

Vx,y:elem. choosebddkadd ly.$i,J; add(y,add(x,q5)) in SetChoose 

FIGURE 1 
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Vx,y,z:elem. in SetChoose 

Vx,y:elem.choore(add(x.add(v,~)~) l addfy. add(x,$)) in SetChoose 

FIGURE 2 

elusion of P2 is not a theorem of SetAbs (or SetChoose) at all. Thus we must 
modify our proof as shown in Fig. 2 (note that the subproof P3 which includes Pl 
remains unaltered). P2’ is a valid proof in SetAbs, so the complete proof is valid in 
SetChoose. 

5. BEHAVIOURAL EQUIVALENCE-AN EXAMPLE 

In Sections 2 and 3 we defined a very general and powerful notion of obser- 
vational equivalence. In this section we look at a very important special case and 
we consider an example of its use. Namely, we restrict observations to equations 
between terms from some specified set; this gives an equivalence corresponding to 
the one used in the ASL specification language [47]. A proper choice of the set of 
terms gives behavioural equivalence as informally discussed in the Introduction. 

Suppose that C is a signature and IN and OUT are subsets of the sorts of z. 
Now, consider all computations which take input from sorts IN and give output in 
sorts OUT; this set of computations corresponds to the set of ,X-terms of sorts OUT 
with variables of sorts IN. Consider the set EQ OUT(X,,,,) of equations between terms 
of the same sort in OUT having variables X,, of sorts in IN. Two algebras are 
observationally equivalent with respect to EQ oUr(X,,) if they are behaviourally 
equivalent, that is, if they have matching input/output relations. Note that this 
covers the notions of behavioural equivalence with respect to a single set OBS of 
observable sorts which appear in the literature. For example, in [28,42] we have 
IN= sorts(C), OUT= OBS; in [29,47,48] IN= OUT= OBS; and in [S, 20,343 
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IN = Qr and OUT= OBS. To denote the corresponding special case of abstract we 
use 

behaviour SP with in IN out OUT=,,,abstract SP w.r.t. EQouT(X,N). 

This corresponds to behavioural abstraction as defined in ASL [47]. 
As an example we are going to consider a simple language of expressions for 

arithmetical computation over the integers. This may be imagined as a small piece 
of a real programming language. We believe that the approach used below may be 
applied to other programming language constructs as well, leading toward the 
possible formal development of a compiler. Handling programming language 
features like recursion requires that we switch to the framework of partial algebras 
[7] or continuous algebras [32]; this is not a problem since as will be discussed in 
Section 6 our definitions and results extend smoothly to these cases. 

We assume that we are given some standard specifications of the integers (Int) 
with the usual arithmetic operations and of identifiers (Ident). For this example, 
Ident need only contain a single sort called ident. The (abstract) syntax of 
expressions is given by the following specification (we use the notation of the Clear 
specification language [8]“): 

Expr = enrich Int + Ident by 
data sorts expr 

opns const: int ---) expr 
var: ident -+ expr 
plus, times: expr, expr + expr 
cond: expr, expr, expr + expr 

The use of data above means that any model of Expr is a free extension of a model 
of Int + Ident. That is, the sort expr contains (up to isomorphism) expressions built 
up using the newly introduced operations. We could achieve the same effect using a 
hierarchy constraint [4] (cf. [17,46]) together with the appropriate inequations. 

To describe the semantics of expressions we need the additional concept of an 
environment from which the values of variables may be retrieved. This is described 
by the following (loose) specification: 

Env = enrich Int + Ident by 
sorts env 
opns lookup: env, ident -+ int 

For the purpose of our example, no more that the existence of an operation lookup 
is required. Other parts of the language may need a more elaborate specification of 
environments, including, e.g., an operation to modify environments and axioms to 

4 But for the semantics of derive, see 1471. 
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relate this operation to lookup. We also simplify our view of environments by 
assuming that lookup never produces errors. We could incorporate standard 
approaches to specilications with errors, see Section 6. 

Eva1 = enrich Expr + Env by 
opns eval: expr, env --) int 
axioms Vn:int, p:env. eval(const(n), p) = n 

Vx:ident, p:env. eval(var(x), p) = lookup@, x) 
Ve,e’:expr, p:env. eval(plus(e, e’), p) = evahe, p) + evahe’, p) 

) x evahe’, p) Ve,e’:expr, p:env. eval(times(e, e’), p) = evahe, p 
Ve,e’,e”:expr, p:env. eval(cond(e, e’, e”), p) 

= evahe”, p) if evahe, p 
= eval(e’, p) otherwise 

)=O 

(We use an obvious notation to simplify the syntax of conditional axioms.) 
The models of Eva1 are just the models of Expr with the expected semantics 

provided by the operation eual. The cond construct has the semantics of 
if _ then ._ else --) where 0 (as the value of the first argument) is interpreted as false 
and any other value is interpreted as true. Note that the models of Eva1 are pretty 
well determined; in fact, they are determined up to isomorphism given models of 
Ident and Env. Now imagine that we want to build a compiler which performs 
some source-level optimisation; for example, recognising that times(const(O), e) is 
just cons?(O). Such optimisations are not permitted by the specification above. 

Two solutions- to this dilemma are offered in the literature. First, [52] and [34] 
advocate the use of final models; if we adopt this approach (modifying the above 
specification appropriately) then every (final) model of Eva1 would satisfy e = e’ iff 
it satisfies Vp:enu. eual(e, p) = eual(e’, p), for all expressions e and e’. But this 
disallows non-optimal implementations, since it requires that all possible 
optimisations are performed. Much worse, the specified models are actually not 
attainable since the optimisation required is not computable (this follows from a 
result in [ll]). 

Second, as advocated in, e.g., [ 13, 151 the notion of implementation of one 
specification by another should take care of this problem. Algebras with some 
optimisations are not models of the specification above but models of a 
specification which implements it. Unfortunately, the formal notions of implemen- 
tation which have been suggested are rather complicated, and especially so in the 
context of loose and parameterised specifications. (Note that the specification above 
may be viewed as parameterised by Ident.) 

We adopt neither of these solutions. Instead, we argue that the specification Eva1 
as given above is not really what we intend. When we specify a program, what we 
are really interested in is its behaviour, that is, the answers which we obtain when 
the program is applied to the various possible inputs. The specification Eva1 says 
more than that; it dictates the structure of internal data. We can obtain the class of 
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models having the behaviour which Eva1 specifies (rather concretely) by applying 
the bebaviour operation for the appropriate choice of input and output sorts: 

Eval-we-really-want = behaviour Eva1 with in (int,ident,env) out { int 1 

The inference rule for abstract given in Section 4 may be applied here to show, 
e.g., that 

Ve,e’:expr, p:env. eval(plus(e, e’), p) = eval(plus(e’, e), p) 

is a theorem in Eval-we-really-want, since it is a theorem of Eva1 and is in the 
closure of the set of observations we are using here.’ 

The ability to specify classes of algebras up to behavioural equivalence (as in 
Eval-we-really-want) allows us to greatly simplify our formal view of what an 
implementation is. Proceeding from a specification to a program means making a 
series of design decisions, each of which amounts to a restriction on the class of 
models. Such design decisions are choice of data structures, choice of algorithms, 
and choice between alternatives which the specification leaves open. Thus, a simple 
but natural notion of implementation is as follows. 

DEFINITION. A specification SP is implemented by a specification SP’, written 
SP-+ SP’, if Mod[SP’] E Mod[,SP]. 

It is easy to see that the above implementation relation is transitive (SP-+ SP’ 
and SP’+ SP” implies SP--+ SP”), i.e., that it can be composed vertically 
(see [25]). This means that a specification can be relined gradually. Furthermore, 
this implementation relation can be composed horizontally [25] as well6 [47] 
(SP 1 -+ SP 1’ and SP2 -+ SP2’ implies SP 1 + SP2 ^N) SP 1’ + SP2’ and similarly 
for the other specification-building operations). This means that specifications can 
be refined in a modular fashion. This is in contrast to the more complicated notions 
of implementation mentioned earlier for which these properties do not hold in 
general. 

The following specification is an implementation of Eval-we-really-want: 

Eval’ = 
let EvO = enrich Eva1 by 

opns optplus, opttimes: expr, expr + expr 
optcond: expr, expr, expr -+ expr 

axioms Ve,e’:expr. optplus(e, e’) 
= e’ if e = con&(O) 
=e if e’ = const(0) 
= opttimes(const(2), e) if e = e’ 
= plus(e, e’) otherwise 

5 For technical reasons (see 1271) the validity of this comment requires that there be constants of sort 
ident. 

6 This is the case provided that all specification-building operations are monotonic (with respect to 
model classes), which is the case for the specification-building operations defined in, e.g., Clear [S]. 
LOOK [16], ASL [47], and for abstract and behaviour as defined above. 
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Ve,e’:expr. opttimes(e, e’) 
= const(0) 

e’ 
=e 
= times(e, e’) 

Ve,e’,e”:expr. optcond(e, e’, e”) 
= e’ 

in derive signature Eva1 
from EvO 
by const is const 

var is var 
plus is optplus 
times is opttimes 
cond is optcond 
eval is eval 

=e I, 

e’ 
= cond(e, e’, e”) 

if e = const(0) 
or e’ = const(0) 
if e = const( 1) 
if e’ = const( 1) 
otherwise 

if e = const(n) and n # 0 
if e = const(0) 
if e’=e” 
otherwise 

Eval’ specifies the syntax and semantics of our expression language, requiring that 
certain source-level optimisations (constant folding) be carried out. 

In order to prove that Eval’ implements Eval-we-really-want we have to show: 

CLAIM. Mod [Eval-we-really-want] 2 Mod [Eval’]. 

To prove this we have to show that any model of Eval’ is behaviourally equivalent 
to a model of Eva1 (with respect to input sorts {inl,ident,enu} and output sort 
{ irlt}). 

Sketch of Proof: Let A’ be a model of Eval’. By the definition of derive [47] 
A’ = A0 1~ for some model A0 of EvO, where CJ is the signature morphism described 
in the derive. Let A = A0 ) ,, where r:Sig[Eval] + Sig[EvO] is the signature 
inclusion. By definition of enrich [8] A is a model of Eval. We claim that A and A’ 
are behaviourally equivalent with respect to input sorts (int,ident,enu} and output 
sort { int ). Note that by the construction of A, the parts of A and A’ corresponding 
to Int, Ident, and Env are identical. Thus, it is enough to show that for any 
valuation u of variables of sorts { int,ident,enu} into the corresponding carriers of A 
(which are the same as those of A’) and for any terms, t, t’ of sort inr having 
variables of sorts { int,ident,enu}, A +=u t = t’ iff A’ FL’ t = t’. This may be reduced to 
proving that for any term t as above, its values in A and A’ under u are the same. 
This is obvious if t is a Sig[Int]-term; the only other case is for t of the form 
eu4fexpry p), where p is a variable and texpr is a Sig[Eval]-term of sort expr (with 
variables of sorts (int,ident}). The value of this term in A is the same as in AO, and 
its value in A’ is the same as the value of euaZ(a(t,,Xp,), p) in AO. That 
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A0 k I, ed*,,,, P) = eu44t,,,), P) may be proved by an easy induction on 
t expr I 

Note that this proof technique is quite general; it basically relies only on the fact 
that the specifications under consideration are persistent enrichments (see, e.g., 
[ 193) of the specifications of their observable parts. The mechanical proof of a 
theorem similar to the final step of the above proof is described in [6]. 

A different way of proving that two algebras are behaviourally equivalent is 
suggested in [48]; in this approach, a relation (called a correspondence) between 
the corresponding carriers is set up explicitly and proved to satisfy a kind of 
homomorphism property. 

A more detailed discussion of the application of the ideas presented in this 
section to the development of programs is given in [45]. 

6. OBSERVATIONAL EQUIVALENCE IN AN ARBITRARY INSTITUTION 

In the previous sections we have been rather vague about what we mean by a 
“formula.” We have mentioned formulae of equational logic, first-order logic, and 
infmitary logic. Moreover, although we have been using the standard notion of 
many-sorted algebra as in [31], this was mostly in order to take advantage of the 
reader’s intuition; in fact, we made use of very few formal properties of algebras. 
This means that in place of the standard notion we could have used, for example, 
partial algebras [7] or continuous algebras [32]. We could even change both the 
notions of signature and of algebra to deal with errors [22, 231 or coercions 
[21, 241. 

The notion of an institution [26] provides a tool for dealing with any of these dif- 
ferent notions of a logical system for writing specifications. An institution comprises 
definitions of signature, model (algebra), sentence, and a satisfaction relation 
satisfying a few minimal consistency conditions. (For a similar but more logic- 
oriented approach see [3].) By basing our definitions (of observational 
equivalence, etc.) on an arbitrary institution we can avoid choosing particular 
definitions of these underlying notions and do everything at an adequately general 
level. 

DEFINITION. An institution INS consists of: 

- A category Sign,,, (of signatures) 
- A functor Sen,,,. Sign,,, + Set (where Set is the category of all sets; 

Sen,Ns gives for any signature .Z the set of Z-sentences and for any signature 
morphism o:C --+ C’ the function Sen,,,(a):Sen,N,(L’) + Sen,.&L”) translating 
C-sentences to ,Z’-sentences) 

- A functor ModINs:Sign,,, -+ CatoP (where Cat is the category of all 
categories; Mod,,s gives for any signature 2: the category of C-models and for any 
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signature morphism 0:.X --f ,Y the D-reduct functor Mod,,,(o):Mod,,,(C’) + 
ModlNS(Z) translating C’-models to C-models) 

- A satisfaction relation k IJNS E IM~,Ns(C)I X SenINS(z) for each 
signature ,?Y 

such that for any signature morphism a:C + C’ the translations Mod,Ns(a) of 
models and Sen,,,(a) of sentences preserve the satisfaction relation, i.e., for any 
cp E Sen,,,(C) and M’ E (Mod,,,(C’)J, 

SATISFACTION CONDITION. M' k &INS SenINS(a)(d iff Md,NS(a)(M’) b .&INS v 

To be useful as the underlying institution of a specification language, an 
institution must provide some tools for “putting things together.” Thus, in this 
paper we additionally require that the category Sign has pushouts and initial 
objects (i.e., is finitely cocomplete) and, moreover, that Mod preserves pushouts 
and initial objects (and hence finite colimits), i.e., that Mod translates pushouts and 
initial objects in Sign to pullbacks and terminal objects (respectively) in Cat. For a 
brief discussion of these requirements see [44]. For notational convenience we omit 
subscripts like INS and C whenever possible, and for any signature morphism 
a:C --) C’ we denote Sen(o) simply by (T and Mod(o) by - ( (r. 

In [8] the semantics of the Clear specification language was defined in terms of 
an arbitrary institution (called there a “language”). More recently, in [44] a num- 
ber of more basic but powerful specification-building operations were defined in the 
framework of an arbitrary institution. 

We encounter no problems at all in generalising the contents of Section 2 (on 
ground observations) to an arbitrary institution. In fact, the definitions of obser- 
vational equivalence and of the abstract operation with respect to a set of ground 
observations may be taken literally as they were formulated there. Moreover, Facts 
1-12 still hold. (Facts 13 and 14 hold for institutions with some simple closure 
properties. Fact 1.5 may be generalised if we equip institutions with some notion of 
reachability along the lines of [SO].) 

In order to deal with the general case of observations containing free variables we 
have first to provide a notion of an open formula and a valuation of free variables 
in the framework of an arbitrary institution. Although sentences as they are used in 
the definition of an institution above are always closed, this may be done. 

Namely, note that in the standard algebraic case, an open C-formula with 
variables X may be viewed as a (closed) sentence over the signature C(X) resulting 
from C by adding the elements of X as constants. Then a valuation of variables X 
into a E-algebra A may be viewed as an expansion of A to a z(X)-algebra, which 
additionally contains interpretations of the constants X. This formulation can be 
extended to the framework of an arbitrary institution as follows (see [44] for a 
more detailed exposition). 

Let z be a signature. Any pair (cp, 0), where 8:C -+ C’ is a signature morphism 
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and cp E Sen(L”), may be viewed as an open L-formula with variables “2“ - 0(,X).” 
(Note the quotation marks-since Z’- 0(X) makes no sense in an arbitrary 
institution, it is only meaningful as an aid to our intuition.) If A4 is a X-model, 
ME [Mod(C)/, then a valuation of variables “L’- 0(C)” into M is a L”-model 
M’ E JMod(Z’)I which is a Q-expansion of M, i.e., M’ JH = M. 

Given an open C-formula (cp, 0) we can define its universal closure, written 
V(cp, 0), as a new C-sentence. A C-model satisfies V(cp, 0) if each of its Gexpan- 
sions satisfies cp, i.e., for any ME [Mod(C 

A4 k Vl(% e> iff for any M’ E JMod(C’)I such that M’ ID = A4, M’ /= q. 

Obviously, other quantifiers (there exists, there exist infinitely many, there exists a 
unique, for almost all . ..) may be introduced in the same manner as we have just 
introduced universal quantifiers. Moreover, one may similarly introduce logical 
connectives such as negation and conjunction (of formulae having the same 
“free variables”) with the standard logical interpretation (cf. [3]). Thus, our 
definition of the Cl operator on sets of open formulae (see Sect. 3) works in any 
institution. Note also that these definitions give more generality than was implied 
by the discussion of the standard algebraic case above, since variables denoting 
operations or even sorts are permitted. Such variables could be forbidden if desired 
by restricting 8 appropriately. 

The above definitions allow us to generalise the contents of Section 3. 

DEFINITION. For any signature C, signature morphism B:E + C’, set @ E Sen(C’) 
of open Z-formulae, and Z-models A, B, A is observationally reducible to B w.r.t. @ 
via 0, written A <s B, if for every (valuation) A’ E JMod(C’)( with A’ I0 = A there 
exists (a valuation) B’ E IMod with B’ ) H = B, such that for all cp E @, A’ + cp iff 
B’ I= cp. 
As in the standard case, this is a preorder and so we define observational 
equivalence as before. 

DEFINITION. For any signature C, signature morphism tU -+ ,Y, set @ E Sen(L”) 
of open Z-formulae, and C-models A, B, A and B are observationally equivalent 
w.r.t. @ via 8, written A =$ B, if A <$ B and B <$ A. 

Again, it is easy to verify that the facts in Section 3 concerning observational 
equivalence are still valid. Note, however, that if the sets of observations under con- 
sideration use different sets of free variables, as in the reformulation of Fact 3 given 
in Section 3, then the disjoint union of sets of variables must be replaced here by 
the colimit of the signature morphisms which introduce the free variables. The 
proofs then use the satisfaction condition and our requirement that Mod preserves 
colimits. An example of a proof using these ideas is the proof of the satisfaction 
condition for universally quantified formulae in the extended version of [44]. (Note 
that in order to deal with arbitrary (infinite) families of sets of observations for the 
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generalisation of Fact 3, we have to require that the category Sign be cocomplete 
rather than only finitely cocomplete and that Mod preserves colimits rather than 
only finite colimits.) 

The definition of the specification-building operation abstract is much as it was 
before: 

DEFINITION. For any specification SP, signature morphism &Sig[SP] + C’, and 
set @ E Sen(Z’) of open Sig[SP]-formulae, 

Sig[abstract SP w.r.t. @ via O] = Sig[SP] 

Mod[abstractSPw.r.t.~viae]={AIA_~BforsomeBEMod[SP]}. 

As might be suspected by now, the relevant facts concerning abstract (Facts 7-12) 
still hold under this definition. Moreover, the inference rule given in Section 4 is 
sound here as well. The remarks concerning the notion of implementation in 
Section 5 carry over without change. 

7. CONCLUSION 

By exploring the properties of a primitive but powerful and general notion such 
as observational equivalence and then deriving the more directly useful concept of 
behavioural equivalence as a special case, we are following in the footsteps of earlier 
work on kernel specification-building operations [44,47, 53,541. Our ultimate 
interest is not in the primitive notions themselves but rather in the useful higher 
level constructs which can be expressed in their terms. By carefully investigating the 
primitives we hope to gain insights which can be applied to the derived constructs. 
An example which justifies this approach is the junk specification-building 
operation of ASL [47] which is another useful special case of abstract: 

junk SP on S =def abstract SP w.r.t. EQsorts(SP)(Xsor,s(SP) _ s). 

(See Sect. 5 for the meaning of the EQ notation.) This gives those algebras which 
are the same as models of SP except that they may contain arbitrary junk in sorts 
S; see [47] for examples of its use. Since we have studied observational equivalence 
and abstract rather than the special case of behavioural abstraction and bebaviour, 
everything we have done applies to junk as well. 

We have not yet investigated thoroughly the interaction between bebaviour and 
other specification-building operations, although a start in this direction is given by 
Facts 5 and 6 which give rise to the following identities: 

translate (abstract SP w.r.t. @) by CT = abstract (translate SP by a) w.r.t. O( @) 

derive from (abstract SP w.r.t. O(G)) by CT = abstract (derive from SP by a) w.r.t. @ 



176 SANNELLA AND TARLECKI 

(abstract SP w.r.t. CD) + (abstract SP' w.r.t. @‘) = abstract (SP + SP') w.r.t. @ u @’ 

if Sig[ SP] and Sig [ SP'] are disjoint signatures 

(See, e.g., [44] for the semantics of translate, derive, and +.) An issue we have not 
discussed is the connection between behavioural equivalence/abstraction and 
parameterisation of specifications. An approach to the problem of specifying 
software modules which integrates parameterisation and implementation is given 
in [14]. 

The material in this paper could provide the basis for high-level specification 
languages such as one in which every specification is surrounded by an implicit 
(and invisible) application of behaviour with respect to input and output sorts 
appropriate to the context. This follows the argument in the Introduction that a 
specification is only worthly to be called “abstract” if the class of its models is 
closed under behavioural equivalence. Such a language, obtained by extending the 
modularisation facilities of the programming language Standard ML, is presented 
in [45]. 
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