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1 Introduction

How is it that people manage to communicate even when they implicitly differ on
the meaning of the terms they use? Take an innocent-sounding expression such
as tomorrow morning. What counts as morning? There is a surprising amount
of variation across different people.1

For Anna, morning starts ‘when she gets up’, and finishes ‘when she has
lunch’. For Bart (who verges on the pedantic), morning officially starts at 12:00
am and ends at 11:59 am. Yet another view, held by Cecile, is that morning
starts sometime between 6:00 and 7:00 am, and ends sometime between 12:30
pm and 1:30 pm. Finally, Devendra (who regularly works into the small hours)
believes that morning has barely started at 10:30 am and finishes around 3:30
pm. Nevertheless, if Anna says to Bart: drop by my office tomorrow morning and
we’ll have a look at your proposal, the chances are high that Anna and Bart will
manage to meet (as long as they have no conflicting engagements).

In the kind of linguistic contexts we are concerned with in this paper, it
seems plausible to treat morning as a grouping of time units at some level
of granularity (e.g., seconds, minutes, quarter-hours), ordered in the usual way.
According to this view, a sentence like Let’s meet tomorrow morning is equivalent
to Let’s meet at some point in tomorrow morning. This allows us to claim,
for example, that the moment 9:15 am belongs to the extension of morning,
while 9:15 pm does not. It follows that morning is open to the Sorites paradox:
if 9:15:00 am counts as morning, then so does 9:15:01 am (i.e., the moment
that is one second later than 9:15:00 am). By tediously iterating through the
process of adding one second at a time (or one millisecond, if preferred), we will
ineluctably reach the unwanted conclusion that 9:15:00 pm counts as morning.
If we take the Sorites paradox as criterial for vagueness, we can conclude that
morning and its companion expressions, afternoon, evening, day and night are
all vague. But what does this mean? On the face of it, some speakers (like Bart)
assign crisp boundaries to the time unit morning, while others (like Cecile) assign
indeterminate boundaries. We will return to this issue in Section 3.3, but for
the time being, let us just assume that the concepts corresponding to familiar
time units possess crisp boundaries. Instead, we want to explore how terms like
morning might be used in communities of speakers.
1 The variability in usage and interpretation of terms like morning and evening has

been explored by Reiter [18] in the context of weather forecasts.
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Vagueness and Utility

The approach we have adopted is inspired in large part by Parikh’s [16] obser-
vation that even though two speakers differ in the way they interpret a vague
term like blue, if there is sufficient overlap in their interpretations, there will
be positive utility in using the vague term. In Parikh’s example, Ann requests
Bob to fetch “a blue book on topology” from the book shelves in her study. The
descriptive term contains enough information that even though they disagree
on what counts as blue, the set of ‘blue-for-Bob’ books reduces Bob’s search
space far enough to significantly increase his chances of finding the correct book
relatively fast.

What we want to adopt from Parikh’s scenario is the idea that the success of
communication involving a vague term can be measured in terms of completing
a task. In Parikh’s case, the task is to identify a book; in our case, the task is
for two agents to meet one another. Just as the term blue functions in Parikh’s
scenario to reduce the search space within which the required book is located,
we will assume that a term like morning reduces the temporal period within
which the meeting will take place. More specifically, we assume there are two
agents, say A1 and A2, who wish to meet up. Suppose A1 says to A2: Let’s meet
up tomorrow morning. Drop by my office. A2 accepts the proposal. Both A1 and
A2 have their own interpretation of what is meant by the phrase morning. For
each of them, the interpretation is modelled as an interval, but these intervals
do not need to coincide. Not surprisingly, we can observe that if the intervals
overlap sufficiently, then the two agents will tend to be successful in meeting.

Although we focus in this paper on temporal intervals, in principle we could
generalize our approach to any linguistic term whose semantic extension is a set.
We define overlap between sets as follows:

Definition 1 The degree of overlap between sets X and Y , ◦(X,Y ), is the
quotient

|X ∩ Y |
|X ∪ Y |

i.e., the cardinality of elements in the intersection of X and Y divided by the
cardinality of elements in the union of X and Y .

If ◦(X,Y ) = 1.0 then we say that X and Y completely overlap. Given some error
margin ϵ, we will say that X and Y approximately overlap iff 1 − ◦(X,Y ) < ϵ.
In this case, we can say that there is an indifference relation between X and Y :
the difference between them is either indiscernable or has no practical impact
for the agents.

Let us write Vi(e) for the interpretation that agent Ai assigns to expression e;
we will restrict our attention to cases where Vi(e) is a set X ⊆ D for some domain
D. Two interpretations V , V ′ are completely (resp. approximately) aligned on e
iff V (e) and V ′(e) completely (resp. approximately) overlap.

We assume that holding a meeting always has higher utility than failing to
meet, that is, U(meet) > U(meet). P (meet | Vi(e)) is the probability that a
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meeting will take place, given the interpretation that Ai assigns to expression e.
More generally, let’s assume that S is an event whose occurrence is conditioned
by linguistic meanings. Then the expected utility of an interpretation Vi, relative
to outcome S, is given as:

EU(Vi) = P (S | Vi(e))U(S) + P (S | Vi(e))U(S)

If EU(V ′
i ) > EU(Vi), then a rational agent Ai should adopt V ′

i in place of Vi

in order to maximize her expected utility. Using these notions, we go beyond
Parikh’s scenario, and make the following claim:

If individual agents in a given community maximize the expected utility of
their interpretations, then over the course of successive interactions these
interpretations will become approximately aligned.

Much of the remainder of this paper will attempt to flesh out and substantiate
this claim. However, we should emphasize that the model that we develop does
not attempt to directly compare the utility of all possible interpretations at
a given point in the interaction. Rather, the principle of utility maximization
is comparable to an abstract specification which admits various computational
implementations.

Conceptual Structures

The standard assumption in formal semantics (and indeed in much computa-
tional semantics) holds that linguistic meaning is a mapping from language to
the world (or a model): meanings have an objective existence independently of
speakers. By making the interpretation function V relative to agents, we are
implicitly subscribing to a cognitive view, where meanings are psychological en-
tities in the heads of agents. From the perspective of building some kind of
computational system of interacting agents (such as mobile robots), the cogni-
tive approach has obvious attractions. Each agent has only partial knowledge of
the world in which it finds itself, including both the physical environment and
its fellow agents. It does not have direct access to ‘external reality’, but has to
build representations of the world on the basis of input from its sensors (which
may well be noisy). It could be argued that it is enough to equip the agents with
a mental language, such as some flavour of first order logic, in order to reason
and communicate. But this begs the question of how the agents can be sure that
they are using the non-logical terms of the language in the same way as their
dialogue partners.

Within Gärdenfors’ framework of conceptual spaces [8, 26], concepts (and
hence linguistic meanings) are internal mental representations. However, the
requirement of ‘shareability’ [7] places constraints on how far the concepts of
one agent can diverge from those of the other agents it interacts with. Shared
meanings of expressions develop during language games — communicative in-
teraction between language users — and involve mappings between conceptual
representations that are influenced by the need to act effectively in the world. A
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so-called ‘meeting of minds’ occurs when the representations in the minds of the
dialogue partners become sufficiently compatible. This is essentially the same as
our notion of approximate alignment.2

Our approach to meaning is also influenced by work on ontology alignment
[5] in the context of multi-agent systems [1]. Agents collaborating in a shared
environment need to share an ontology (i.e., the conceptualization of a domain)
in order to communicate with each other, but in an open system, different agents
can in principle use quite heterogeneous ontologies. Wang and Gasser [24] present
a model that, like ours, explicitly considers which instances fall within the ex-
tension of a concept, but do not provide a utility-based method for determining
successful alignment. Somewhat closer to our approach in this respect is the
work of McNeill et al. [14], where agents are involved in jointly planning a task;
plan failure triggers an attempt to diagnose mismatches in ontology; the agents
use heuristics to repair their ontologies (in the sense of modifying the ontology
signature), and then re-engage in the planning task. This cycle — communicate
/ diagnose failure / repair the ontology — is similar to the kind of model that
we are proposing. However, the type of mismatches considered by [14], and the
mechanisms used to effect the repair, are very different.

One question which arises is whether it is plausible that agents are prepared
to modify their interpretations in the way we have suggested. Although this point
deserves closer consideration, it does seem to be a characteristic of vague terms
(both adjectives and nouns) that their boundaries are somewhat flexible. Thus,
we seem to be more willing to shift the boundaries of what counts as morning
than, say, what counts as a dog (or other natural kind).3 On the other hand, even
if agents are prepared to ‘negotiate’ meaning, there are no doubt some aspects
which are non-negotiable — Bob may be prepared to shift his interpretation of
blue so that it encompasses a shade of violet, but will balk at shifting it to cover
bright orange. This is an important constraint, but we will defer the topic to
future work.4

Overview of paper

We use a simple multi-agent simulation in order to provide an explicit model of
task based communication. In general, we believe this has a number of attractive
aspects. For one thing, the simulation allows us to explore the consequences of
setting various parameters in different ways, and to consider the interaction of
these parameters in a manner that would be hard to achieve using a pencil-and-
paper analysis. The approach can be viewed as implementing a language game

2 An elegant computational implementation of alignment of colour terms in Gärden-
fors’ framework is presented by Jäger and van Rooij [10].

3 This is similar to Williamson’s [25] proposal that the meanings of vague terms are
unstable, in the sense that minor differences in use give rise to minor differences in
the extension of the term.

4 For more discussion of constraints on shifting meanings in a computational frame-
work, see [13, 4].
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in the sense of Gärdenfors [8], where the representations of individual agents
affect communication about shared activities and are modified as a result.

Section 2 describes the framework of the simulation in more detail. Section 3
and Section 4 present the two sets of experiments that we ran, while Section 5
gives some conclusions and suggestions for future work.

2 Approach

As we have already indicated, our treatment of temporal expressions is highly
simplified. Most notably, we ignore the element of context dependence in the
application of temporal terms. For example, people who work together in an
office will probably adopt a different view of what counts as morning than people
who are up before dawn to milk the cows. Another contextual factor is the day
of the week: for most Westerners, the temporal location of morning during the
weekend diverges considerably from its location during the working week. We
will abstract away from these factors, and only consider the case where the
population of speakers adopts a shared context of use.

A second simplification is in our treatment of the expression morning. Given
a specific day (say Monday 9th November 2009) and a specific speaker, say Anna,
morning will denote a closed interval of time units.5 For our purposes, it does
not matter too much what level of granularity is chosen, but we will think of the
intervals used by our agents as containing quarter-hour units; in other words, an
interval with 12 elements would correspond to a period whose duration is three
hours.

We will describe two families of experiments (referred to as Experiment 1 and
Experiment 2 respectively), using a multi-agent simulator that was implemented
in the Python programming language.6 The agents are modelled as processes
in the SimPy Discrete Event Simulator.7 Before discussing the specifics of the
experiments, we will give more details of the agent coordination task.

Let T be a finite set of integers representing time units, and let I be a set
of closed intervals over T . Given a set Ag of agents, each Ai ∈ Ag is associated
with a preferred interval ιi ∈ I. We will assume that ιi = Vi(morning), i.e.,
Ai’s interpretation of the temporal expression morning. Vi(morning) is private
in the sense that for any j ̸= i, Aj has no direct access to Vi.

Note that although Vi(morning) is unique for each agent Ai, the inverse
need not hold — that is, we let the cardinality of I be less than that of Ag. In

5 This approach is intended to be compatible with that proposed by Ohlbach [15],
who points out that a temporal expression such as February can be used to refer
to a particular February; or to denote the set of all Februaries in the history of
mankind; or, more generally, to refer to a function which given some year y returns
the particular February of y.

6
http://www.python.org/

7
http://simpy.sourceforge.net/



6 Ewan Klein, Michael Rovatsos

our simulations, I is fixed as the set of intervals {[1, 10], [6, 15], [11, 20]}.8 It is
assumed in our model that the agents share the common time frame given by T .
For example, we might think of the three intervals in I as corresponding roughly
to the time periods 7:00–9:30 am, 8:15–10:30 am and 9:30–12.00 am, respectively,
where the time units 7:00 am, 7:15 am, . . . have the same interpretation for all
agents in Ag.9

On each run of a simulation, two agents Ai and Aj are selected at random.
One of the agents is assigned the role of proposer, while the other takes on the
role of responder; we’ll refer to these as P and R respectively. P takes the lead
in sending a “let’s meet in the morning” message to R and chooses an arrival
time arrP from its period ιP, while R chooses an arrival time arrR from ιR. One
important feature of the model (which could however be relaxed) is that agents
tend to pick an arrival time that falls somewhere in the middle of their preferred
interval. This seems plausible when the proposed meeting time is some kind of
approximation or vague interval. This feature is implemented by selecting Ai’s
arrival time (coerced to an integer) at random from a Gaussian distribution
whose mean is the midpoint of ιi, with standard deviation 1. In Experiment 1,
the departure time of an agent Ai, depi, is simply set to the endpoint of ιi. (We
will later discuss a modification of this scheme used in Experiment 2.) P and R
are judged to meet if [arrP, depP] ∩ [arrR, depR] ̸= ∅. We assume that on each
run, P knows the arrival and departure time of R, even if they fail to meet.

It may be helpful to enumerate the four cases which determine whether or
not a meeting occurs. (Although we mention a ‘waiting cost’ here, this feature
does not come into play until Experiment 2.)

1. R arrives and departs before arrP; the meeting fails with no waiting cost for
P.

2. R has already arrived but not yet departed when P arrives; the meeting is
accomplished with no waiting cost for P.

3. R arrives after arrP but before depP; the meeting is accomplished with a
waiting cost for P.

4. R arrives after depP; the meeting fails with a waiting cost for P.

These four options are shown graphically in Figure 1.
As mentioned before, each agent is assigned a preferred interval, which is

intended to be a cognitive representation of a vague temporal expression. Since
there is only one such expression in use in the community, we do not need
to explicitly label it. The preferred interval, therefore, is a key aspect of each
agent’s mental state. Agents have no access to the mental states of others, and
only observe their behaviour in arriving and departing at particular times. Each
agent keeps a record of the other’s arrival behaviour. More precisely, each agent

8 These integer bounds are chosen for simplicity of implementation, but it would be
conceptually straightforward to replace them with time points in hh:mm notation,
or indeed to use seconds in Unix time (http://unixtime.info/).

9 See [19] for discussion of the cultural and cognitive construction of time based time
interval systems.
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Fig. 1: Meeting Outcomes

Ai maintains a list L(Aj) of observed arrival times for each other agent Aj , and
the list is updated on any run in which Ai plays the P role and Aj plays the R
role. Given L(Aj), Ai can estimate the mean arrival time of Aj up to the current
run in the simulation. We refer to this estimated mean as µ(ιj).

In order to provide a more concrete impression of the way the simulation
works, in Figure 2 we have included a small extract from one simulation log file.

3 Experiment 1

3.1 Alignment

In the first set of experiments, we allow the proposer to update its preferred
interval in the light of its experience so far. After each encounter, P attempts to
align with R. It does so by adjusting ιP so that the midpoint of ιP approaches
µ(ιR); that is, if t is the new target midpoint and len returns the length of an
interval, then the adjusted interval is simply [t− len(ιi)/2, t+ len(ιi)/2]. Let us
refer to the midpoint of interval ιP as md(ιP) and let ι′P be the new interval of
P after alignment has taken place. Then we try to meet the following constraint
after each run:

|µ(ιR)−md(ιP)
′| < |µ(ιR)−md(ιP)| (1)

In Experiment 1, we implemented the following update rule, where λ ∈ [0, 1]
is a scaling factor that we call the learning rate:

md(ιP)
′ = md(ιP) + λ(µ(ιR)−md(ιP)) (2)
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activating agent-2 at 26
agent-2 proposed the following period:
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
Proposer: agent-2, Responder: agent-4
Failed to meet!
agent-2 present: [11, 12, 13]
agent-4 present: [2, 3, 4, 5, 6, 7, 8]
agent-2 waited 2 mins
agent-2’s cost: 0, net reward: 0
agent-2’s cumulative reward over 8 proposals: -4
successes to date: 1.000
proposals to date: 8.000
success ratio: 0.125
reward ratio: -0.250

Fig. 2: Extract of a Simulation Log

3.2 Results

In analysing the results of Experiment 1, we focus on two dimensions for mea-
suring the outcome: interval overlap and proposal success ratio. For con-
venience, we repeat a slightly modified version of Definition 1:10

Definition 2 The overlap between intervals ιP, ιR is the quotient

|ιP ∩ ιR|
|ιP ∪ ιR|

Definition 3 The success ratio for an agent is the quotient

# of successful meetings
# of proposals

In Fig. 3 we plot the average degree of interval overlap for a population of five
agents over 250 runs.11 We illustrate four cases, one where there is no learning,
and three where the learning factor λ is set at increasingly high values. Fig. 3(b)
shows that even a rather small value for λ is significantly better than no learning,
and that the overlap between intervals ends up oscillating between 0.8 and 1.0.
Fig. 3(c) shows a situation where complete alignment is achieved. By contrast,
the setting of λ = 0.5 produces an oscillation similar to case Fig. 3(b), with the
main difference being that this ‘dynamic stability’ is achieved more rapidly.

In Fig. 4, the outcomes for each agent are plotted separately, using the same
four values for λ as in Fig. 3. In Fig. 4(c), it is striking that agent-1 has much

10 This is known as the Jaccard index of similarity. We have also experimented with a
related measure, Dice’s coefficient, which yields comparable results.

11 One average, each agent engages in 250/5 meeting proposals.
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(b) λ = 0.001
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(c) λ = 0.003
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(d) λ = 0.5

Fig. 3: Average Overlap in Preferred Intervals
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lower success than the other agents. This is due to the starting conditions in
this particular run, where four of the agents started off with closely overlap-
ping intervals and only agent-1 happened to diverge sharply from this shared
interval.
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Fig. 4: Ratio of Successful Meetings to All Proposals

Table 1 illustrates the intervals that are associated with each agent at the end
of one complete simulation, after alignment has taken place. It can be observed
that some of the intervals are left-shifted beyond the earliest point in I. We will
return to this issue later.

3.3 Discussion

As shown in Figure 4(a), when the discrepancy in preferred intervals is allowed
to persist throughout the simulation, success in meeting tends to diminish over
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agent-0: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

agent-1: [-1, 0, 1, 2, 3, 4, 5, 6, 7, 8]

agent-2: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

agent-3: [-1, 0, 1, 2, 3, 4, 5, 6, 7, 8]

agent-4: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Table 1: Aligned Intervals after 350 runs, λ = 0.5

successive runs for all the agents. By contrast, Figure 4(b) shows gradual im-
provement to a mean success rate of around 0.8 when learning takes place. In
addition, a positive value for λ enables the agent population to reach a relatively
stable alignment of intervals. Despite this, complete alignment is not typically
reached.

Fig. 5 gives an alternative visualization of how the preferred intervals of the
five agents become increasingly aligned during the course of successive interac-
tions (under the condition where λ = 0.5).12 The greyscale intensity corresponds
to the number of agents who share a given time period on a given run: the darker
the shade, the greater the degree of overlap across the pool of agents. For ex-
ample, it can be seen that only one agent has an interval which includes [14, 19]
during the first 5 runs, whereas four agents share the subinterval [6, 9] One way
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Fig. 5: Distribution of preferred intervals across agents over time

of interpreting this result is to say that the chosen temporal unit is still vague,
at the population level, but less so before alignment occurred: the concepts ap-
12 In order to make this figure more legible, we have truncated the results to only show

the first 100 runs.



12 Ewan Klein, Michael Rovatsos

proximately overlap, in the terminology of Section 1, within the limit set by the
error margin ϵ.

If we regard the shared concept as the union of the concepts of the constituent
individuals, then we have a range of possible boundaries to the concept. This
is reminiscent of the ‘egg-yolk’ theory [13, 9] which represents a vague spatial
region in terms of its maximal and minimal possible extensions. The maximal
extension is called the egg and consists of two subregions, the white together
with the yolk (or mininimal extension); cf. Figure 6.13 If Xt is a snapshot at

yolk

white

Fig. 6: Egg-Yolk Model of Vague Regions

time t of the vague spatial interval depicted in Fig. 5, then using the Gotts and
Cohn [9] predicates eggof and yolkof, we might try to identify the maximal and
minimal regions of Xt in terms of the preferred intervals ιi,t of agents Ai at time
t:

eggof(Xt) =
∪

Ai∈Ag

ιi,t

yolkof(Xt) =
∩

Ai∈Ag

ιi,t

In effect, then, the vagueness is an emergent property of the interaction between
the agents in the population, rather than inhering to the conceptual structure of
any individual agent. At one level, this perspective has certain attractions, since
the indeterminacy of a concept like ‘morning’ does appear to be related to the
wide variability in the way that it is applied by individual speakers. Nevertheless,
in order to do justice to the intuitions behind the egg-yolk model, we would need
to enrich the representation of intervals within agents in order to accommodate
something like the egg white region. This would then offer the possibility of
agents conditioning their willingness to adapt according to the partition into
yolk and white. For example, it might be plausible for a proposer P to only
modify its preferred interval if µ(ιR) fell at least within the ‘white’ part of the
interval.

One major disadvantage of the framework used in Experiment 1 is that we
have, so to speak, ‘hard wired’ the goal of alignment into our agents. It could
13 See [3] for a discussion of how the ‘egg-yolk’ model relates to supervaluation [6, 11]

approaches to vagueness.
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be argued that this has some plausibility; for example, there is considerable
empirical evidence that human speakers do align to each other at numerous levels
of cognitive representation in dialogue, ranging from phonetics up to the levels
of semantic representation and the internal ‘situation model’ [17]. Nevertheless,
the process captured in our simulation corresponds more closely to alignment
across successive dialogues, rather than within a dialogue, which weakens the
analogy. Is it possible instead to devise a more principled approach which allows
agents to discover the advantages of alignment by themselves?

4 Experiment 2

4.1 Reinforcement Learning

In the second family of experiments, we adopt a simple form of reinforcement
learning [23] to replace the alignment strategy of Experiment 1.

Before discussing the details, we need to briefly return to the way in which
the proposer P selects a departure time. In Experiment 1, the departure time
was set to be the end of the agent’s preferred interval. We now modify this as
follows:

depP =

{
arrP + 1 if arrR < arrP,
end of ιP otherwise

(3)

In other words, P departs at time t+1 if she knows that R has already arrived
(and has either departed already or is still present at time t). Otherwise, P waits
until the last point of ιP. For simplicity, we do not consider the length of the
meeting to be a factor in determining costs or utility.

In principle, P incurs a waiting cost which is proportional to the length of
the interval [arrP, depP]. However, for simplicity, we treat it as a fixed value,
regardless of the length of the wait.14

Let us return to the learning scenario. To ease exposition, suppose that we
have a pool of two agents, with a fixed assignment of roles. Each run t of the
simulation contains a representation of a state st, on the basis of which P selects
an action at. On the next run, P receives a numerical reward rt+1 and finds
itself in state st+1; the reward is used to build a model of the long-term utility
of performing action a in state st (taking into account sequences of state changes
induced by the action, assuming utility-optimal behaviour thereafter). P main-
tains a mapping from states to probabilities of selecting each possible action.
This mapping is called a policy, and is updated in the light of rewards received
in states up to and including the current one.

We represent a state with the variable alignment. This takes as value one
of five possible labels, each of which serves as a bin for a range of integers,
corresponding to the difference σ between the median md(ιP) of P’s preferred
interval and estimated mean µ(ιR) of R’s arrival times. The correspondence

14 We assume that the cost is zero if depP = arrP + 1.
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between labels and the value of σ are shown in Table 2. For example, alignment
would be assigned the value other_v_early just in case md(ιP)− µ(ιR) > 6.

bin labels range of σ

other_v_early σ > 6
other_early 6 ≥ σ > 1
aligned 1 ≥ σ > −2
other_late −2 ≥ σ > −7
other_v_late σ ≤ −7

Table 2: Values of the alignment variable

The set A of possible actions for P are analogous to the set of possible
alignments:

A = {shift_far_earlier, shift_earlier, no_op, shift_later, shift_far_later}

Each action is a mapping from intervals to intervals. The actions shift_far_earlier
and shift_far_later move their input five units earlier or later, respectively,
while shift_earlier and shift_later only move their inputs one unit earlier or
later. no_op just returns its input unchanged. The actions are defined so that
intervals cannot be shifted beyond a stipulated lower and upper boundary (taken
to be 1 and 21 in the current model). This constraint is realistic to the extent
that, for example, the start point of morning would not normally occur before
12.00 am. However, the way that we have implemented these constraints could
definitely be improved (for example by defining a probability distribution over
possible start times).

Note that despite the potential fit between actions and alignments, any as-
sociation between the two has to be learned by the agents, rather than being
stipulated in the model.

The reward received by an agent depends on the values of two variables met
and wait. The first of these is boolean-valued, while wait takes a non-negative
integer as value. Rewards are allocated according to the matrix in Table 3. In

wait = 0 wait > 0

met = True 2 1
met = False -2 -3

Table 3: Reward Matrix

order to choose an action, the agent estimates the relative values of all members
of A. The estimated value of action a on the tth run in state s is written Qt(a, s),
and we define this to be the average of the rewards received in s by the time the
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action was selected. That is, if a has been selected k times in s by the time of
run t, giving rise to rewards r1, r2, . . . , rk, then its value is estimated to be the
following:15

Qt(s, a) =
1

k

k∑
i=1

ri (4)

When k = 0, we take Qt(s, a) = 0. Qt(s, a) is re-computed on each run of the
simulation.

The simplest strategy for action selection is the greedy method: choose an
action which has the highest estimated value. However, it turns out to be ad-
vantageous to behave greedily most of the time while occasionally — with small
probability ϵ — selecting at random some other action. We take ϵ = 0.1 initially,
and let it decrease over successive runs, so that the action space is sampled more
broadly at the beginning of the simulation. This is termed an ϵ-decreasing
strategy.

The purpose of this approach is to provide a decision-theoretic grounding for
the usefulness of alignment. Instead of assuming a hardwired propensity to adjust
towards the other agents’ concepts, rewards received from the environment alone
should be sufficient to cause the agent to behave in such a way, i.e., it would be
rational for her to do so, purely on the basis of self-interest.

4.2 Results

In Experiment 1, we only required agents to update their preferred interval with
respect to the observed behaviour of their most recent partner. For example, we
might have agent A1 moving ιi earlier after interacting with A2 and moving it
later on a successive turn after interacting with A3. However, in Experiment 2
we also consider the case where agents align not to the pattern of their individual
partners, but rather to the mean behaviour of all their partners. We shall refer
to these two conditions as align_to_group = False vs. align_to_group
= True, respectively.

Figures 7(a), (b) show the average reward ratios achieved over 500 runs.
For individual agents, the reward ratio is defined as follows, where K is set to
be the maximum possible reward in a state, i.e. K = 2:

Definition 4 The reward ratio for an agent is the quotient

sum of rewards received
# of proposals ×K

The average reward ratio is obtained as the mean of the reward ratio taken
over the whole population. It remains low throughout the simulation under con-
dition align_to_group = False (Figure 7(a)), but reaches a point above 0.6
15 Although reinforcement learning typically involves learning the utility of sequences

of actions, the more restricted version we have adopted here is sufficient to support
our claim that alignment can be learned rather than being hard-wired.
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when align_to_group = True (Figure 7(b)). Analysis of the behaviour of
individual agents, illustrated in Figures 8(a), (b), shows that as in the case of
Experiment 1, it is possible for one or more agents to persistently diverge from
the rest of the group.
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Fig. 7: Average Rewards over Time
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Fig. 8: Rewards to Individual Agents over Time

Figures 9(a), (b) suggest that a reasonably stable alignment of intervals only
emerges under condition align_to_group = True.

Finally, Figure 10 shows the extent to which proposals by agents lead to
successful meetings.
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(b) align_to_group = True

Fig. 9: Average Overlap in Preferred Intervals
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Fig. 10: Ratio of Successful Meetings to All Proposals
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In general, the framework using reinforcement learning yields alignment re-
sults that are comparable with those achieved with the ‘hard wired alignment’
approach, but only when align_to_group = True.

These results are comparable to the work on word meaning and multi-agent
language games carried out by Steels and colleagues [2, 22, 21]. However, unlike
Steels, we are not concerned with how new terms emerge as bearers of meaning,
but rather with how pre-existing ‘unstable’ meanings come to stabilize as a
result of interaction. In addition, feedback about the interpretation of terms is
not acquired through explicit correction and deictic coordination, as for example
in [2], but has to be inferred from whether proposals to meet are successfully
consummated or not.

5 Conclusions and Future Work

This paper opened with the question How is it that people manage to commu-
nicate even when they implicitly differ on the meaning of the terms they use?
We typically assume that the person we are talking understands our words in
just the way in which we ourselves understand them; this is a crucial component
of our shared ‘common ground’ [20] in the dialogue. Yet for many items of our
core vocabulary, this assumption is probably too strong. Given differences in
perceptual apparatus and in personal experience, meanings as mental entities
surely differ somewhat from speaker to speaker. Despite these differences, com-
munication usually succeeds, as far as we can tell. We have argued that a notion
of approximate semantic alignment may be sufficient for communication
in a task-oriented scenario. In order to support our claim, we have modelled
the utility of a temporal expression for achieving coordinated action, specifically
for pairs of agents to arrange meetings between themselves. We have shown
that, given certain assumptions, the utility of the expression increases in line
with interpretive alignment. That is, when the proposer’s extension for the term
overlaps more greatly with that of the responder, then the term is more effective
in circumscribing the range of possible meeting times. This in turn increases the
likelihood that two agents will successfully meet. If the agents adopt reinforce-
ment learning, then over numerous interactions, they will tend to converge on
more tightly aligned sets of interpretations, leading to a stable pattern of suc-
cessful meeting proposals. However, as we pointed out earlier, our current model
only achieves this convergence if agents align to the group average arrival time,
rather than successively attempting to align to the average of their immediate
partner.

Despite the fact that increased alignment correlates with increased utility,
the way we have modelled multi-agent simulation rarely if ever leads to com-
plete alignment. This adds support for the contention that vague terms provide
robustness to communication — they work ‘well enough’ in the absence of com-
plete agreement on boundaries. In order to explore this point more fully, let’s
return to the details of Experiment 2. Figure 10(b) indicates that one of the
five agents (namely agent-3) is less successful than all the others — achieving
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a score of 0.8 against an average of 0.95 for the other four. Inspection of the
simulation log shows that agent-3 has ended up with a preferred interval that
diverges markedly from the rest of the members of the agent pool; see Table 4.
Regardless of the reasons why agent-3 has arrived at a sub-optimal policy, there

agent-0: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

agent-1: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

agent-2: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

agent-3: [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]

agent-4: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Table 4: Aligned Intervals after 500 runs, using Reinforcement Learning

is one striking fact: since there is sufficient overlap in preferred intervals, a ‘good
enough’ policy can persist. In other words, the residual divergence between in-
tervals across the population does not seriously impede the agents in achieving
their goal of meeting.

From a methodological point of view, simulations of the kind presented in
this paper do not allow strong conclusions to be drawn, and some kind of analytic
model would be desirable. On the other hand, we would argue that simulations
do allow us to be explicit about the assumptions we are making and to refine
the kind of questions we want to ask. There are a number of issues which we
plan to explore in future work, most notably the following:

1. representing temporal intervals using an ‘egg-yolk’ style representation;
2. allowing a responder agent to reject the proposer’s suggestion, and to nego-

tiate an alternative;
3. including in the community certain agents who refuse to adapt to other

agents;
4. expanding the range of interactions by providing agents with a lexicon of

complementary time expressions (such as morning, midday, afternoon and
evening);

5. allowing agents to choose temporal expressions at different levels of granu-
larity and to use approximations [12], and

6. applying the approach to the spatial domain.
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