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Abstract
How will naive users program domestic robots? This paper describes the design of a practical system that uses
natural language to teach a vision-based robot how to navigate in a miniature town. To enable unconstrained
speech the robot is provided with a set of primitive procedures derived from a corpus of route instructions.
When the user refers to a route that is not known to the robot, the system will learn it by combining primitives as
instructed by the user. This paper describes the components of the Instruction Based Learning architecture and
discusses issues of knowledge representation, the selection of primitives and the conversion of natural language
into robot-understandable procedures.

1 Introduction

Intelligent robots must be capable of action in reasonably complicated domains with some degree of autonomy.
This requires adaptivity to a dynamic environment, ability to plan and also speed of execution. In the case of
helper robots, or domestic robots, the ability to adapt to the special needs of their users is crucial. The problem
addressed here is one of how a user could instruct the robot to perform tasks which manufacturers cannot
completely program in advance. In such case the system would not work at all if it cannot learn.
Such learning requires interaction and collaboration between the user and the robot. But, as most users are
computer-language-naïve, they cannot personalise their robot using standard programming methods. Indirect
methods, such as learning by reinforcement or learning by imitation, are also not appropriate for acquiring user-
specific knowledge. For instance, learning by reinforcement is a lengthy process that is best used for refining
low-level motor controls, but becomes impractical for complex tasks. Further, both methods do not readily
generate knowledge representations that the user can interrogate.
Instruction-Based Learning (IBL), which uses unconstrained speech, has several potential advantages. Natural
language can express rules and sequences of commands in a very concise way.  Natural language uses symbols
and syntactic rules and is well suited to interact with robot knowledge represented at the symbolic level. It has
been shown that learning in robots is much more effective if it operates at the symbolic level [2]. This is to be
contrasted with the much slower learning at the level of direct sensory-motor associations.
Chunking, sequencing and repair are the aspects, related to natural language interactions, shaping the design of
IBL systems discussed here. Chunking is a principle that applies to the communication of information.
Chunking is meant here as the human characteristic to divide, during explanations, tasks into sub-tasks so that
all information should be presented in small 'basic' units of actions. As shown in [12], chunking is done
spontaneously by humans and we expect that conversions from natural language instruction to robot program
will be facilitated if the robot knows a set of primitive procedures corresponding to the action-chunks natural to
the user.
Regarding repair, natural language explanations are notoriously underspecified, and the robot must be able to
verify the consistency of the acquired program. For example, in a sequence of instructions given by the user, the
final state of an action may not correspond to the expected state for the next action. In this case, the system
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would not be able to perform its task due to a missing chunk. For this reason, it is necessary to define a proper
internal knowledge representation allowing the system to detect the missing information. In this way, the system
would be able to make predictions about future events so that the problem can be solved while the system is still
interacting with the user.
The system not only has to pay attention to user knowledge and dialogue goals, but it also has to adapt its
dialogue behaviour to current limitations of the user's cognitive processing capabilities. Assistance is then
expected from the system, so that the interaction may naturally flow over the course of several dialogue turns.
Finally, a dialogue manager should take care of identifying, and recovering from, speech recognition and
understanding errors.
This paper describes initial steps and considerations towards a practical realisation of an IBL system. The
experimental environment is that of a miniature town in which a robot provided with video camera executes
route instructions. The robot has a set of pre-programmed sensory-motor action primitives, such as "turn left" or
"follow the road".  The task of the user is to teach the robot new routes by combining action primitives. That
task should reveal all the constraints described above, and enable testing of the developed methodology.
The closer the correspondence between primitives and chunks expressing the very basic actions (such as "turn
left") is, the less difficult the learning is, since, in this way, the number of repair dialogue between the user and
system is kept to the minimum. For this reason, it is necessary to select these primitives that corresponds as
closely as possible to the action expressed in the chunks (see section 4).
A complete IBL requires several steps to transform a spoken chunk into a robot action (Table 1). First, the
system must be able to convert speech into text. After that, some syntactic parsing and semantic analysis is
carried out. Then at the functional mapping level, the system must be able to transform the user utterance into
internal symbols that the robot can understand. By understanding we mean here that there is a correspondence
between symbols and actions or real-world objects. In this way, the appropriate procedure can be called to act
on the sensors and motors according to the user intentions.

Table 1. From speech to action. The various steps involved in the transformation of a user command into the corresponding
action are shown here.

Section 2 clarifies how symbol-level description and low-level sensory motor action procedures are integrated.
The proposed representation of procedural knowledge is also described. In section 3 the system architecture is
described.
The problems of considering the appropriate selection of action primitives is described in section 4 by analyzing
recorded route instructions, and establishing a list of actions that are natural to users. The results of this

Analysis Repair

Speech
recognition

Tagging Go/VB to/TO the/DT end/NN of/IN the/DT street/NN
Syntactic Parsing [VG  go]   [to to]  [NG the end of the street ]
Semantic
Analysis

Robot ( x ), end_of_street ( y ), request_go ( x, y )

Functional
Mapping

Goto(“end_of_street”)

↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓ Robot program Until found(end_of_street)

      follow_the_road()

↑↑↑↑
↑↑↑↑
↑↑↑↑
↑↑↑↑
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investigation are also discussed. These implications and other findings are discussed in section 5, along with the
question of how the proposed system compares to other approaches. The conclusion follows in section 6.

2 The IBL model

2.1  Symbolic learning
The learning process is based on predefined initial knowledge. This "innate" knowledge consists of primitive
sensori-motor procedures with names, such as "turn left", "follow the road" (the choice of these primitives is
explained in sections 2.3 and 4). The name is what we call here a  "symbol", and the piece of computer program
that controls the execution of the corresponding procedure is called the "action" (Figure 1A). As each symbol is
associated with an action, it is said to be "grounded".

A B C

Figure 1. Symbolic learning. (A) is a schematic representation of the initial system, comprising symbols associated with pre-
programmed (innate) primitive action procedures. In (B) the user has defined a new procedure (open circle) as a
combination of symbols. The new symbol is grounded because it is a construct of grounded symbols. In (C), the user has
defined a new procedure that combines a procedure previously defined by himself with primitive action procedures.

When a user explains a new procedure to the robot, say a route from A to B that involves a number of primitive
actions, the IBL system, on the one hand, creates a new name for the procedure, and, on the other hand, writes a
new piece of program code that executes that procedure and links the code with the name (see section 2.2 for
details). The code refers to primitive actions by name. It does not duplicate the low-level code defining these
primitives. For that reason, the new program can be seen as a combination of symbols rather than a combination
of actions (figure 1B). As all new procedures are constructed from grounded primitives, they become also
grounded by inheritance and are "understandable" by the system when referred to in natural language.
When explaining a new procedure, the user can also refer to old procedures previously defined by himself. In
that way the complexity of the robot's symbolic knowledge increases (fig. 1C).

2.2  Knowledge representation
The internal representation needs to support three functions: (i) formal modeling of NL route descriptions; (ii)
internal route planning for determining whether a given route description is sufficiently specified; and (iii) the
generation of procedures for navigation at execution time. These three functions require different
representations that will be described in turn.
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Figure 2. Route instruction verification. (A) For each procedure there is a prediction function that transforms a state
vector into its future value. The function first determines if the input state satisfied the minimal criteria (“pre-condition”) to
enable the procedure to be executed. An action is executable only if selected elements of the state vector have required
values. If this is the case, the next state is predicted and processed by the prediction function associated with the next
procedure in the instruction. Each action modifies certain components of the state vector, and leaves the other unchanged.
(B) If the predicted state produced by one procedure does not allow the next procedure to be executed, an error handling
process is initiated. (Note: the “initial state” in the text corresponds to the “current state” in the figure).

(i) The utterances of the user are represented using the Discourse Representation Structure (DRS) [9]. This is
then translated into symbols representing procedures or is used to initiate internal functions such as execution of
a command or learning of a series of commands (section 3).
(ii) When the user describes a route as a sequence of actions, it is important for the robot to verify if this
sequence is executable. The approach proposed here associate each procedure with a triplet SiAijSj with
properties similar to productions in SOAR [8]. The state Si is the initial state in which the action Aij can take
place. It is the pre-condition for action Aij. The state Sj is the final state, resulting of the action of Aij applied to
the initial state (figure 2 clarifies the difference between "initial state" and "pre-condition"). For a sequence of
actions to be realisable, the final state of one action must be compatible with the pre-condition of the next one.
To enable this verification, the robot must be able to "imagine" the consequence of an action. For that purpose, a
PREDICTION function is associated with each primitive action, and with each newly created procedure. Figure
2 illustrates the use of the prediction function during verification of the consistency of the sequence of
instructions from the user. It should be noted that this process also helps detecting some of the errors in natural
language processing.
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Figure 3. Procedural knowledge representation. (A) A procedure file contains an ACTION function that causes the physical
displacement of the robot, and a PREDICTION function that calculates the future state of the robot resulting from the action.
The ACTION is used during execution of a command, and the PREDICTION is used for consistency checking during the
learning process. (B) An instruction by the user results in a “New Procedure” file being written. In this file, the actions
components of the requested primitive procedures are combined (in the form of function calls) to create the new ACTION
function, and the prediction components are combined to create the new PREDICTION function. This includes an additional
procedure-specific pre-condition.

(iii) When a robot executes a command, it executes a piece of program code that contains the sequence of
primitive procedures to be executed. Thus, a key part of IBL is the generation of a program code. This is
enabled by the use of a scripting language (section 3). This program is called the ACTION function. Both
ACTION and PREDICTION functions are physically located in the same file that contains all information
specific to a procedure. This is schematised in figure 3.

2.3  Sensory-Motor primitives
Sensory-motor primitives are defined as action-chunks that users usually refer to in unconstrained speech.
These could be low-level procedures referring, for example, to robot wheel turns, distance vectors etc. or they
can be high-level procedures like for example “turn left after the church” or “take the second exit off the
roundabout”.  In natural language route instructions, low-level specification of actions generally does not
appear.  Instead, higher-level procedures are mentioned which will have to be pre-programmed and thus become
the sensory-motor primitives in this context.
In this project we have defined primitives as procedures which take parameters.  For example the action “take
the second right after the post-office”, maps to the primitive turn with parameters second, right, after and post-
office.  It is then a matter of correctly mapping user utterances to the right primitives and passing the right
parameters to them.

3 System Architecture

The architecture is comprised of several functional processing modules (figure 4). These are divided into two
major units: the Dialogue Manager (DM) and the Robot Manager (RM).
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Figure 4. IBL system’s architecture (see text for description).

The Dialogue Manager is a bi-directional interface between the Robot Manager and the user, either converting
speech input into a DRS semantic representation [16], or converting requests from the Robot Manager into
dialogues with the user. Its components are described in [9].
The RM deals with the DM’s output and also with the learning and execution of the commands from the user.
As shown in figure 4 the RM includes two modules: the Process Manager (PM) and the Procedure Execution
Module (PEM). The PEM is responsible for carrying out the commands by the user. It executes procedures
called by the Process Manager module.
The PM transforms the semantic representation produced by the DM into the internal language of the robot that
includes learning and execution functions. Mapping symbols from the DRS onto the corresponding entities in
the internal representation allows converting user requests into robot procedures with the right parameters.
When successful, the PM starts the appropriate process either to execute the requested task by a call to the PEM
or alternatively to build a new user-defined procedure explained by the user. When such mapping is not
successful the RM must inform the DM, which starts a clarification dialogue with the user. Such mapping
process is supported by a new specification language that expresses the relations between the symbols used in
the DRS and the corresponding primitives. Thus to introduce new primitives, it is sufficient for the designer of
an IBL systemto change the grammar of the specification language without having to recompile any of the RM
modules.
The Robot Manager is written using the Python2 scripting language.  C language extensions to Python are also
used in case where speed is a constraint (for example in vision routines). An important feature of scripting
languages such as Python is their ability to write their own code. For instance, a route instruction given by the
user will be saved by the Robot Manager as a Python script that then becomes part of the procedure set available
to the robot for execution or future learning.
It is important that the RM must listen to the DM and try to process its output but at the same time it should be
able to send messages to the DM.  The DM and the RM are designed as two different processes based on
asynchronous communication protocols. These processes run concurrently on different processors. In this way,
the system can handle, at the same time, both the dialogue aspects of an incoming request from the user (i.e.
speech recognition and semantic analysis) and the execution of a previous user request (i.e. check if the request
is in the system knowledge domain, and execute vision-based navigation procedures).
Two aspects are essential with this concurrent-processes approach. The first is to define an appropriate
communication protocol between the two processes. The second is to define an appropriate architecture for the
RM and DM allowing the two processes to both communicate with each other while performing other tasks. At
present the use of context-tagged messages within a communication based on the Open Agent Architecture
(OAA) [13] is evaluated.
Moreover, the system must also dynamically adapt itself to new user requests or to new internal changes, by
being able to temporarily suspend or permanently interrupt some previous activity. For example the user may
want to prevent the robot crashing against a wall and must therefore be able to stop the robot while the robot is

                                                          
2 http://www.python.org
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driving towards the wall. Hence, the importance of a concurrent approach where the system constantly listens to
the user while performing other tasks and at the same time is able to adjust the task if necessary.

4 Corpus Collection and Data Analysis

To evaluate the potential and limitations of IBL, a real-world instructions task is used, that is simple enough to
be realisable, and generic enough to warrant conclusions that hold also for other task domains. A simple route
scenario has been selected, using real speech input and a robot using vision to execute the instructed route (see
4.1 below for more details). The first task in the project is to define the innate actions and symbols in the route
instruction domain. For this reason, a corpus of route descriptions has been collected from students and staff at
the University of Plymouth. In section 4.2 and 4.3 corpus collection and data analysis are presented.

Figure 5. Miniature town in which a robot will navigate according to route instructions given by users. Letters indicate the
destinations and origins of various routes used in the experiment.

4.1  Experimental Environment
The environment is a miniature town covering an area of size 170cm  x 120cm (figure 5). The robot is a
modified RobotFootball robot3 with an 8cm x 8cm base (figure 6A). The robot carries a CCD colour TV
camera4 (628 (H) x 582 (V) pixels) and a TV VHF transmitter. Images are processed by a PC that acquires them
via with a TV capture card5 (an example of such image is shown in figure 6B). The PC  then sends motion
commands by FM radio to the robot. During corpus collection, the PC is also used to record instructions given
by subjects.

                                                          
3 Provided by Merlin Systems (http://www.merlinsystemscorp.com/)
4 Provided by Allthings Sales and Services (http://www.allthings.com.au/)
5 TV Card: Hauppage WinTV GO
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A B

Figure 6 A. Miniature robot (base 8cm x 8cm). B. View from the on-board colour camera

The advantage of a miniature environment is the ability to build a complex route structure in the limited space of
a laboratory. The design is as realistic as possible, to enable subjects to use expressions natural for the outdoor
real-size environment. Buildings have signs taken from real life to indicate given shops or utilities such as the
post-office. However, the environment lacks some elements such as traffic lights that may normally be used in
route instructions. Hence the collected corpus is likely to be more restricted than for outdoor route instructions.
The advantage of using a robot with a remote-brain architecture [7] is that the robot does not require huge on-
board computing and hence can be small, fitting the dimensions of the environment.

4.2  Collection of a corpus of route instructions
To collect linguistic and functional data specific to route learning, 24 subjects were recorded as they gave route
instructions for the robot in the environment. Subjects were divided into three groups of 8. The first two groups
(A and B) used free flow speech, to provide a performance baseline. It was assumed that a robot that can
understand these instructions as well as a human operator would represent the ideal standard. Subjects from
group C were induced in producing shorter utterances by a remote operator taking notes.
The groups A and B were told that the robot was remote-controlled and that, at a later date, a human operator
would use their instructions to drive the robot to its destination. It was specified that the human operator would
be located in another room, seeing only the image from the wireless on-board video camera. This induced
subjects to use a camera-centred point of view relevant for robot procedure primitives and to use expressions
proper for human communication. Subjects were also told to reuse previously defined routes whenever possible,
instead of re-explaining them in detail. Each subject had 6 routes to describe among which 3 were "short" and 3
were "long". The long routes included a short one, so that users could refer to the short one when describing the
long one, instead of re-describing all segments of the short one. This was to reveal the type of expressions used
by users to link taught procedures with primitive ones. Each subject described 6 routes having the same starting
point and six different destinations. Starting points were changed after every two subjects. A total of 144 route
descriptions were collected. For more details about collection and analysis of the corpus see [1]

4.3  Corpus Analysis: The functional vocabulary
The aim of the corpus analysis is to twofold. First, to define the vocabulary used by the users in this application,
in order to tune the speech recognition system for an optimal performance in the task. Secondly, to establish a
list of primitive procedures that users refer to in their instructions. The aim is to pre-program these procedures
so that a direct translation from the natural language to grounded symbols can take place. In principle, if the
robot does not know a primitive procedure, the user could teach it. Hereafter, we report on the functional
analysis of the corpus. The reader interested in the task vocabulary can refer to [1]. The functional vocabulary is
a list of primitive navigation procedures found in route descriptions.
The initial annotation of instructions in terms or procedures, as reported here, is somehow subjective, and
influenced by two considerations. (i) The defined primitives will eventually be produced as C and Python
Programs. It was hoped that only a few generic procedures would have to be written. Therefore, the corpus has
been transcribed into rather general procedures characterised by several parameters (table 2). (ii) An important
issue is knowledge representation. According to the SAS representation discussed in section 2.2, the
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executability of primitives can only be evaluated if their initial and final states are defined. Subjects however
rarely specified explicitly the starting point of an action and sometimes did not define the final state in the same
utterance. Nevertheless, it was assumed that the system would be able to infer the missing information from the
context. Therefore, procedures without initial or final state were considered to be complete, and were annotated
as such. The specifications of primitive procedures are likely to evolve during the project.

Count Primitive Procedures
1 308 MOVE FORWARD UNTIL [(past |over |across) <landmark>]  | [(half_way_of |

end_of) street ] | [ after <number><landmark> [left | right]] | [road_bend]
2 183 TAKE THE [<number>] turn [(left | right)] | [(before | after | at) <landmark>]
3 147  <landmark> IS LOCATED [left | right |ahead] | [(at | next_to | left_of | right_of |

in_front_of | past | behind | on | opposite | near) < landmark >] | [(half_way_of |
end_of | beginning_of | across) street] | [between <landmark> and <landmark>] |
[on <number> turning (left | right)]

4 62 GO  (before | after | to) <landmark>
5 49 GO ROUND ROUNDABOUT [left | right] | [(after | before | at) <landmark>]
6 42 TAKE THE <number> EXIT [(before | after | at) <landmark>]
7 12 FOLLOW KNOWN ROUTE TO <landmark> UNTIL (before | after | at)

<landmark>
8 4 TAKE ROADBEND (left | right)
9 4 STATIONARY TURN [left | right | around] | [at | from <landmark>]
10 2 CROSS ROAD
11 2 TAKE THE ROAD in_front
12 2 GO ROUND <landmark> TO [front | back | left_side | right_side]
13 1 PARK AT <location>
14 1 EXIT [car_park | park]

Table 2. Primitive navigation procedures found in the route descriptions collected from groups A and C. Procedure 3 is
used by most subjects to indicate the last leg of a route, when the goal is in sight.

This analysis methodology differs slightly from the one in [4]. In our analysis, there are no statements
describing landmarks, as these are made part of procedures specifications, and consequently there are also no
actions without reference to landmarks. Even when a subject specified a non-terminated action, such as "keep
going", it was classified as "MOVE FORWARD UNTIL", assuming that a termination point would be inferred
from the next specified action. The list of actions found in the route descriptions of groups A and C is given in
table 2.  It has been shown in [9] that the number of distinct procedures is increasing with the number of
sampled instructions, but at a rate much smaller than the number of distinct words. Here we discover on average
one new procedure for every 38 route instructions, while with words, we discovered in average one new word
for each instruction. New procedures typically are the least frequent in table 2.

5 Discussions

Teaching a route to a robot using natural language is an application of a more general instruction-based learning
methodology. The corpus-based approach described here aims at providing users with the possibility of using
unconstrained speech, whilst creating an efficient natural language processing system using a restricted lexicon.
As mentioned in section 2.3, primitives are quite complex procedures.  Section 4.3 describes how the primitives
where extracted from a corpus recorded by a group of people, mostly students, from various fields of study.
They spoke freely to the robot using human-like expressions and therefore the primitives extracted from what
they said reflect the amount of “knowledge” naive users would expect the robot to have. The level of complexity
of the primitives therefore depends, not only on the nature of the natural language application but also on its
users and their expectations of the robot.  If the subjects of our corpus were robot engineers, for example, and
were told that the robot does not know how to move or turn prior to their route instructions they may have
produced a different corpus from which different primitives would have been extracted.

An important finding in [9] was that functional vocabulary is not closed. Hence, at some point in a robot's life,
the user may have to teach it new primitives. For that purpose, the robot would need to posses an additional set
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of low level primitives, which correspond to lower level robot actions. Examples of such primitive learning are
found in [5] and [14]. With our approach, this would require the collection of a new corpus to determine the
necessary additional primitive procedures. Another solution could lie in an appropriate dialogue management to
suggest a reformulation of the instruction. It is expected that with the corpus-based method used here, the
frequency of such "repair dialogues" will be minimised. An open question is the detection of new functions in
the user's utterance, as the lexicon may not contain the required vocabulary.
The approach to robot control described may be seen as an attempt to integrate the good properties of
Behaviour-based control and classical AI. Behaviour-based control is an effective method for designing low-
level primitives that can cope with real-world uncertainties, and AI has developed effective tools for symbol
manipulation and reasoning (for a more detailed discussion about hybrid systems see for example [10]).
However, the system differs in several ways from both methods. Here, the corpus defines what symbols and
primitives to use. Consequently, some of the primitives are rather complex functions, involving representations
of the environment and planning. These primitives are not always compatible with the representation-less
philosophy of behaviour-based systems. On the AI side, the system does not use the full range of reasoning
capabilities offered by systems such as SOAR. There are no other aims in symbolic processing than verifying
the consistency of instructions, and the construction of new procedure specifications.
Other previous work on verbal communication with robots has mainly focused on issuing commands, i.e.
activating pre-programmed procedures using a limited vocabulary. Only a few research groups have considered
learning, i.e. the stable and reusable acquisition of new procedural knowledge. [6] used textual input into a
simulation of a manipulator with a discrete state and action space. [3] used voice input to teach displacements
within a room and mathematical operations, but with no reusability. In [15] textual input was used to build a
graph representation of spatial knowledge. This system was brittle due to place recognition from odometric data
and use of IR sensors for reactive motion control. Knowledge acquisition was concurrent with navigation, not
prior to it. Whereas in [11], the system could learn new actions through natural language dialogues but only
while the robot was performing them (i.e. it could only learn a new route from A to B while it was actually
moving from A to B and dialoguing with the user).
In the IBL system described here, learning operates purely at the symbolic level; hence it can be done prior to
performance. The ability to predict future states enables to engage in a verification dialogue before execution
errors occur. If environmental conditions change such that an instruction is not valid anymore, this can be
detected from the mismatch between the expected result and the actual one. Learning however is not
autonomous. The system requires interaction with a human user to learn new symbols and their meaning. This
simplifies the design of the robot due to the transfer of part of the cognitive load to the user. Future experiment
will reveal if this approach results in effective and socially acceptable helper robots.
The design of an IBL system requires, as expected, specialists in NL processing and speech recognition, as well
as specialists in artificial vision and robot control. Here we found that significant work was also required in
extracting from the semantic representation of the user's utterance the corresponding robot-executable
procedures. It is hoped that this process will be simplified in the future by using the new specification language
currently developed as part of the project.

6 Conclusions

In this paper, it was noted that domestic robots, which cannot learn from their users will be of limited use. The
Instruction-Based Learning method (IBL) has been presented in the special case of route instructions.
A key task in an IBL system is the translation from Natural Language (NL) instructions to robot-understandable
procedures. The corpus-based approach has been proposed here to optimise such translation. It defines a task
domain specific lexicon and set of primitives. This results in the implementation of a constrained language and
limited task capabilities. However, it is expected that within a given task domain this will maximise the use of
spontaneous speech and NL conversion efficiency. Only 14 primitives have been, but these are complex robotics
procedures, involving visual search and planning. We believe that this is required to ensure efficient
communication with a naive user. But the set probably is not closed. In other words, users at some time are
likely to refer to primitives for which there is not preprogrammed counterpart in the robot's repertoire. It is likely
that the dialogue management will play a key role in handling such situations.
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