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1. INTRODUCTION 

Ada packages [17], Alphard forms [66, 711, CLU clusters [41, 421, and abstype 
declarations in ML [23] all bind identifiers to values. Although there are minor 
variations among these constructs, each allows a list of names to be bound to a 
composite value consisting of “private” type and one or more operations. For 
example, the ML declaration 

abstype complex = real # real 
with create = . . . 
and pius = . . . 
and re = . . . 
andim= ..- 
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binds the identifiers complex, create, plus, re, and im to the components of an 
implementation of complex numbers. The implementation consists of the collec- 
tion defined by the ML expression real # real, meaning the type of pairs of 
reals, and the functions denoted by the code for create, plus, and so on. An 
important aspect of this construct is that access to the representation is limited. 
We cannot apply arbitrary operations on pairs of reals to elements of type 
complex; only the explicitly declared operations may be used. 

We will call a composite value constructed from a set and one or more 
operations, packaged up in a way that limits access, a data algebra. We will 
discuss the typing rules associated with the formation and the use of data algebras 
and observe that data algebras themselves may be given types in a straightforward 
manner. This will allow us to devise a typed programming notation in which 
implementations of abstract data types may be passed as parameters or returned 
as the results of function calls. 

The phrase “abstract data type” sometimes refers to a class of algebras (or 
perhaps an initial algebra) satisfying some specification. For example, the ab- 
stract type stack is sometimes regarded as the class of all algebras satisfying the 
familiar logical formulas axiomatizing push and pop. Associated with this view is 
the tenet that a program must rely only on the data type specification, as opposed 
to properties of a particular implementation. Although this is a valuable guiding 
principle, most programming languages do not contain assertions or their proofs, 
and without this information it is impossible for a compiler to guarantee that a 
program depends only on a data type specification. Since we are primarily 
concerned with properties of the abstract data type declarations used in common 
programming languages, we will focus on the limited form of information hiding 
or “abstraction” provided by conventional type checking rules. 

We can be more specific about how data algebras are defined by considering 
the declaration of complex numbers in more detail. Using an explicitly typed 
ML-like notation, the declaration sketched earlier looks something like this: 

abstype complex = real # real 
with create: real + real + complex = Xx: real. Xy: real. ( X, y ) 
and plus: complex --, complex = 

Xz:real # real. Xw:real # real. ( fst(z) + fst(w), snd(z) + snd(w)) 
and re: complex + real = Xz:real # real.fst(z) 
and im: complex + real = Xz:real # real. snd(z) 

The identifiers complex, create, plus, re, and im are bound to a data algebra whose 
elements are represented as pairs of reals, as specified by the type expression 
real # real. The operations of the data algebra are given by the function expres- 
sions to the right of the equals signs1 Notice that the declared types of the 
operations differ from the types of the implementing functions. For example, re 
is declared to have type complex + real, but the implementing expression has 
type real # real + real. This is because operations are defined using the concrete 
representation of values, but the representation is hidden outside the declaration. 

In the next section, we will discuss the type checking rules associated with 
abstract data type declarations, which are designed to make complex numbers 

1 In most programming languages, function definitions have the form “create(x:real, y:real) = . . .” 
In the example above, we have used explicit lambda abstraction to move the formal parameters from 
the left- to the right-hand sides of the equals signs. 
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“abstract” outside the data algebra definition. In the process, we will give types 
to data algebras. These will be existential types, which were originally developed 
in constructive logic and are closely related to infinite sums (as in category 
theory, for example). In Section 3, we describe a statically typed language SOL. 
This language is a notational variant of Girard’s system F, developed in the 
analysis of constructive logic [21,22], and an extension of Reynolds’ polymorphic 
lambda calculus [62]. An operational semantics of SOL, based on the work of 
Girard and Reynolds, is presented using reduction rules. However, we do not 
address a variety of practical implementation issues. Although the basic calculus 
we use has been known for some time, we believe that the analysis of data 
abstraction using existential types originates with this paper. (A preliminary 
version appeared as [56].) 

The use of SOL as a proof-theoretic tool is based on an analogy between types 
and constructive logic. This analogy gives rise to a large family of typed languages 
and suggests that our analysis of abstract data types applies to more expressive 
languages involving specifications. Since the connection between constructive 
proofs and typed programs does not seem to be well known in the programming 
language community (at least at present), our brief discussion of specifications 
will follow a review of the general analogy in Section 4. Additional SOL program- 
ming examples are given in Section 5. 

The design of SOL suggests new programming languages along the lines of 
Ada, Alphard, CLU, and ML but with richer and more flexible type structures. 
In addition, SOL seems to be a natural “kernel language” for studying the 
semantics of languages with polymorphic functions and abstract data type 
declarations. For this reason, we expect SOL to be useful in future studies of 
current languages. It is clear that SOL provides greater flexibility in the use of 
abstract data types than previous languages, since data algebras may be passed 
as parameters and returned as results. We believe that this is accomplished 
without any compromise in “type security.” However, since we do not have a 
precise characterization of type security, we are unable to show rigorously that 
SOL is secure.’ 

Some languages that are similar to SOL in scope and intent are Pebble [7], 
designed to capture some essential features of Cedar (an extension of Mesa [57]), 
and Kernel Russell, KR, of [28], based on Russell [14, 15, 161. Martin-Lof’s 
constructive type theory [46] and the calculus of constructions [ll] are farther 
from programming language syntax but share many properties of SOL. Some 
features of Martin-Lof’s system have been incorporated into the Standard ML 
module design [44, 541, which was formulated after the work described here was 
completed. We will compare SOL with some of these languages in Section 3.8. 

2. TYPING RULES FOR ABSTRACT DATA TYPE DECLARATIONS 

The basic typing rules associated with abstract data type declarations do not 
differ much from language to language. To avoid the unnecessary complication 
of discussing a variety of syntactic forms, we describe abstract data types using 
the syntax we will adopt in SOL. Although this syntax was chosen to resemble 

’ Research begun after this paper was written has shed some light on the type security of SOL. See 

[52] and [55] for further discussion. 
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common languages, there is one novel aspect that leads to additional flexibility: 
We separate the names bound by a declaration from the data algebra they come 
to denote. For example, the complex number example is written as follows: 

abstype complex with 
create: real --, real * complex, 
plus: complex + complex, 
re: complex + real, 
im: complex + real 

is 
pack real A real 

Xx: real.Xy:real. (1c, y ) 
Xz:real A real.hw:real A real.(fst(z) + fst(lo), snd(z) + snd(w)) 
Xzreal A real.fst(z) 
Xz:real A real.snd(z) to 3 t.[ (real + real --$ t) A (t + t) A (t + real) A (t + real)], 

where the expression beginning pack and running to the end of the example is 
considered to be the definition of the data algebra. (In SOL, we write real A real 
for the type of pairs of reals. When parentheses are omitted, the connective A 
has higher precedence than +-.) This syntax is designed to allow implementations 
of abstract data types (data algebras) to be defined using expressions of any form 
and to emphasize the view that abstract data type declarations commonly 
combine two separable actions, defining a data algebra and binding identifiers to 
its components. 

The SOL declaration of an abstract data type t with operations x1, . . . , X, has 
the general form 

abstype t with x1: u,, . . . , x,: CT,, is M in N, 

where ul, . . . . a, are the types of the operations and M is a data algebra 
expression. As in the complex number example above, the type identifier t often 
appears in the types of operations x1, . . . , x,. The scope of the declaration is N. 

The simplest data algebra expressions in SOL are those of the form 

pack TM, . -. M,, to 3t.u 

where 7 is a type expression, M,, . . . , M,, are “ordinary” expressions (denoting 
values of type r, or functions, for example) and 3 t.a is an “existential type” 
describing the way that the data algebra may be used. The language SOL also 
allows more general forms of data algebra expressions, which we will get to later 
on. There are three typing rules associated with abstype. 

It is easy to see that a declaration 

abstypetwithx,:al,...,x,:a, 
is pack 7M1 . . . Mk to 3t.a 
in N 

involving a basic data algebra expression only makes sense if k = n (so that each 
operation gets an implementation) and the types of Ml, . . . , Mk match the 
declared types of the operations x1, . . . , x, in some appropriate way. The matching 
rule in SOL is that the type of Mi must be [T/t ]~i, the result of substituting T for 
tin ui (with appropriate renaming of bound type variables in ui). To see how this 
works in practice, look back at the complex number declaration. The declared 
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type of the first operation create is real + real + complex, whereas the type of 
the implementing function expression is real + real + (real A real). The matching 
rule is satisfied in this case because the type of the implementing code may be 
obtained by substituting real A real for complex in the declared type real + real 
+ complex. 

We can recast the matching rule using the existential types we have associated 
with data algebra expressions. An appropriate type for a data algebra is an 
expression that specifies how the operations may be used, without describing the 
type used to represent values. If each Mi has type [~/t]ui, then we say that 

pack 7M1 . . . M,,to 3t.al A . . . A u, 

has type 3t.ul A . . . A un. This type may be read “there exists a type t with 
operations of types u1 and . . . and bn.” The operator 3 binds the type variable t 
in 3 t.a, so 3 t.u = 3 s.[s/t ]a when s does not occur in u. Existential types provide 
just enough information to verify the matching condition stated above, without 
providing any information about the representation of the carrier or the algo- 
rithms used to implement the operations. The matching rule for abstype may 
now be stated. 

(AB.l) In abstype t with x1: ul, . . . , x,: a, is M in N, the data algebra 
expression M must have type 3 t.ul A . - - A a,. 

Although it may seem unnecessarily verbose to write the type of pack - . . to 
. . . as part of the expression, this is needed to guarantee that the type is unique. 
Without the type designation, an expression like pack TM could have many 
types. For example, if the type of M is 7 + 7, then pack TM might have types 
3 t.t -+ t, 3 t.t += 7, 3 t.7 -+ t, and 3 t.7 + 7. To avoid this, we have included the 
intended type of the whole expression as part of the syntax. Something equivalent 
to this is done in most other languages. In CLU, for example, types are determined 
using the keyword cvt, which specifies which occurrences of the representation 
type are to be viewed as abstract. ML, as documented in [23], uses keywords abs 
and rep, whereas later versions [50] use type constructors and pattern matching. 

An important constraint in abstract type declarations is that only the explicitly 
declared operations may be applied to elements of the type [58]. In SOL, this 
constraint is formulated as follows: 

(AB.2) In abstype t with x1: ul,. . . , x ,, : u,, is M in N, if y is any free identifier 
in N different from x1, . . . , x,, then t must not appear free in the type of y. 

In addition to accomplishing the goals put forth in [58], this condition is easily 
seen to be a natural scoping rule for type identifiers. We can see why (AB.2) 
makes sense and what kind of expressions it prevents by considering the following 
example. 

let f = Xx: stack . . . in 
abstype stack with empty : stack, 

push : int A stack + stack, 
pop : stack + int A stack 

is . . . 
in f (empty) 

end 
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In this program fragment, the declaration of function f specifies a formal 
parameter x:stack, and so the domain of f is some type called stack. For this 
reason, the application off to the empty stack might seem sensible at first glance. 
However, notice that since the name stack in the declaration off is outside the 
scope of the stack declaration shown, the meaning of stack in the type off is 
determined by some outer declaration in the full program. Therefore, the iden- 
tifier stack in the type off refers to a different type from the identifier stack in 
the type of empty. Semantically, we have a type mismatch. Rule (AB.2) prohibits 
exactly this kind of program since the identifier f is free in the scope of the 
abstype declaration, but stack occurs free (unbound) in the type off. Note that 
rule (AB.2) mentions only free occurrences of type names. This is because 
SOL has types with bound variables, and the names of bound variables are 
unimportant. 

Since SOL abstype declarations are local to a specific scope, rather than 
global, we also need to consider whether the representation of a data type should 
be accessible outside the scope of a declaration. The designers of ML, another 
language with local abstype declarations, decided that it should not (see [23], 
p. 56). In our notation and terminology, the ML restriction is 

(AB.3) In abstype t with x1: ul, . . . , xn: a, is M in N, the type variable t 
must not be free in the type of N. 

One way for t to appear free in the type of N is for N to be one of the operations 
of the abstract type. For example, if t appears free in ul, then (AB.3) will prohibit 
the expression 

abstype t with x, : o,, . . . , x,: (r, is M in x1 

which exports the first operation outside the scope of the declaration. (If t does 
not appear in the type of x1, then this expression is allowed.) In designing 
modules for Standard ML, MacQueen has argued that this restriction is too 
strong [44, 451. If programs are composed of sets of modules (instead of being 
block structured, like SOL terms) then it makes sense to use the constituents of 
a data algebra defined in one module to construct a related data algebra in 
another module. However, this really seems to be an objection to block-structured 
programs and not a criticism of abstype as a means of providing data abstraction. 
In fact, there are several good reasons to adopt rule (AB.3) in SOL. 

One justification for (AB.3) is that SOL type checking becomes algorithmically 
intractable without it. In SOL, we consider any expression of the correct type a 
data algebra expression. One useful example not allowed in many conventional 
languages is the conditional expression. If both 

pack TM, . . . M, to 3 t.o 

and 

pack pP, a -. P, to 3 t.o 

are data algebra expressions of the same existential type, then 

if B then pack TM, . . . M, to 3 t.a 
else pack pP, I . . P, to 3 t.u 
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is a data algebra expression of SOL with type 3 t.a. Conditional algebra expres- 
sions are useful for selecting between several alternative implementations of the 
same abstract type. For example, a program using matrices may choose between 
sparse or dense matrix implementations using a conditional data algebra expres- 
sion inside an abstype declaration. Without (AB.3), the type of an abstype 
expression with a data algebra conditional such as 

abstype t with x1: t, . . . , xn: u, 
isifBthen(pack7M1 e-e M,toilt.(r) 

else (pack pP1 . . . P, to 3 t.u) 
in x1 

may depend on whether the conditional test is true or false. (Specifically, the 
meaning of the expression above is either iVll or PI, depending on B). Thus, 
without (AB.3), we cannot type check expressions with conditional data algebra 
expressions at “compile time,” that is, without computing the values of arbitrary 
tests. 

Another way of describing this situation is to consider the form of type 
expression we would need if we wanted to give the expression above a type 
without evaluating B. Since the type of the expression actually depends on the 
value of B, we would have to mention B in the type. This approach is used in 
some languages (notably Martin-Lof’s intuitionistic type theory), but it intro- 
duces ordinary value expressions into types. Consequently, type equality depends 
on equality of ordinary expressions. Some of the simplicity of SOL is due to the 
separation of type expressions from “ordinary” expressions, and considerable 
complication would arise from giving this up. 

Finally, the termination of all recursion-free programs seems to fail if we drop 
(AB.3). In other words, there is a roundabout way of writing programs that do 
not halt on any input, without using any recursive declarations or iterative 
constructs. This is a complex issue whose full explanation is beyond the scope of 
this paper. The reader is referred to [lo], [29], [49], and [54] for further discussion. 
Putting all of these reasons together, it seems that dropping (AB.3) would change 
the nature of SOL quite drastically. Therefore, we leave the study of abstype 
without (AB.3) to future research. 

With rule (AB.3) in place, we can allow very general computation with data 
algebras. In addition to conditional data algebra expressions, SOL allows data 
algebra parameters. An example that illustrates their use is the general tree 
search routine given in Section 2.5. The usual algorithms for depth-first search 
and breadth-first search may be written so that they are virtually identical, 
except that depth-first search uses a stack and breadth-first search uses a queue. 
The general tree-search algorithm in Section 2.6 is based on this idea, using a 
formal parameter in place of a stack or queue. If a stack data algebra is supplied 
as an actual parameter, then the algorithm performs depth-first search. Similarly 
a queue parameter produces breadth-first search. Additional structures like 
priority queues may also be passed as actual parameters, resulting in “best-first” 
search algorithms. 

Data algebra parameters are allowed in SOL simply because the typing rules 
do not prevent them. If z is a variable with type 3 t.al A . . . A IS,,, then 

abstype t with x1: (Jo, . . . , x,: U, is z in N 
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is a well-typed expression of SOL. Since SOL allows parameters of all types, 
there is nothing to prevent the data algebra z from being a formal parameter. By 
typing data algebra expressions and treating all types in SOL in the same way, 
we allow conditional data algebra expressions, data algebra parameters, and many 
other useful kinds of computation on data algebras. 

The next section presents the language SOL in full. To emphasize our belief 
that SOL abstype captures the “essence” of data abstraction, we have described 
the construct as if we had designed it for this purpose. However, we emphasize 
again that SOL is not our invention at all; SOL with existential types was 
invented by Girard as a proof-theoretic tool [22], and SOL without existential 
types was developed independently by Reynolds as a model of polymorphism 
[62]. The purpose of our paper is to explain that existential types provide a 
paradigm example of data type declarations and to suggest some advantages of 
this point of view. 

3. THE TYPED LANGUAGE SOL 

We show how implementations of abstract data types can be typed and passed 
as function parameters or results by describing the functional language SOL. 
Although SOL is an applicative language, we believe that this treatment of data 
algebras also pertains to imperative languages. This belief is based on the general 
similarity between binding constructs of functional and imperative languages 
and is supported by previous research linking lambda calculus and programming 
languages (e.g., [36, 37, 631). 

There are two classes of expressions in SOL: type expressions and terms. In 
contrast to more complicated languages such as Pebble [7], KR [28], Martin- 
Lof’s constructive type theory [46], and the calculus of constructions [ 111, types 
may appear in terms, but terms do not appear in type expressions. The type 
expressions are defined by the following abstract syntax 

u::= tlc(u+-7lu A Tlcr v T(vt.u~3t.a. 

In our presentation of SOL, we use two sorts of variables, type variables r, s, 
t . . and ordinary variables X, y, z, . . . . In the syntax above, t may be any type 
iariable and c any type constant. Some possible type constants are int and bool, 
which we often use in examples. Intuitively, u + r is the type of functions from 
u to r, an element of the product type u A T is a pair with one component 
from u and the other from 7, and an element of the disjoint union or tagged sum 
type u V 7 is an element of CT or 7. 

The two remaining forms involve V and 3, which bind type variables in type 
expressions. The universal type V t.u is a type of polymorphic functions and 
elements of 3 t.u are data algebras. Free and bound variables in type expressions 
are determined precisely using a straightforward inductive definition, with V 
binding t in V t.u and 3 binding t in 3 t.u. Since t is bound in V t.u and 3 t.u, we 
consider V t.u = Vs.[s/t]u and 3 t.u = 3 s.[s/t]u, provided s does not occur free in 
U. (Recall that [s/t]u is the result of substituting s for free occurrences of t in u, 
with bound type variables renamed to avoid capture.) 

In SOL, as in most typed programming languages, the type of an expression 
depends on the types given to its free variables. We incorporate “context” into 
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the typing rules using type assignments, which are functions from ordinary 
variables to type expressions. For each type assignment A, we define a partial 
function TypeA from expressions to types. Intuitively, TypeA (M) = u means that 
the type of M is u, given the assignment A of types to variables that may appear 
free in M. Each partial function Type* is defined by a set of deduction rules of 
the form 

TypeA = u, . . . 

Typea = T 

meaning that if the antecedents hold, then the value of TypeA at N is defined to 
be 7. The conditions on TypeA may mention other type assignments if N 
binds variables that occur in subterms. 

A variable of any type is a term. Formally, we have the axiom 

TyPeA = A(x) 

saying that a variable x has whatever type it is given. We also allow term 
constants, provided that each constant is assigned a type that does not contain 
free type variables. One particularly useful constant is the polymorphic condi- 
tional cond, which will be discussed after V-types are introduced. 

3.1 Functions and Let 

In SOL, we take functions of a single argument as basic and introduce functions 
of several arguments as a derived form. A function expression explicitly declares 
the type of the formal parameter. Consequently, the type of the function body is 
determined in a typing context that incorporates the formal parameter type. If 
A is a type assignment, then A [X : g] is a type assignment with 

(Ab:al)(~) = ltyj 
if y is the same variable as x 

otherwise. 

The deduction rules for function abstraction and application are 

‘I’nx~[,:,~(M) = 7 
TypeA(Xx:a.M) = u + 7 

and 

TypeA = (T + T, TypeA = u 
TypeA = 7 

Thus a typed lambda expression has a functional type and may be applied to any 
argument of the correct type. An example function expression is the lambda 
expression 

Xx:int. x + 1 

for the successor function on integers. 
The semantics of SOL is described using a set of operational reduction rules. 

The reduction rules use substitution, and, therefore, require the ability to rename 
bound variables. For functions, we rename bound variables according to the 
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equational axiom 

xx : u.M = xy : u.[ y/x]M, y not free in M 

The operational semantics of function definition and application are captured by 
the reduction rule 

(Xx : a.M)N + [N/x]M, 

where we assume that substitution [N/x]M includes renaming of bound variables 
to avoid capture. (Technically speaking, the collection of SOL reduction rules 
defines a relation on equivalence classes of SOL terms, where equivalence is 
defined by the collection of all SOL axioms for renaming bound variables. See, 
e.g., [2] for further discussion). Intuitively, the reduction rule above says that the 
expression (XX: a.M)N may be evaluated by substituting the argument N for 
each free occurrence of the variable x in M. For example, 

(XX: int. x + 2)5 + 5 + 2. 

Some readers may recognize this mechanism as the “copy rule” of ALGOL 60. 
We write +z+ for the congruent and transitive closure of +. 

We introduce let declarations by the abbreviation 

let x = M in N :: = (Xx : a.N)M, 

where c = TypeA( Note that since the assignment A of types to variables is 
determined by context, the definition of let depends on the context in which it 
is used. An alternative would be to write let x: u = M in N, but since u is always 
uniquely determined, the more succinct let notation seems preferable. 

The typing rules and operational semantics for let are inherited directly 
from X. For example, we have 

let f = Xn:int. x + 3 in f(f(2)) * (2 + 3) + 3. 

A similar declaration is the ML recursive declaration 

letrec f = M in N 

which declares f to be a recursive function with body M. (If f occurs in M, then 
this refers recursively to the function being defined; occurrences of f in M are 
bound by letrec.) Although we use letrec in programming examples, it is 
technically useful to define pure SOL as a language without recursion. This pure 
language has simpler theoretical properties, making it easier to study the type 
structure of SOL. 

3.2 Products and Sums 

A simple kind of record type is the unlabeled pair. In SOL, we use A for pair or 
product types. Product types have associated pairing and projection functions as 
follows: 

Typea = u, Type,(N) = 7 

TypeA((M, N)) = u A T 

TypeA = u A 7 

TypeA ( fst M) = u, TypeA (snd M) = 7 
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The operational semantics of pairing and projection are given by the reduction 
rules 

fst(M, N) * M, snd(M, N) + N. 

For example, 

let p = (1, 2) in f&(p) + 1. 

We can introduce multivariable lambda abstraction as an abbreviation involving 
products. Some metanotation makes this easier to describe. We write f’y as an 
abbreviation for f ( f . . . ( fy) . . . ) with i occurrences off. As a convenience, we 
consider f Oy = y. We also write yci)n for the expression fst(sndi-‘y) if 1 5 i < n 
and snd”-‘y if i = n. Thus, if y = (x1, (x2, . . . , (x,-~, z,) . . . ) ), we have 
y(i) n =>> xi. Using these abbreviations, we define multiargument lambda abstrac- 
tion by 

X(x1: Ul,. . . ) xn: un ).M::= xy : Ul A ( * - * A un * * *).[ Y(l)“, . . . ) y(yX1,. . . , x,]M 

For example, X ( x : u, y : T ) .M is an abbreviation for 

AZ: u A T. [ fst z, snd z/x, y]M. 

We will also use the abbreviation 

let f(q: (rl, . . . , x,: a,) = M in N ::= let f = X (x1: ul, . . . , x,: a,).M in N 

which allows us to declare functions using a more fhmiliar syntax. 
Sum types V have injection functions and a case expression. The SOL case 

statement is similar to the tagcase statement of CLU, for example [41]. 

TypeA (M) = u 

TypeA (inleft M to u V T) = u V T, Typea (inright M to 7 V a) = 7 V u 

TwA(M) = u V 7, TwA~,:,l(N) = P, Tme,+:,1(P) = P 

TypeA (case M left x : u. N right y : 7.P end) = p 

In the expression above, case binds x in N and y in P. As with X-binding, we 
equate case expressions that differ only in the names of bound variables. 

case M left x: u.N right y: 7.P end 
= case M left u: a.[u/x]N right u: ~.[u/y]P end, 

provided u is not free in N and u is not free in P. 
It is possible to replace the bindings in case expressions with X-bindings as 

P suggested in [63], making case a constant instead of a binding operator. However, 
the syntax above seems slightly easier to read. 

The reduction rules for sums are 

case (inleft M to 0 V T) left x: a.N right y: T.P end - [M/x]N 
case (inright M to (r V T) left x: u.N right Y:T.P end G. [M/y]P 

For example, 

let z = inleft 3 to int V boo1 in 
case z left z : int.x right y : bool.if y then 1 else 0 end 

=>>3 
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Note that the type of this case statement remains int if z is declared to be 
inright of a Boolean instead of inleft of an integer. 

3.3 Polymorphism 

Intuitively, Xt.M is a polymorphic expression that can be “instantiated” to values 
of various types. In an Ada-like syntax, the term Xt.M would be written 

generic (type t )A4 

Polymorphic expressions are instantiated using type application, which we will 
write using braces 1,) to distinguish it from an ordinary function application. 
If M has type V t.a, then the type of M(T ) is [7/t ]u. The Ada-like syntax for 
M(T) is 

new M(7). 

The formal definitions are 

TypeA = 7 

TypeA(Xt.M) = Vt.7 

t not free in A (CC) for any x free in M 

TypeA = V t.a 

Tme~QWl) = [Tltb 
The restriction on the bound variable t in Xt.M eliminates nonsensical expres- 

sions like XX: t.Xt.x, where it is not clear whether t is free or bound. (See [20] for 
further discussion.) Note that unlike many programming languages, a SOL 
polymorphic function may be instantiated using any type expression whatsoever, 
regardless of whether its value could be determined at compile time. 

One use of V-types is in the polymorphic conditional cond. The constant cond 
has type V t.bool + t + t + t. We often use the abbreviation 

if M then N else P ::= cond (r)MNP, 

where Typea = TypeA = T. 
Polymorphic type binding may be used to define polymorphic functions such 

as the polymorphic maximum function. The type of a function Max which, 
given any type t and order relation T: t A t + boo& finds the maximum of a pair 
of t’s is 

Max: Vt[(t A t +- bool) + (t A t) + t]. 

A SOL expression for the polymorphic maximum function is 

Max ::= At. Xr:t A t + bool. Xp:t A t.if r(p) then fst(p) else snd(p) 

If r: T A T + boo1 is an order relation on type 7, then 

Max:bb-(X, Y> 

finds the maximum of a pair (x, y ) of elements of type 7. While Max is written 
with the expectation that the actual parameter r will be an order relation, the 
SOL type checking rules cannot ensure this. 
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Intuitive Semantics and Reduction Rules for Xt.M. The intuitive meaning of 
ht.M is the infinite product of all meanings of A4 as t varies over all types. In the 
next section, we see that abstract data type declarations involve infinite sums. 
To see the similarity between V-types and infinite products, we review the 
general notion of product, as ,used in category theory [l, 27, 431. There are two 
parts to the definition: product types (corresponding to product objects in 
categories) and product elements (corresponding to product arrows). Given a 
collection S of types, the product type n S has the property that for each s E S 
there is a projection function proj s from n S to s. Furthermore, given any 
family F = ( fs] of elements indexed by S with fs E s, there is a unique product 
element fl F with the property that 

proj s fl F = fs. 

Uniqueness of products means that if proj s n F = g, for all s E S, then 
nF=flG. 

The correspondence with SOL is that we can think of a type expression u and 
type variable t as defining a collection of types, namely the collection S of all 
substitution instances [T/t]u of CJ. If A4 is a term with t not free in the type of 
any free ordinary variable, then M and t determine a collection of substitution 
instances [T/t]M. It is easy to show that if t is not free in the type of any 
free variable of M and TypeA = u, then TypeA ([T/t ]M) = [T/t ]u. By letting 
f [T/t10 = [T/t JM, we may view the collection of substitution instances of M as a 
family F = 1 fs) indexed by elements of S. Using this indexing of instances, we 
may regard V t.a as a product type n S and Xt.M as a product element JJ F, with 
projection accomplished by type application. The product axiom above leads to 
the reduction rule 

(ht.M)bl * b/tlM 
where we assume that bound variables are renamed in [r/t]M to avoid capture 
of free type variables in 7. Since X binds type variables, we also have the renaming 
rule 

Xt.M = Xs.[s/t]M, s not free in Xt.M. 

There is a third “extensionality” rule for X-abstraction over types, stemming 
from the uniqueness of products, but we are not concerned with it in this paper 
(primarily because it does not seem to be a part of ordinary programming language 
implementation and because it complicates the Static Typing Theorem in 
Section 3.7). 

3.4 Data Abstraction and Existential Types 

Data algebras, or concrete representations of abstract data types, are elements 
of existential types. The basic rule for data algebra expressions is this. 

TypeA = b/tb 
TypeA (pack TM to 3 t.a) = 3 t.a * 

The more general form described in Section 2 may be introduced as the following 
abbreviation: 

pack TM, . ..Mnto3t.~.:=pack7(M1,(...,Mn) ... ))toElt.u, 
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where 

u= Ul A (*.. A un . ..). 

Polymorphic data algebras may be written in Ada, Alphard, CLU, and ML. 
Since SOL has X-binding of types, we can also write polymorphic representations 
in SOL. For example, let t-stuck be a representation of stacks of elements of t, 

say, 

t-stuck ::= pack (int A array of t ) empty push pop 
to 3s.~ A (t A s + s) A (s + t A s), 

where empty represents the empty stack, and push and pop are functions 
implementing the usual push and pop operations. Then the expression 

stack ::= ht.t-stack 

with type 

stuck: Vt. 3s.[s A (t A s + s) A (s - t A s)] 

is a polymorphic implementation of stacks. We could also define a polymorphic 
implementation of queues 

queue: Vt. 3q.[q A (t A q + q) A (q + t A q)] 

similarly. Note that stuck and queue have the same existential type, reflecting 
the fact that as algebras, they have the same signature. 

Abstract data type declarations are formed according to the rule 

TypeA = 3 t.u, Tme,+,] 09 = P 
TypeA(abstype s with x: g is M in N) = p ’ 

provided t is not free in p or the type A(y) of any free y # x occurring in N. 

This definition of abstype provides all the type constraints discussed in 
Section 2. Condition (AB.l) is included in the assumption TypeA (M) = 3 t.a, 
whereas (AB.2) and (AB.3) follow from the restrictions on free occurrences of t. 
As mentioned earlier, the only restriction on data algebras is that they have the 
correct type. The more general form is defined by the abbreviation 

abstype t with x1: cl, . . . , x,: u, is M in N 

::= abstypetwithy:a, A (... A mn -..) 

is M in [y(l)*, . . . , y’“)“/x,, . . . , x,]N, 

where y(l)” is as defined in Section 3.2. 
One advantage of combining polymorphism with data abstraction is that we 

can use the polymorphic representation of stacks to declare integer stacks. The 
expression 

abstype int-stk with empty : int-stk, 
push: int A int-stk + int-stk, 
pop: int-stk + int A int-stk 

is stack (int) 
in N 
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declares a type of integer stacks with three operations. Note that the names for 
the stack operations are local to N, rather than defined globally by stuck. 

3.5 Programming with Data Algebras 

One feature of SOL is that a program may select one of several data type 
implementations at run time. For example, a parser that uses a symbol table 
could be parameterized by the symbol table implementation and passed either a 
hash table or binary tree implementation according to conditions. This ability to 
manipulate data algebras makes a common feature of file systems and linkage 
editors an explicit part of SOL. For example, many of the functions of the CLU 
library, a design for handling multiple implementations [41], may be accom- 
plished directly by programs. 

In allowing programs to select representations, we also allow programs to 
choose among data types that have the same signature. This flexibility accrues 
from the fact that SOL types are signatures, rather than complete data type 
specifications: Since we only check signature information, data types that have 
the same signature have implementations of the same existential type. This is 
used to advantage in the tree-search algorithm of Figure 1. It may also be argued 
that this points out a deficiency in the SOL typing discipline. In a language with 
specifications as types, type checking could guarantee that every actual parameter 
to a function is an implementation of a stack, rather than just an implementation 
with a designated element and two binary operations. Languages with this 
capability will be discussed briefly in Section 4.4. 

The common algorithm for depth-first search uses a stack, whereas the usual 
approach to breadth-first search uses a queue. Since stack and queue implemen- 
tations have the same SOL type, the program fragment in Figure 1 declares a 
tree-search function with a data algebra parameter instead of a stack or queue. 
If a stack is passed as a parameter, the function does depth-first search, while a 
queue parameter produces breadth-first. In addition, other data algebras, such as 
priority queues, could be passed as parameters. A priority queue produces a “best- 
first” search; the search proceeds along paths that the priority queue deems 
“best.” 

The three arguments to the function search are a node start in a labeled tree, 
a label goal to search for, and the data algebra parameter struct. We assume that 
one tree node is labeled with the goal, so there is no error test. The result of a 
call to search is the first node reached, starting from start, whose label matches 
goal. The tree structure is declared at the top of the program fragment to make 
the types of the tree functions explicit. The tree has a root, each node has a label 
and is either a leaf or has two descendants. The function is-leaf? tests whether 
a node is a leaf, while left and right return the left and right descendants of any 
nonleaf. 

3.6 Reduction Rules and intuitive Semantics of Existential Types 

Intuitively, the meaning of the abstype expression 

abstype t with x: CT is (pack TM to 3 t.a) in N 

is the meaning of N in an environment where t is bound to 7, and x to M. 
Operationally, we can evaluate abstype expressions using the reduction rule 

abstype t with x: (T is (pack TM to 3 t.a) in N + [M/x][~/t]lV, 
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I* Tree data type declaration ‘1 

abstype t with root:t, labei:t-string, isleaf?:t-bool, 

left:t-t, right:t-t is tree 

in 

I’ Search returns first node reached from sfurr with label(node) = goal. 

The structure parameter may be a stack, queue, priority queue, etc. */ 

let search(start:t, goahstring, strnct: VEls[s/\(tAs-s)r\(s-Us)]) = 

abstype s with empty:s, insert:t/\s-s, delete:s-tAs 

is stnlct {t} 

in 

1’ function to select next node; also returns updated structure ‘/ 

let next(node:t, st:s) = 

if isleaf?(node) then delete(st) 

else delete(insert(left(node), insert(right(node),st))) 

in 

/* recursive function jind calls near until goal reached +/ 

letrec find(node:t, st:s) = 

if label(node)=goal then node else find(next(node, St)) 

in 

/* callfind to reach node with label(node)=goaL*/ 

find(start, empty) 

end 

end 

end 

in 

. . /* program using search function *I 

end 

end 

Fig. 1. Program with search function directed by data algebra 
parameter. 

where substitution includes renaming of bound variables as usual. (It is not too 
hard to prove that the typing rules of SOL guarantee that [iV/x][~/t]N is well- 
typed.) Since abstype binds variables, we also have the renaming equivalence 

abstype t with x: IJ is M in N = abstype s with y: [s/t]a is M in [ y/x][s/t]N, 

provided s is not free in u, and neither s nor y is free in N. 
Existential types are closely related to infinite sums. We can see the relation- 

ship by reviewing the categorical definition of infinite sum [ 1,27,43]. The general 
definition of sum includes sum types (corresponding to sum objects in categories) 
and sum functions (corresponding to sum arrows). Given a collection S of types, 
the sum type C S has the property that for each s E S there is an injection 
function inj s from s to C S. Furthermore, given any fixed type r and family 
F = ( fsj of functions indexed by S, with fs: s + r, there is a unique sum 
function C F: 2 S + r with the property that 

C F(inj sx) = fsx. 
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Uniqueness of sums means that if 2 F(inj sx) = g, for all s E S, then 
CF=CG. 

The correspondence with sums is similar to the correspondence between 
polymorphism and products. It will be easier to see how abstype gives us sums 
if, for any term, M with TypeA = u + p and t not free in p, we adopt the 
abbreviation 

1 t.M :: = AZ : ( 3 t.a). abstype t with x : (T is z in Mx 

where x and z are fresh variables. To see how C t.M is a sum function, recall 
from the discussion of V-types that a type expression u and type variable t define 
a collection of types, namely, the collection of substitution instances [~/t]a. 
Similarly, a term M and type variable t define a family F of substitution instances 
[T/t]M. As before, we index elements of F by types in S by associating 
[T/t]M with [T/t]a. If M has type c + p for some p that does not have t free, 
then F is a family of functions from types in S to a fixed p. We may now 
regard the type 3 t.a as the sum type x S, the term C t.M as the sum element 
2 F, and Ay:s.(pack sy to 3 t.a) as the injection function inj s. The sum axiom 
holds in SOL, since 

(2 04) (pack TY to 3 t.a) 
::= [AZ: 3 ta. abstype t with x : (r is z in Mx)]pack my to 3 t.o 

+z- abstype t with x: u is (pack my to 3 La) in Mx) 
--3> [T/t]My. 

It is interesting to compare abstype with case since V-types with inleft, inright, 
and case correspond to finite categorical sums. Essentially, abstype is an 
infinitary version of case. 

As an aside, we note that the binding construct abstype may be replaced by a 
constant sum. This treatment of abstype points out that the binding aspects of 
abstype are essentially X binding. If N is a term with type u + p, and t is not 
free in p, then both Xt.N and C t.N are well typed. Therefore, it suffices to have 
a function sum 3t.a p that maps Xt.N:Vt.[a + p] to C t.N: (3 t.a) + p. 
Essentially, this means sum 3 t.u p must satisfy the equation 

(sum 3t.a px)(pack my to 3t.a) = x(~)y 

for any x, y of the appropriate types. In the version of SOL with sum as basic, 
we use this equation, read from left to right, as the defining reduction rule for 
sum. Given sum, both C and abstype may be defined by 

C t.M ::= sum 3 t.u p Xt.M, 
abstype t with x: u is N in M ::= (C th: a.M)N. 

The reduction rules for C and abstype follow the reduction rules for sum. From 
a theoretical point of view, it would probably be simpler to define SOL using 
sum instead of C or abstype, since this reduces the number of binding operators 
in the language. However, for expository purposes, it makes sense to take abstype 
as primitive, since this makes the connection with data abstraction more readily 
apparent. The difference is really inessential since any one of C, abstype, and 
sum may be used to define the other two (using other constructs of the language). 
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3.7 Properties of SOL 

Two important typing properties of SOL can be proved as theorems. The first 
theorem may be interpreted as saying that SOL typing prevents run-time type 
errors. Technically, the Type Preservation Theorem says that if we begin with a 
well-typed term (expression or program) and evaluate or “run” it using the 
reduction rules given, then at every step of the way we have a well-typed term 
of the same type. This implies that if a term M contains a function f of type 
int + int, say, then evaluation will never produce an expression containing f 
applied to a Boolean argument, since this would not be well typed. Therefore, 
although evaluating a term M may rearrange it dramatically, evaluation will only 
produce terms in which f is applied to integer arguments. 

TYPE PRESERVATION THEOREM. Let M be a term of SOL with TypeA (M) = U. 
If M + N, then TypeA (N) = CT. 

A similar theorem for a simpler language without polymorphism appears in [ 121, 
where it is called the Subject Reduction Theorem. The proof uses induction on 
reduction paths and is essentially straightforward. 

Another important theorem is a formal statement of the fact that type infor- 
mation may be discarded at run time. More specifically, it is clear from the 
language definition that SOL type checking can be done efficiently without 
executing programs (i.e., without referring to the operational semantics of the 
language). The Static Typing Theorem shows that once the type of a term has 
been calculated, the term may be evaluated (or “run”) without further examining 
types. This is stated formally by comparing the operational reduction rules given 
in the language definition with a similar set of reduction rules on untyped terms. 

Given a term M, we let Erase(M) denote the untyped expression produced by 
erasing all type information from M. The function Erase has the simple inductive 
definition 

Erase(x) = x 
Erase(c) = c 
Eru.se( Xx : a.M) = Xx.Eruse(M) 
Eruse(MN) = Erase(M)Er 
Eruse( (M, N)) = (Erase(M), Erase(N)) 
Erase ( fst M) = fst Erase(M) 
Erme(snd M) = snd Erase(M) 
Erase(inleft M to u V 7) = inleft Erase(M) 
Erase( inright M to u V 7) = inright Erase(M) 
Erme(case M left x : a.N right y : 7.P end) 

= case Erase(M) left x.Eruse(N) right y.Eruse(P) end 
Eruse(Xt.M) = Erase(M) 
Eruse(M(T)) = Erase(M) 
Era.se(pack pM to 3t.u) = Erase(M) 
Erme(abstype t with x : u is M in N) = let x = Erase(M) in Erase(N) 

We define the untyped reduction relation jE by erasing types from terms in 
each reduction rule, for example, 

(Xx.M)N +E [N/x]M. 
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Let qE be the congruent and transitive closure of =s~. Then we have the 
following theorem: 

STATIC TYPING THEOREM. Let M, N be two terms of SOL with Type*(M) = 
TypeA( Then M +c= N iff Erase(M) aE Erase(N). 

Since the theorem shows that two sets of reduction rules have essentially 
equivalent results, it follows that programs may be executed using any interpreter 
or compiler on the basis of untyped reduction rules. Like the Type Preservation 
Theorem, the proof uses induction on the length of reduction paths and is 
essentially straightforward. Although easily proved, these theorems are important 
since they confirm our expectations about the relationship between typing and 
program execution. 

It is worth mentioning the relationship between the Static Typing Theorem 
and the seemingly contradictory “folk theorem” that tagged sums (in SOL 
notation, g V T types) require run-time type information. Both are correct but 
based on different notions of “untyped” evaluation. The Static Typing Theorem 
says that if a term M is well typed, then M can be evaluated using untyped 
reduction => E. However, notice that Erase does not remove inleft and inright, 
only the type designations on these constructs. Therefore, in evaluating a case 
statement 

case M left ... right . . . end 

the untyped evaluation rules can depend on whether M is of the form inleft M, 
or inright Ml. In the “ folk theorem,” this is considered type information, hence 
the apparent contradiction. 

The SOL reduction rules have several other significant properties. For example, 
the reduction rules have the Church-Rosser property [22,61]. 

CHURCH-R• SSER THEOREM. Suppose M is a term of SOL which reduces to 
Ml and M2. Then there is a term N such that both M, and Mz reduce to N. 

In contrast to the untyped lambda calculus, no term of SOL can be reduced 
infinitely many times. 

STRONG NORMALIZATION THEOREM. There are no infinite reduction se- 
quences. 

The strong normalization theorem was first proved by Girard [22]. In light of 
the strong normalization theorem, the Church-Rosser theorem follows from a 
simple check of the weak Church-Rosser property (see Proposition 3.1.25 of [2]). 
A consequence of Church-Rosser and Strong Normalization is that all maximal 
reduction sequences (from a given term) end in the same normal form.3 As 
proved in Girard’s thesis [22] and discussed in [20] and [59], the proof of the 
strong normalization theorem cannot be carried out formally in either Peano 
arithmetic or second-order Peano arithmetic (second-order Peano is also called 
“analysis”). Furthermore, the class of number-theoretic functions that are 

LIA normal form M is a term that cannot be reduced. Our use of the phrase strong normalization 
follows [2]. Some authors use strong normalization for the property that all maximal reduction 
sequences from a given term end in the same normal form. 
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representable in pure SOL without base types are precisely the recursive functions 
that may be proved total in second-order Peano arithmetic [22, 681. These and 
related results are discussed in [20] at greater length. 

3.8 Alternative Views of Abstract Data Type Declarations 

As noted in the introduction, several language design efforts are similar in spirit 
to ours. The language SOL is based on Reynolds’ polymorphic lambda calculus 
[62] and Girard’s proof-theoretic language [22]. Some similar languages are 
Pebble [ 71, Kernel Russel, KR, [2&J], ML with modules as proposed by MacQueen 
[44], and Martin-Lof’s constructive type theory [46]. We compare abstype in 
SOL with an early proposal of Reynolds [62] and, briefly, with the constructs of 
Pebble and KR. 

In defining the polymorphic lambda calculus, Reynolds proposed a kind of 
abstype declaration based on X-binding [62]. As Reynolds notes, the expression 

abstype t with x,: o,, . . . , x,: a, is M in N 

has the same meaning as 

(hLhx1: (rl . . . Ax,: U,.iv)(7JMl, . . . , M, 

If M is of the form pack 7M1 . . . M, to 3 t.a. However, abstype should not be 
considered an abbreviation for this kind of expression for two reasons. First, it 
is not clear what to do if M is not of the form pack rM1 . . . M,, to 3 t.a. 
Therefore, we can only simulate a restricted version of SOL by this means; much 
flexibility is lost. A lesser drawback of using X to define abstype in this way is 
that the expression 

(Xt.X(xl: ~1, . . ., ix,: a,).N){~jM1 . . . M,, 

is well typed in cases in which the corresponding abstype expression fails to 
satisfy (AB.3). As noted in Section 2, rule (AB.3) keeps the “abstract” type from 
being exported outside the scope of a declaration. However, other justifications 
for (AB.3) discussed in Section 2 do not apply here, since Reynolds’ suggestion 
cannot be used to construct conditional data algebra expressions, for example. 

While the above definition of abstype using X has some drawbacks, a more 
suitable definition using X is described in the final section of the later paper [64]. 

Pebble and KR take a view of data algebras that appears to differ from SOL. 
An intuitively appealing view of pack TM, . . . M,, is simply as a record whose 
first component is a type. This seems to lead one to introduce a “type of types,” 
a path followed by [7] and [28]. We would expect a product type for pack e . . to 
be something like 

Type A crl A me. A a,,. 

However, this does not link the value of the first component to the types of the 
remaining components. To solve this problem, Pebble and KR associate abstract 
data types with “dependent product” types of the form 

t:Type A (rl A . . . A u,,, 

where t is considered bound in u1 A . . . A a,. 
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Since Pebble does not supply projection functions for dependent products, the 
dependent product of Pebble actually seems to be a sum (in the sense of category 
theory), like SOL g-types. KR dependent products do have something that looks 
like a projection function: If A is a data algebra, then Currier(A) is a type 
expression of KR. However, since Carrier(pack TM to 3 La) is not considered 
equal to 7, it seems that KR dependent products are not truly products. Perhaps 
further analysis will show that KR dependent products are also sums and closer 
to SOL existential types than might appear at first glance. 

As pointed out in [30], there are actually two reasonable notions of sum type, 
“weak” and “strong” sums. The SOL existential type is a typical example of weak 
sums, whereas strong sums appear as the C-types of Martin Lof’s type theory 
[46]. The main difference lies in rule (AB.3), which holds for weak sums, but not 
for strong. Thus, while Martin-Lof’s product types over universes give a form of 
polymorphism that is similar to SOL polymorphism, Martin-Lof’s sum types 
differ from our existential types. For this reason, the languages are actually quite 
different. In addition, the restrictions imposed by universes simplify the seman- 
tics of Martin-Lof’s language, at the cost of a slightly more complicated 
syntax. (Some relatively natural programming examples, such as the Sieve of 
Eratosthenes program given in Section 5.2 of this paper, are prohibited by 
the universe restrictions of Martin-Lof type theory.) For further discussion of 
sum and product types over universes, the reader is referred to [9], [lo], [31], 
[451, [461, [491, and [541. 

4. FORMULAS AS TYPES 

4.1 Introduction 

The language SOL exhibits an analogy between logical formulas and types that 
has been used extensively in proof theory [12, 13, 22, 30, 35, 38, 39, 46, 67, 691. 
The programming significance of the analogy has been stressed by Martin-Lof 
[46]. We review the basic idea using propositional logic and then discuss quan- 
tification briefly. In addition to giving some intuition into the connection between 
computer science and constructive logic, the formulas-as-types analogy also 
suggests other languages with existential types. One such language, involving 
specifications as types, is discussed briefly at the end of this section. In general, 
our analysis of abstype suggests that any constructive proof rules for existential 
formulas provide data type declarations. For this reason, the formulas-as-types 
languages provide a general framework for studying many aspects of data 
abstraction. 

4.2 Propositional Logic 

Implicational propositional logic uses formulas that contain only propositional 
variables and 3, implication. The formulas of implicational propositional logic 
are defined by the grammar 

u ::= ti u --) 7, 

where we understand that t is a propositional variable. We are concerned with 
an intuition&c interpretation of formulas, so it is best not to think of formulas 
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as simply being true or false whenever we assign truth values to each variable. 
While various forms of intuitionistic semantics have been developed [IO, 33, 34, 
701, we will not go into this topic. Instead, we will characterize intuitionistic 
validity by means of a proof system. 

Natural deduction is a style of proof system that is intended to mimic the 
common blackboard-style argument 

Assume u. 
By . . . we conclude 7. 
Therefore u + 7. 

We make an assumption in the first line of this argument. In the second line, 
this assumption is combined with other reasoning to derive 7. At this point, we 
have proved T, but the proof depends on the assumption of u. In the third step, 
we observe that since u leads to a proof of 7, the implication 6 + r follows. Since 
the proof of u + r is sound without proviso, we have “discharged” the assumption 
of u in proceeding from 7 to u + T. In a natural deduction proof, each proposition 
may depend on one or more assumptions. A proposition is considered proved 
only when all assumptions have been discharged. 

The natural deduction proof system for implicational propositional logic 
consists of three rules, given below. For technical reasons, we use labeled 
assumptions. (This is useful from a proof-theoretic point of view as a means of 
distinguishing between different assumptions of the same formula.) Let V be a 
set, intended to be the set of labels, and let A be a mapping from labels to 
formulas. We will use the notation Conseq,(M) = u to mean that M is a proof 
with consequence u, given the association A of labels to assumptions. Proofs and 
their consequences are defined as follows: 

ConseqA (x) = A(x) 
ConseqA(M) = u --, 7, ConseqA (N) = u 

ConseqA(MN) = 7 
, 

ConseqAb,l(M) = 7 
ConseqA(Xx: u.M) = u + T ’ 

The set Assume(M) of undischarged assumptions of M is defined by 

Assume(x) = (x) 
Assume(MN) = Assume(M) U Assume(N) 
Assume(Xx: a.M) = Assume(M) - {x) 

In English, we may summarize these two definitions as follows: 

A label x is a proof of A(x) with assumption labeled x. 

If M is a proof of u + r and N is a proof of u, then MN is a proof of r 
(depending on all assumptions used in either proof). 

If M is a proof of 7 with assumption u labeled x, then Xx: u.M is a proof of 
u + r with the assumption x discharged. 

A formula u is intuitionistically provable if there is a proof M with ConseqA (M) 
= (T and Assume(M) = 0. (It is easy to show that if Assume(M) = 0, then 
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ConseqA(M) does not depend on A.) Even when ---) is the only propositional 
connective, there are classical ,tautologies that are not intuitionistically provable. 
For example, it is easy to check that the formula ((s + t) + s) + s is a classical 
tautology just by trying all possible assignments of true and false to s and t. 
However, this formula is not intuitionistically provable. 

Of course, we have just defined the typed lambda calculus: The terms of typed 
lambda calculus are precisely the proofs defined above and their types are the 
formulas given. In fact, ConseqA and TypeA are precisely the same function, and 
Assume(M) is precisely the set of free variables of M. The similarity between 
natural deduction proofs and terms extends to the other connectives and quan- 
tifiers. The proof rules for A, V, V, and 3 are precisely the formation rules given 
earlier for terms of these types. 

One interesting feature of the proof rule for V of [60] is that it is the 
discriminating case statement of CLU [42], rather than the problematic outleft 
and outright functions of ML [23]. The “out” functions of ML are undesirable 
since they rely on run-time exceptions (cf. [41], p. 569). Specifically, if X: r 
in ML, then (inright 3~): cf V 7 and outleft(inright x): 6. However, we cannot 
actually compute a value of type g from x : T, so this is not semantically sensible. 
The ML solution to this problem is to raise a run-time exception when 
outleft(inright X) is evaluated, which introduces a form of run-time type 
checking. Since the V rule leads us directly to a case statement that requires no 
run-time type checking, it seems that the formulas-as-types analogy may be a 
useful guide in designing programming languages. 

4.3 Universal and Existensial Quantifiers 

The intuitionistic proof rules for universal and existential types are repeated 
below for emphasis. It is a worthwhile exercise for the reader to become convinced 
that these make logical sense. 

Conseab, (M) = V t.cr 
Conseq,(M(r)) = [T/t]a’ 

ConseqA(M) = 7 
ConseqA (1t.M) = V t.r 

t not free in A(x) for x free in M, 

Conseq,(M) = [T/t]u 
ConseqA (pack TM to 3 t.a) = 3 t.a ’ 

ConseqA(M) = 3 t.a, Conseq,I,:.l(N) = p 
Conseqa (abstype s with x : (T is M in N) = p ’ 

provided t is not free in p or the type A ( y) of any free y # x occurring in N. 

The rules for V are the usual universal instantiation and generalization. The 
third is an existential generalization rule, and the fourth a form of existential 
instantiation. Except for the explicit proof notation chosen to suggest program- 
ming language syntax, these proof rules are exactly those found in [60]. Although 
a full discussion would take us beyond the scope of this paper, it is worth 
remarking that reduction rules may also be derived using the formulas-as-types 
analogy: The reduction rules of SOL are precisely the proof-simplification rules 
given in [61]. 
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4.4 Other Languages With Existential Types 

The formulas-as-types analogy can be applied to other natural deduction proof 
systems. Two particularly relevant logics are the second-order logics of [60], 
Chapter V. The simpler of these amounts to adding first-order terms to the 
second-order logic of SOL. In this language, types are formulas that describe the 
behavior of terms. 

In an ideal programming language, we would like to use specifications to 
describe abstract data types. The ideal or “intended” type of stack is the 
specification 

Vt. 3s. 3empty:s. 3push:t A s + s. 
3pop: s + t A s: Vx:s. Vy: t. (pop(push(x, y)) = (x, y)), 

or, perhaps more properly, a similar specification with an induction axiom: 

Vt. 3s. 3empty:s. 3push: t A s + s. 3pop:s + t A s. 
Vx:s.tly: t. (pop(push(x, y)) = (x, y) A induction axiom]. 

Both specifications are, in fact, type expressions in the language based on first- 
and second-order logic. We expect the meaning of each type expression to 
correspond to a class of algebras satisfying the specification (see, e.g., [24] for a 
discussion of universal algebra). However, the language based on first- and 
second-order logic is cumbersome for programming since constructing an element 
of one of these existential types involves proving that an implementation meets 
its specification. Some interesting research into providing environments for 
programming with specifications as types is provided in [S] and [9]. Induction 
rules, used for proofs by “data type induction” [25], are easily included in 
specifications since induction is expressible in second-order logic. 

A richer “ramified second-order” system in Chapter V of [60] includes X- 
abstraction in the language of types. Via formulas-as-types, this leads to the 
richer languages of [47] and [51]. 

5. MORE PROGRAMMING EXAMPLES 

5.1 Universal and Existential Parameterization 

Some useful constructions involving abstract data types are to pass representa- 
tions as parameters, parameterize the data types themselves, and return imple- 
mentations as results of procedures. In SOL, we can distinguish between two 
kinds of type parameterization. Suppose M uses operations x: (T on type t, and t 
is not free in the type of any other free variable of M. Then the terms 

M, = Xt.Xx:a. M 
M2 = z t.Xx:cT. M 

are both parameterized by a type and operations. However, there are significant 
differences between these two terms. To begin with, M, is well typed even if t 
appears free in the type of M, where M2 is not. Furthermore, the two terms have 
different types. If the type of M is p, then their types are 

Ml: Vt(a + p) 
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and 

M2: (3t.a) */I. 

We will say that MI is universally parameterized and MZ is ex&entially pararm+ 

terized. 
Generic packages are universally parameterized data algebras. For example, 

given any type t with operations 

plus: t A t + t 
times: t A t + t, 

we can write a data algebra t-matrix implementing matrix operations over t. Four 
operations we might choose to include are 

create: t A ... A t-mat 
mplus: mat A mat + mat, 
mtimes: mat A mat * mat, 
a!&: mat + t. 

If mbody is an expression of the form 

mbody ::= pack 7M1 . . - M, to 3s[(t A -. - A t + s) 
A (s A s + s) A (s A s + s) A (s + t)] 

implementing create, m&s, mtimes, and det using plus and times, then 

matrix ::= At. Aplus: t A t + t. Xtimes: t A t + t.mbody 

is a universally parameterized data algebra. The type of matrix is 

Vt.(t A t + t) --, (t A t + t) + 3s[(t A . . . A 
t + s) A (s A s + s) A (s A s + s) A (s + t)]. 

Note that mbody could not be existentially parameterized by t since t appears 
free in the type of mbody. 

Functions from data algebras to data algebras are existentially parameterized. 
One simple manipulation of data algebras is to remove operations from the 
signature. For example, a doubly ended queue, or dequeue, has two insert and 
two remove operations. The type of an implementation dq of dequeues with 
empty, insertl, insert2, removel, and remove2, is 

dq-type ::= Vt.3d.[d A (t A d + d) A 
(t A d + d) A (d + t A d) A (d + t A d)] 

A function that converts dequeue implementations to queue implementations 
is a simple example of an existentially parameterized structure. Given dq, we can 
implement queues using the form 

Q(x, t) ::= abstype d with empty: . . . , insertl: . . . , insert2: . . . , 
removel: . . . , remove2: . . . 

is x(t] 
in pack d empty insert1 remove2 to 3 t.a 

with dq substituted for X. Thus the term 

dq-to-q ::= Xx:dq-type.Xt.Q(x, t) 
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with type 

&-type ---, Vt. 3s.[s A (t A s + s) A (s + t A s) ] 

is a function from data algebras to data algebras. Suppose that queue is the data 
algebra produced by applying dq-to-q to dq. Since the type of queue is a closed 
type expression, the fact that queue uses the same representation type as dq 
seems effectively hidden. Generally, universal parameterization may be used to 
effect some kind of sharing of types, whereas existential parameterization ob- 
scures the identity of representations. (See [45], which was written later, for 
related discussion.) 

Some other useful transformations on data algebras are the analogs of the 
theory building operations combine, enrich, and derive of CLEAR [5,6]. Although 
a general combine operation as in CLEAR, for example, cannot be written in 
SOL because of type constraints, we can write a combine operation for any pair 
of existential types. For example, we can write a procedure to combine data 
algebras of types 3s.~ and 3 t.p into a single data algebra. The type of this 
function 

Combine, = Xx: 3 t.u Xy : 3 t.p. 

abstype s with z: u is x in 
abstype t with w : p is y in 

is 

packs [pack t(z, w) to 3t(u A p)] to 3s3t(u A p) 

Combine,: 3s.~ + 3t.p 4 3s3t(u A p). 

For universally parameterized data algebras of types V r 3 S.CT and V r 3 t.p, we can 
write combine so that in the combined data algebra, the type parameter will be 
shared. The combine function with sharing 

Combines = Xx:VrZls.a XyzVr3t.p. 

Xr.abstype s with z : tr is x(r) in 
abstype t with w:p is y(r) in 

packs [pack t(z, w) to 3t(u A p)] to 3s3t(u A p) 

has type 

Combinez: Vr3s.a + Vr3t.p + Vr3s3t(u A p). 

A similar, but slightly more complicated, combine function can be written for 
the case in which the two parameters are both universally parameterized by a 
type and several operations on the type. For example, a polymorphic matrix 
package could be combined with a polymorphic polynomial package to give a 
combined package parameterized by a type t and two binary operations plus and 
times providing both matrices and polynomial over t. Furthermore, the combine 
function could be written to enrich the combined package by adding a function 
that finds the characteristic polynomial of a matrix. 

5.2 Data Structures Using Existential Types 

Throughout this paper, we have viewed data algebras as implementations of 
abstract data types. An alternative view is that data algebras are simply records 
tagged with types. This view leads us to consider using data algebras as parts of 
data structures. In many cases, these data structures do not seem directly related 
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to any kind of abstract data type. The following example uses existentially typed 
data structures to represent streams. 

Intuitively, streams are infinite lists. In an applicative language, it is convenient 
to think of a stream as a kind of “process” that has a set of possible internal 
states and a specific value associated with each state. Since the process imple- 
ments a list, there is a designated initial state and a deterministic state transition 
function, Therefore, a stream consists of a type s (of states) with a designated 
individual (start state) of type s, a next-state function of type s + s, and a value 
function of type s --, t, for some t. An integer stream, for example, will 
have a value function of type s + int, and so the type of integer streams will be 
3s[s A (s ---) s) A (s --, int)]. 

The Sieve of Eratosthenes can be used to produce an integer stream enumer- 
ating all prime numbers. This stream is constructed using a sift operation on 
streams. Given an integer stream sl, Sift(sl) is a stream of integers that are not 
divisible by the first value of sl. If Num is the stream 2, 3, . . . , then the sequence 
formed by taking the first value of each stream 

Num, Sift(Num), Sift(Sift(Num)), . . . 

will be the sequence of all primes. 
With streams represented using existential types, Sift may be written as the 

following function over existential types. 

Sift = 
X stream: 3s[s A (s --, s) A (s - int)]. 

abstype s with start : s, next : s -+ s, value : s + int is stream 
in let n = value(start) 

in letrec f = X state : s. 
if n divides value(state) then f (next(state)) 

else state 
in 

pack s f (start) Xx: s. f (next(x)) value to 3s[s A (s + s) A (s + int)] 
end 

end 
end 

Sieve will be the stream with states represented by integer streams, start state 
the stream of all integers greater than 1, and Sift the successor function on states. 
The value associated with each Sieve state is the first value of the integer stream, 
so that the values of Sieve enumerate all primes. 

Sieve = 
abstype s with start : s, next: s + s, value : s + int 

ispack 3t[tA (t-t) A (t-+int)] 
packint2 Successor Xx:int.r to 3t[t A (t-t) A (t+int)] 
Sift 
Xstate:Yt[tA(t+t)A(t-+int)]. 

abstype F with r-start, r-next, r-val is state 
in r-val( r-start) 

to!lt[tA(t+t)A(t+int)] 

Expressed in terms of Sieve, the ith prime number is 

abstype s with start : s, next : s + s, value : s + int 
is Sieve 
in value(next’ start), 
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where “next’ start” is the expression next(next(. . . (next start). . .)) with i occur- 
rences of next. 

It is worth noticing that Sieve is “circular” in the sense that the representation 
type 3t[t A (t + t) A (t + int)] used to define Sieve is also the type of Sieve 
itself. For this reason, this example could not have been written in a predicative 
system like Martin-Lof’s intuitionistic type theory [9, 461. The typing rules of 
that theory require that elements of one type be composed only of elements of 
simpler types. 

6. CONCLUSION AND DIRECTIONS FOR FURTHER INVESTIGATION 

We have used language SOL, a syntactic variant of Girard’s system F and an 
extension of Reynolds’ polymorphic lambda calculus [22, 621, to discuss abstract 
data type declarations in programming languages. SOL is easily defined and has 
straightforward operational semantics. The language also allows us to decompose 
abstract data type declarations into two parts: defining a data algebra and binding 
names to its components. For this reason, SOL allows implementations of 
abstract data types to be passed as function parameters or returned as results. 
This makes the language more flexible than many contemporary typed languages, 
without sacrificing efficient compile-time type checking. 

The flexibility of SOL comes about primarily because we treat data algebras 
as values that have types themselves. The types of data algebras in SOL are 
existential types, a type motivated by an analogy between programming languages 
and constructive logic and closely related to infinite sums. We believe that 
although the design of SOL does not address certain practical objectives, the 
language demonstrates useful extensions to current programming languages. SOL 
also seems very useful for studying the mathematical semantics of data type 
declarations. 

One promising research direction is to use SOL to formalize and prove some 
natural properties of abstract data types. For example, if M and N implement 
two data algebras with the same observable behavior (see, e.g., [32]), then the 
meaning of a program using M should correspond appropriately to the meaning 
of the same program using N. However, SOL is sufficiently complicated that it 
is not clear how to define “observable behavior.” Among other difficulties, data 
algebras are heterogeneous structures whose operations may be polymorphic or 
involve existential types. Reynolds, Donahue, and Haynes have examined various 
related “representation independence” properties of SOL-like languages without 
existential types [18, 26, 55, 641. Some of these ideas have been applied to SOL 
in [52], which was written after the work described here was completed. However, 
there is still much to be done in this direction. 

There are a number of technical questions about SOL that merit further study. 
The semantics of various fragments of SOL are studied in [3], [4], [ 181, [26], 
[47], [51], [62], and [65], but many questions remain. Some open problems are 
listed in [3], [4], and 1511. In addition, there are a number of questions related 
to automatic insertion of type information into partially typed expressions of 
SOL. For example, it would be useful to find an algorithm which, given a term 
M of the untyped lambda calculus, could determine whether type expressions 

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988. 



498 - J. C. Mitchell and G. D. Plotkin 

and type binding can be added to M to produce a well-typed term of SOL. Some 
questions of this nature are discussed in [40], [48], and [53]. 

A general problem in the study of types is a formal characterization of type 
security. We have given two theorems about typing in SOL: Expressions may be 
evaluated without considering type information, and the syntactic type of an 
expression is not affected by reducing the expression to simpler forms. These 
theorems imply that types may be ignored when evaluating SOL expressions and 
that SOL type checking is sufficient to prevent run-time type errors. The study 
of representation independence (mentioned above) leads to another notion of 
type security, but further research seems necessary to show that SOL programs 
are “type-safe” in other ways. 

One interesting aspect of SOL is that it may be derived from quantified 
propositional (second-order) logic using the formulas-as-types analogy discussed 
in Section 4. Our analysis of abstype demonstrates that the proof rules for 
existential formulas in a variety of logical systems all correspond to declaring 
and using abstract data types. Thus, the formulas-as-types languages provide a 
general framework for studying abstract data types. In particular, the language 
derived from first- and second-order logic seems to incorporate specifications 
into programs in a very natural way. The semantics and programming properties 
of this language seem worth investigating and relating to other studies of data 
abstraction based on specification. 

APPENDIX. COLLECTED DEFINITION OF SOL 

The type expressions of SOL are defined by the following abstract syntax: 

where t is any type variable and c is any type constant. (We use two sorts of 
variables, type variables r, s, t, . . . and ordinary variables X, y, z, . . . ) 

A type assignment A is a function from ordinary variables to type expressions. 
We use A[x : u] to denote the type assignment A, with A1 (y) = A (y) for y different 
from X, and A, (x) = u. The partial functions TypeA, for all type assignments A, 
and the operational semantics of SOL are defined as follows: 

Constants and Variables 

TypeA = T for constant cr of type 7 

Typea = A(x) 

Functions and Application 

Tsea~x:cl(M) = T 

TypeA(Xx:u.M) = u + T 

TypeA = u + 7, TypeA = u 

TypeA = 7 

Xx : u.M = Xy : u.[ y/x]M, 
(Xx : u.M)N =+ [N/x]M, 

y not free in M 
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Products 

Type,(M) = (r, TypeA = 7 
Type,.,((M, N)) = (r A T 

TypeA = (r A 7 

TypeA ( fst M) = u, TypeA (snd M) = T 

fst(M, N) =9 M, snd(M, N) + N 

Sums 

Typea = u 
TypeA (inleft M to CT V 7) = u V 7, TypeA (inright A4 to T V a) = 7 V u 

TseA(M) = u V 7, Twq,:,1W) = P, Twqr:rl(P) = P 
Type, (case M left x : UN right y : r.P end) = p 

case M left x: u.N right y: 7.P end 
= case M left u: u.[u/x]N right u: ~.[u/y]P end, 

provided u is not free in N and u is not free in P. 

case(inleft M to CJ V T) left x: u.N right y : 7.P end + [M/x]N 
case(inright M to u V 7) left x: u.N right y : T.P end + [M/y]P 

Polymorphism 

TypeA = T 
TypeA(Xt.M) = Vt.7 

t not free in A(x) for any x free in M 

TypeA = Vt.u 

‘&wA(W)) = [Tltlu 
M.M = Xs.[s/t]M, s not free in Xt.M. 

(xt.M)(T} + [T/t]M 

Abstract Data Types 

Tea W = b/t 10 
TypeA(pack TM to 3 t.u) = 3 t.u 

TypeA W = 3 t.u, ‘bpeA~,:u] 07 = P 
TypeA (abstype s with x: u is M in N) = p ’ 

provided t is not free in p or the type A(y) of any free y # x occurring in N 

abstype t with x: u is M in N = abstype s with y: [s/t]u is M in [ y/x][s/t]N, 

provided s is not free in u, and neither s nor y is free in N. 

abstype t with x: u is (pack TM to 3 t.u) in N + [M/x][~/tlN. 
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