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Chapter 1 Hypothesis discovery

1. Introduction

i

This thesis is concerned with forming hypotheses by generalisation,
We hope to expose a more interesting structure tham would be expected
from contemplation of the traditional recipe for generalisation which is
the simple replacement of constants by variables. Thus we are
committed from the start to a study of generalisation of sentences in the
predicate calculus. First-order predicate calculus will be quite
sufficient although some other formalismsﬁill be mentioned. We assume,
therefore, that the reader is acquainted with some standard formulation

of first-order predicate calculus, such as that of Schoenfield (1967).

Some examination of generalisation ﬁrocesses in the predicate
calculus may be found in Meltzer (1970a)o He constructed a program to
find general laws of group theory from particular examples. Some other
work in the domain of predicate calculus has been done by Popplestone
(1970), although this was not concerned with generalisation alone, but
contained other rules for generating hypotheses, a heuristic search
through the hypothesis space and a mechanism for generating "test®

experiments to decide between coempeting hypotheses.

The largest’gingle body of work in A,I. research on hypothesis
formation has been on guessing grammars. A method for guessing finite-

state grammers was devised by Chomsky and Miller (1957) and generalised

to context-free. grammars by Selomonoff. The adequacy of Selomonoff's (196L)
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method has been challenged by Shamir and Bar-Hillel (Shamir, 1962).

The first heuristic program for guessing finite-state grammars

seems to be that of Feldman (1967). ;

Theoretically, we find contributions by Gold (1967), Feldman (1970),

Feldman, Gips, Horning .and Reder (1969) and Horning (1969).

Gold showed what kind of behaviour could theoretically be expected
from grammar-guessing machines. Feldman (1970) continued these studies.
In Feldman, Gips ard Horning we find both theoretical results which are
less general but stronger thanm those in Gold, and descriptions of a
practical program for inferring pivot grammars, which form a subclass
of the context-free grammars and which properly coentain the finite-state
grammars. Horning, too, conducts both a theoretical and practical

investigation, based on Bayesiam ideas.

His program has the special distinction of being, in one sense,
theoretically optimal. Seemingly, however, it has less practical

ability than the other, heuristic, programs.

Closely related work on guessing finite-state machines can be
found in Perryman (1970) and Feldman and Biermanm (1970).  Taking this
work together witE&that of the grammar guessers, we may conclude that
only a little need yet be done to obtain a theoretically énd practically
good algorithm for guessing a finite-state grammar from a set of

examples and a set of non-exsmples. Matters remain unsatisfactory,

however, in the case of comntext-free grammars.
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Amarel (1962, 1971) is concerned with guessing programs of a rather
simple type with no looping, from samples of input-output pairs. He
seems not to have programmed his method. Hewitt (1968) tries to guess
programs with, possibly, recursion, but using as data traces of the |

program he is trying to guess. This method seems not to have been

programmed.

Given descriptions of both examples and non-examples of a class of
pictures, Winston (1970) attempts to generate a general description of
the entire class, One interesting feature of his program is that new
examples or non-examples may be taken into account by alteration of the
current general descriptionm. The program is unique of its kind and

seems quite successful.

This leads into the field of pattern recognition where we may, for
example, regard the perceptron convergence theorem (Nilsson 1965,
Minsky and Papert, 1969) as demonstrating the successful operation of a

hypothesis=guessing machine.

Standing on its own is the work of Buchanan, Sutherland and
Feigenbaum (1969, 1970) and Feigenbaum, Buchanan and Lederberg (1971) on
hypothesis~formation in organic chemistry. The programs they developed
form the most img;essive hypotheses of any, although there are

correspondingly strong assumptionse

We should mention also some work in psychology, in,essentially, a

very restricted portiom of the first-order predicate calculus. This

.
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concerns concept-learning. Notable books are those of Brumer, Goodnow

and Austin (1956) and Hunt, Marin and Stone (1966).

Work on the related squect of analogy has been done by Evans (19680,)Y
Kling (1971) and Becker (1970). ©Evans was in fact, largely concerned
with generalisation, although his work concerned analogy questions in
I.Q. tests. The solutions generated by his program were in almost
total agreement with those of the proposers of the tests. Kling was
interested in the use of analogy to help in proving thecrems analogous
to already proven ones. Kling has programmed his method, Becker
proposed his notions of analogy as an essential component in a model of

"intermediate level cognition®. He has not programmed his method.

0f course one could go on for ever gquoting work on hypothesis
discevery. However the above gives a good indication of what has been

done in the way of actually proposing and implementing algerithmse

While we will both propose and implement discevery algerithms, we
will be mainly concerned with a theoretical analysis of the relation of
generalisation and its use. It is hoped that this will provide some
useful notation and techniques for further development of algerithms.

The analysis sets up criteria derived from the philosephy of science.

The possibility of/;doing this was explicitly stated by Buchanan (1966),
to whom we owe some considerable debt. The hypothesis formation problem
is seen as a stage in a continuing process of theory formation and

criticism, data gathering, prediction and so on. Criteria that a

_’hypqxhesis formation method should satisfy can then be set up. This
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forms the main part of this chapter. The criteria depend on what notion
of explanation of the given data is employed. In chapter 2 we develop

a definition of gereralisation and so specialise the criteria that they o
result in a tractable formal problem of finding a machine which will

produce hypotheses satisfying the criteria. In faect, a "™icest™ such

hypothesis will be required.

In chapter 3 the abstract theory of the generalisation relationship
is developed and employed to examine the formal problem in chapter L and

to provide several illustrations and other applications im chapter 5.

Finally, in order to partially correct the distorted emphasis on a
single, idealised stage of hypothesis formation, we give in chapter 6 a
generalisation of Feldman's theory of hypothesis identification in the

limit, (Feldman, 1970).

The work started with a suggestion by R.J. Popplestone (private
communication) that, just as the unification algorithm was fundamental
to deduction,so might a comverse be of use in induction. Unification
is a basic idea in the theory of resolution given by Robinson (1965).
We refer to his work for a complete description of the notation used in

that theory.

;
For our immediate purposes, it is only important to note that a
literal is an atomic formula or the negation of one and that a clause

is a set of literals and it abbreviates the disjunction of its members

(taken in some standard order). The letters L, M and N are used to
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stand for literals. The letters G, D and B are used to stand for

clauses.

A literal is a umification of two literals iff it is an instance i

of each. A literal is a most general umnification of two literals iff

any other unification of them is an instance of ite.

Similarly, a literal is a generalisation of twe literals iff each

of them is an instance of it. A literal is a least general generalisation

of two literals iff it is am instance of any other generalisation of

them,

For example, a most general unification of P(x,x) and
P(£(y),f(g(z))) is P(£(g(z)),f(g(z))). A least general generalisation

of them is P(x,¥)e

The existence of least gemeral generalisations was soon shoewn.
In fact they are easier to obtain than unifications. A necessary and
sufficient condition that two literals have a least general generalisation
is just that they have the same predicate letter and sign. However this
is not enough even to generate simple universal laws of the form:

Vx (P(x) -> Q(x)). To do this it is necessary to consider generalisations
of clausess, Let us say, again for the moment, that a clause C is more
general than a clé%se D if C subsumes D - that is if there is a
substitution 6 such that C6 € D. (In resolution theory,

substitutions are functions which operate on expressions; they are

denoted by Greek letters.) One can then define the least general
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generalisation of two clauses. The key theorem is that any two clauses

have a least general generalisation.

It is interesting to note that the similarity between deduction f
and induction breaks down here. What is useful is not a concept of
unification of two clauses, but the deduction principle called

resolution,

We then envisaged crude algorithms which would build up from
clauses abbreviating implications between ground literals the set of
least general generalisations and pick some subset as the proposed
hypothesise (A ground literal is one that contains no occurrences of
variables.) Such a subset would have to be consistent with the data,
but this does not rule out enough combinations and it is necessary to
impese a condition that only the ™nicest" (according, say, to some

measure of simplicity) combination be picked.

Encountering Buchanan's work (1966) we realised that a hypothesis
formation (er suggestion or discevery) method should be placed within a
philosophical framework so that, for example, the suggested method could
be criticised as not meetipg various criteria found in the literature.
Thus we arrive in almost the reverse order at the begimning of the
development of th%§ thesis. The main.technical addition
to the concept of a least general generalisation is that of generalisation
relative to a body of knowledge. This enables, for example, a robot

to form generalisations about its sensory experience, given in terms of

light patterms on a retinal grid, in the more abstract language of
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objects such as bananas, faces, spectacles and so on.

2. Criteria for hypothesis formation

We begin with some general arguments that induction may be useful
in A.I. robot research and, if so, such criteria as may be provided by
the philosophy of science should be accepted. 0f course hypothesis
formation, being one might say the intellectual activity par excellence
requires no justification for its study for its own sake. As,
however, we believe that integrated robot systems are of some
importance in A.I.,arguments relating such systems with inductive omes

should be considered.

One can easily see in gemeral terms how inductive abilities
would be of help to a robot, i.e. an artificial rational man. Such
an ideal entity should be a scientist - and so, a non-deductive reasoner
of some kind, depending on one's philosophy of science. Again, a
robot should have common sense and be able to talk a common-sensical
language, such as English. It is a very defensible thesis that both
BEnglish and common-sense involve a naive science. Both learning and
using this naive science will therefore involve the robot in some naive

nen=deductive reasoning.

There is, evéh in present robots, an implicit form of inductive
ability. For example, all present robots base their plans of action on
rather brief glimpses of the world, since picture processing using
available techniques is slow. This reflects an inductive expectation

‘that the world will not change too much betweén looks. It is however
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gquite unclear what inductive assumptions are definitely already built-in,

let alone which ones ought to be.

A robot should have the explicit ability to learn predicates i
ostensively. Several presentations of a lamp standard before the
robot's eye should result in his forming a general idea of lamp standards 4
(Barrow and Popplestone, 1971, Winston, 1970). He should also be able
to perform inductions from activities or events and learn causal

connections (Hayes, 1971).

Fancifully, by learning plausible beliefs about the effects of
actions, but being prepared, if necessary to look or account for
exceptions, it may be possible to ameliorate what McCarthy calls the

*frame® problem (McCarthy and Hayes 1969, Hayes, 1971).

Most of the above examples show that some kind of non-demonstrative
reasoning is required. It has not been shown that the most suitable form
is that of hypothesis formation. Such a demonstration would require a
much fuller specification of the robot's mental life than has been given.
We do not have an integrated sketch of his ontology and epistemology
and. theory of perception and the structure of his knowledge and his
methods of plan formation and his motivations and his physical being and

SG Onle

Nonetheless, hypothesis formation is a leading candidate;
analogical reasoning is the only other contender so far. It seems,
therefore, worthwhile to develop hypothesis formation itself as much as

' possible.
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We are concerned then with the automatic formation of hypotheses.
At the most grandiose level, one would want a machine which could try
to solve the problems of contemporary physics. At the lowest, one
would wish to be able to (non-deductively) infer 'All crows are black!
from 'That crow is black' and 'This crow is black'. In order to make
quite clear the low level at which present general programs operate
(without, however, any intention of denigrating the comstructers of

these systems) here are some examples:

a) PFeldman, Gips, Horning and Reder (1969) have studied the
induction of grammars (mainly context-free) from finite sets of samples

of legal strings, and, perhaps, a set of illegal strings.

On being told that {AABB, AB, AAABBB} is a set of examples, a

program of theirs, GRIN2, produced the following grammar:

X = AY

Y := XB/B.

On being told that {C, ACB, AACBB, AAACBBB} was a further set of

examples another program GRINZ2A, produced the following grammar:

b) Meltzer (1970) has looked at the problem of determining the
axioms for a class of interpretations, given a finite number of facts

about each of a finite class of structurese.

g
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He fed in a representation of the following facts about the cyclic
groups of orders 2 and k4, whose domains are {e,a} and {e,b,c,d]

respectivelyg v ,

c.e = a; a.e = a; (8.a).e = a.(a.e); (e.a)a =-e; e.a # e;

cob; (beb) o b =c; (beb)ec £Zc; (bec)ec # be

a.a £ a; bec

The program generalised these representations, and obtained a

representation of the following induced axioms.

Xo€ = X;

(x.x)oy = w implies x.(x.y) = w;

i1

(yo.a)ea = y;
XoY = YoX3

bo(bob) = e

At their best, these and similar general programs such as our own
are only slightly more magnificent. There are much more specific
programs which generate more impressive hypotheses, of which a prime
example is the Heuristic Dendral program of Buchanan, Sutheriand and
Feigenbaum (1969, 1970). This program‘'s ability is almost emtirely due
to the availability of a large amount of chemical knowledge (although
this knowledge was by no means there for the taking).

#
We will not attempt any general theory of theory generation.

What is possible, in gemneral, is to set up an outline which any

generation method must £ill in. This outline is derived from the

~ philosophy of science. Apart from any use to which we actually put
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this work, we afe convinced that much can be gaiﬁed from its study.

Tt provides discussion of the justification and criticism of hypotheses;
of probléms of explanation and the nature of simplicity. One can find
categorizations of different types of hypotheses and various qualities
of hypotheses. ' There are accounts of the actual and ideal progress of
science, and accounts of the dynamics of theory'constructien°‘ There is
the problem,of‘the nature of scientific language and its relation to the
world; it is important to know the 'behind the scenes' assumptions made

automatically when one chooses to use a particular theoretical language.

However, philosophy dees not deal directly with our main concern,
which is the generation of hypotheses. Indeed the philoesophers
generally delegate thié problem to the psychologists. We therefore
avoid a great déal of philosophical discussion since, for the most part,
we have only extrigated a schema of philosophical questions, rather than
answers. So we expect that most of the current philosophical approaches
could be so adapted as to fit in with our schema. This is not to say
that we regard the different approaches as being essentially the same.
The fact is that our schema is largely incomplete and typically (especially:
as regards the problem of Jjustification of hypotheses) leaves unanswered
just those questions at which the bones of contentien arise. Neither
have we succeeded’}n altogether avoiding philosophical commitment. We
have tended to ra;se questions and problems in a way which is rather more
acceptable to the Carmapians than the Popperians. Sometimes we use

terminology in a way that is unacceptable to either. For example we

discuss the problem of justification. A Carnapian would prefer the
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problem of confirmation, saying that no absolute justification is
possible, in general. A Popperian would also dislike the problem of
justification. He would say that the problem is how to decide between
competing hypotheses. There is a problem of criticism. A Popperian
might say that there is no problem of justification but perhaps one of
corroboration. Nonetheless the debate does hinge on the existence

and the importance of the problem of justification and the other
related ones. We will therefore use the word justification to

introduce this whole nexus of problems.

To rephrase our concefns, we are looking for a language to
uniformnly describe the various attempts made in A.T. to construct
programs for hypothesis formation. It is believed that this will
lead to a general theory in time to come, and that in the immediate
future, when one wishes to program a method of theory construction, one
will have available an interesting set of non-trivial questiomns about

one's method.

Hypothesis formation is regarded as a process containing stages
of theory construction, theory criticism, data gathering and data
analysise. There will also be some supervisory mechanism to decide the
order of these stages. As mentioned above we do not know and will not
consider, how thid fits into the general mental character of an ideal
rational man. In fact, for the most part, we will omly consider a
simplified snapshot of the process, consisting of a stage of theory

construction followed by one of theory criticism. The stage of theory
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criticism will be dealt with, on the whole, by reference to various

possible philosophical positions.

There is no virtue in our omissions; they are blanks which should
be filled. Tt will surely happen that when the process is considered

as a whole many missing parameters will be discovered. The analysis

should therefore be considered entirely provisional.

Suppose then that our robot is about to formulate and then
criticise a theory after some stages of data gathering and analysis.
The robot will possess knowledge and beliefs and pragmatic attitudes to
these elements of knowledge and belief. TLet us call all this k. He
will ha%e before him some body of phenomens, f, together with the relevant
circumstances of their occurrence, e, for which it is required to find
some kind of explanatory hypothesis,h. Generally f will be a set of
phenomena, {fi“i=1,n} and e will be a set of relevant attendant
circumstances %ei|i=1,n§ given by a function Ev, that is e. = Ev(fi)°
How the e, are selected depends on an implicit stage of data gathering.
The more neive this stage is, the more irrelevant information e will
contain. The lack of any theory of good data gathering is certainly

one of the most important omissions.

In general, there will be many explanatory hypotheses and so it
will be necessary to choose the nicest. We expect that there will be
some measure, —3 , of nicenesse. By h =8 h', we mean that h is at

least as nice as H§ —ﬁg will be transitive and reflexive. This

niceness ordering will be defined relative to f and e and, perhaps, ko




.

B

= 5...

Perhaps the most famous example is provided by Newton's theory of
gravitation. Here f and e were both large and varied. Among the
phenomena wés the fact thaf an apple fell on Newton's head. The
relevant circumstances were Newton's situation relative to the apple
at the start of its flight and the apple's position in the earth's

gravitational field.

The hypothesis h consisted of Newton's theory of gravitation,
The knowledge, k, consisted of the axioms of Euclidean geometry and
some axioms for time together with the interpretation of both of these
via some theory of measurement. 0Of course, Newton himself did not

formulate matters in these terms.

The coincidence of Newton's head with the apple is explained in
two stagesa First h and k together with the statement regarding the
apple's position in the Earth's gravitational field imply that the apple
will fall, This and the fact that Newton's head was directly below the

apple imply that the apple will strike him on the head.

Putting the two stages together, we see that h and k together with
the relevant circumstances imply that the apple will hit Newton's head.
Notice that h and k are necessary in this implication. The relevant

circumstances alone do not imply the coincidence of apple and head.

A

Notice also that h and k and the relevant circumstances and the

coincidence are,taken together, logically consistent.

The great beauty of Newton's theory is its success in explaining,
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with simple means, practically every mechanical and gravitational
phenomenon known at that time, together with its successful prediction
of many more. . Perhaps the most spectacular prediction was the
existence of Uranus. Tndeed the theory possesses nearly every virtue i

described in the 1ist of virtues given at the end of this chapter.

It is, therefore, not too easy to describé ‘% formally.

In order to be able to formulate and criticise a theory, our

robot should therefore possess answers to the following four questions:

H1 Is h justified given f, e and k?
H2 ' Is there a means of telling when h is justified, given f, e and k7%
H3 Does h pvovide a good explanation in that it is very nice
(perhaps maximally) with respect to «g amongst those hypotheses
which explain f, given e and k7

HL TIs there a means of finding such a maximally nice h?

Answers to H1, HZ and H3 will enable the stage of criticism to be
performed. An answer to Hh is a hypothesis construction method.
Before further analysis, it is helpful to consider four analogous

guestions which arise in mathematics.

Suppose we are looking for a theorem Th in some axiomatic theory
T. We want a Th*which provides a best answer to some question, Qs

about T. Answers are needed for the following questions:

D1 Does Th follow from T7

D2 Is there a means of telling when Th follows from T?
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D3 Does Th provide a best answer to Q7

Dl Is there a way to find a Th that is a best answer to Q7

Answers to D1, D2 and D3 represent the criticism stage and D, ;
the discovery stége in some process of mathematical activity. It
may be the case that both hypothesis formation and mathematical
discovery can be made to form part of some more general process of
knowledge generation. However it should not be imagined that questions
H1 and D1 will mérge; or questions H2 and D2 and so om. This is
because, for example, answering DL may involve formulating hypotheses
or proceeding by analogy with previous results. Similarly it may be

necessary to prove theorems to show that h explains f, given e and k.

The distinction between gquestions D1 and D3 reflects a distinction
between truth and interesting appropriateness. When, as here, we ao
suppose that both Th and T‘are formulated in the first order predicate
calculus, then the Tarskian semantic notion of logical consequence is
usually, and justifiably (Kreisel, 1967) teken as a proper formal
analysis of the informal notion of logical comsegquence. Such a
situation does not obtain for higher-order logics or modal logics or,

certainly, natural language.

Any complete End consistent system of proof for first-order
logic gives a correct, but only semi-effective, answer to D2. Note
that, in general any answer to D2 can be consistent and/or complete

with respect to Di. Similarly any answer to DL can be comsistent

gnq/or complete with respect to D3. In all cases, consistency and
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completeness are necessary conditions for the coherence of the entire

system.

A further condition of coherence is that the Th discovered as a ;

best answer to Db should, in fact, follow from T.

This condition seems, on the whole, rather strong. What would
be better would be some process which, given a conjectured answer to
Q, would either prove Th or suggest, perhaps using a constructed counter-

example, some alteration to Q om Thuy =«

Answers to D2 and D4 may be, or may not be, efficient. Not much
work has been done on the efficiency of systems of proof. (Kreisel,
1970, Kowalski, 1969, 1970). It seems likely, however, that while
there can be no most efficient system of proof, existing methods can
be greatly improved. As regards D3 and.gg, the amount of systematic

work is practically zero, with the well-known exception of that of

Péiya (1954, 1957, 1968).

An answer to H2 may be consistent, complete, and/or efficient with
respect to Hi. Similarly, an answer to i may be consistent, complete
and/or efficient with respect to H3. A global coherence requirement
is that maximally nice h's, which explain f, given e and k, should be justified
given e .and k. Af%hough this seems rather strong, as does the analogous
requirement in the deductive case, nonetheless we shall see in
Chapter 5 that it will be satisfied in some simple cases, if e is

sufficiently "large".
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We will outline some of the points made by philosophers about

H1-Hh, before settling down to giving a more detailed account of H3.

The distinction made in H1 and H3 between Justification and j
niceness reflects the importance of questions about the truth of
hypotheses. At one time, it was held to be possible to discover in
a fixed, finite number of steps, important general truths ébout the
world. Mill was about the latest philosopher who halfway believed
this, Once it was demonstrated that there was in general mo way to
determine the truth of general statements, opinion divided, roughly,
in tﬁo. The Carnapians describe a logical confirmation function,
c(h,e'), (Carnap, 1952). This gquantity, c(h,e'), has been variously
interpreted as the logical probability of h given e', or the betting
odds that a rational man would accept on h's being true, given e'.
The hypothesis, h, and the evidence for its being true, e';are both
framed in first-order logic. Carnap, and this is a quite general
opinion, holds that a scieﬁce can be stated as a first-order axiomatic
theory (Carnap, 1967). In our case we would take e' to be e and f
and all the true observations contained in k. In any practical
situation this would be a hopeless task and only the relevant parts
of k would be considered. Probably this would include hypotheses
not kmown to be tige and to which only a degree of belief had been
assigned. A predicate, Ac(h,e'), can be described, in terms of e',
which specifies, in terms of a high, a posteriori confirmation, when
h should be accepted given e', (Hintikka and Hilpinen, 1966). For

a monadic language the confirmation fumction ¢ is calculable, but for
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a general first-order language, there is not even a semi-effective way
to calculate it (Hintikka, 1965, Kemeny, 1953, Putnam, 1956). If we
require the strong global coherence condition to hold, it is
unimportant that any efficient methods be sought. Nothing is known
anyway about efficient methods in general. For the monadic case,
there is a close relation with the problem of efficiently finding

switching circuits (Quine, 1955).

Popper (1959) is less concerned with formal analysis. He notes
that general theories can be falsified and makes this his central
plank. For justification he would substitute the requirement that h
survive-in competition with other hypotheses an extended attempt to
falsify it. Only strongly falsifiable and simple hypotheses should

be chosen for consideration.

Carnap has little to say on Hh, and Popper specifically excludes

this from his consideration, as being in the psychological domain.

We turn now to looking at H? in some detail. As this is not
concerned with questions of truth, less has been said. An account of
how geﬁeral laws explain singular statements has been given by Hempel
and Oppenheim (1948) and has been subject to criticism by, among others,

Eberle, Kaplan and Montague (1961). Niceness is or is partly

Ve

determined by simplicity. Popper has argued that the degree of
falsifiability of a statement correlates strongly with its simplicity.

Goodman (1961) rejects this. He also develops (1959) an account of

the simplicity of the predicate basis of a theory.
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We shall present a picture using a variant of Hempel and
Oppenheims® explication of explanation and let the niceness be
specified by a parameter. Values of this parameter corresponding,
roughly, to different philosophical positions will be used and

investigated at different places throughout the rest of the thesis.

The first important assumption is that h and k will be sets of
first-order statements, framed in a theoretical and observational
language. This over-simplifies the structure of the robot's belief=
system ko In particular, all of k is now accepted as being true.
This completely ignores the problem of how to deal with large
collections of statements to which varying degrees of belief are
assigned. Nor does Popper escape a similar dilemma. When k has

been falsified, which part of it should be replaced?

The hypothesis, h, will in addition be restricted to be a member.

of '1%2 the hypothesis space.

The set of phenomena needing to be explained, £, is a set,

H
1

{filiz1,n§ of first-order singular sentences.
e = %eilez1,n§ is also a set of first-order singular sentences.

e

We will symbolise the relationship between each e, and fi by =>,
We might regard => as a modal connective and say that the set of

statements, {ei => fi|i:1,n} in a certain modal logic represent the

relation between the phenocmena and their antecedents.
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The interpretation of e; => fi is, roughly, that e, is a
description of circumstances or preconditions which resulted in fi's
being true. While it may be a good idea to actually use a modal ;
logic, we could not find any suitable one, and decided to deal with
and use => informally on the meta-level of our present discussion.
Here is a 1list of some indications of possible interpretations of

e, => f.o
1 1

1) Actiomss fi is the result of an action, or series of actions,
described by e, in circumstances also described by e,

2) Direct Causes e is the description of a direct cause of fi.

3) Experiment: e is the description of how an experiment was set
up and fi is the descriptiom of its result, for example fi may
be (a descriptian of) a graph(such as one of temperature against
pressure obtained from some experiment with gases).

) Bumpirical Association: whenever e is true fi occurs (with

observed frequency such and such).

5) Temporal Succession: the event fi followed very soon after

the event ei.

6) Essential Propertys fi is an essential property of objects

with the description e For example, having a date inscribed
is an esigntial property of pennies, but being in Harry's
pocket is not.

7) Definition: e, is the appropriate case of the definition of

the predicate occurring in fj.




IR,

e

-2%=

TIn the above, as in many places throughout this discussion, we are
both using and mentioning the e and fi' It is hoped that the reader

will distinguish the different cases. :

These possibilities by no means form an independent or complete
list. We will adopt 3) as our standard interpretation. With this in
mind, we restrict 14’to be some subset of the set of lawlike sentences,
that is statements whose prenex form contains only universal quantifiers.
This is a departure from the standard notion, which, in addition,

requires that h contain no individual constants.

We do this because we wish at one extreme to regard a singular
statement as being a (completely uninteresting) law. Further we want
the niceness criterion, ‘3 , to be the factor that strives toward
generality. Finally, we feel that the simple grammatical notion of
absence of individual comstants does not capture the ideal of
generality exactly. Many general scientific laws do contain constants =

for example the charge of an electron.

Next, we specify what it is for h to explain f given k and e.
The belief system, k, is divided into two parts, Th and Irr. Thus
k = Th A Irr. The system Th consists of that part considered relevant
to the set of phegpmena at hand, and Irr is the rest, the irrelevant

beliefs.
Then, h explains £ given k = Th A Irr and e iff:

Bl For alli, |ph Ae, = ..




R

%

=0}

B2 For all i, it is not then?ase that kEﬁei - fi.
E3 The sentence k A h A j;/—\1(ei A fi) is consistent.

EL The hypothesis h is lawlike.

Strictly speaking, B3 should be written as '"The set of
n
sentences k U {h, {C}(ei A fi)§ is consistenti This, and similar,

confusions will be perpetrated throughout the thesis.

Requirement Bl is certainly the least that h can do if it is to
explain each fi’ given e and Th. The second requirement, EZ, ensures
that the phenomena are not trivial, that is that there is something new
to be egplained. Requirement E} is a minimal requirement if h is to Dbe
incorporated into the body of beliefs. Whether or not one's beliefs are
true, they should certainly be consistent with one's observations,
Requirement EL is imposed as a result of the interpretation we adopted

of =>, Other interpretations would require other conditions.

By themselves, E1-EL would not capture some of the "feel® of
explanation. This should perhaps be inserted in the description of
the niceness relation,“% N Mario Bunge has compiled a very impressive
list of possible ™niceness®™ qualities of hypotheses (1961). We will
give very brief accounts of each of them. This will give yet another

indication of the/Pheer size of the problem.

Syntactical Requirements:

1) Well-formedness. For us, this is just the requirement that h

actually be.a wff of the first-order predicate calculus.
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2) Connectedness. If a hypothesis is thought of as a conjunction

of postulates, and each predicate symbol occurs in many of these

postulates, it is well-connected.

Semantical Reguirementss:

3) Linguistic Exactness. The ambiguity, vagueness and obscurity

of a hypothesis should be minimal. Such terms as ‘hot' or

"historical necessity' are not welcome.

,) Empirical Interpretability. The hypothesis must make empirical

predictions.

5). Representativeness. The theory should deal with actual events

and. processes. Thus theories of action at a distance are
replaced by field theories, showing exactly how action at a
distance actually works.

6) Semantical Simplicity. The world should be comnstructed simply

from simple parts. The theory of quarks is an extreme example.

Bpistemological Requirements:

7) BExternal Consistency. The hypothesis should be cemsistent with

the bulk of one's knowledge.

8) Explanatory Power. The hypothesis should explain many known

empiricaiAfacts and generalisations.

9) Predictive Power. The hypothesis should entail many unknown

facts.

10) Depth. The hypothesis should explain essentials and reach




11)

12)

13)
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deeply into the structure of reality.

Bxtensibility. The hypothesis should be extensible in

order to cover new domains, not previcusly thought of as ;
being relevant to the hypothesis.

Fertility. The hypothesis must have exploratory powers.

Originalitz.

Methodological Reguirementsa

1h)

15)

17)

Scrutability. The predicates involved in the hypothesis

must be open to scrutiny by the general public. That is,
techniques, tests and evidence must be intersubjective.
For example, events should not occur through God's will,
nor should Mrs. Smith's female intuition count as a
theoretical entity.

Refutability. It must be possible to imagine circumstances

which could refute the hypothesis. Critical experiments can
be set up.

Confirmability. The theory must have consequences which agree

with observation.

Methodological Simplicity. It must be techmically possible

to subject the theory to empirical tests.
A

#

Philosophical Requirementss

18)

Level Parsimony. The hypothesis must be parsimonious in its

references to sections of reality other than those directly
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involved.

19) Meta-Scientific Soundness. The hypothesis must be

compatible with fertile metascientific principles such as i
the requirement that it be lawlike,

20) World-View Compatibility. The hypothesis should be in line

with the general world-view of scientists. One should be
led to reject crackpot theories, but accept, eventually,

genuine sclientific revolutions.

It will be seen that some of these requirements are, from our
systematiser's point of view, no more than hopeful hand-waving. Some
have been covered, some seem extremely hard to formalise and some

impossible.
Let us recapitulate the parameters entering into H3.
There is a hypothesis space 4¥’.

There is a set of phenomena and their clrcumstances iei => fikiz1,n§,
with restrictions on the nature of the e and fi and some interpretation

Of =»o

There is the knowledge, k = Th A Irr.
p:

There is the type of explanation through which each e. is

explained by h(in B ) given k and fi(i:1,n).

There is some notion of niceness, ’; .
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Once these parameters have been specified one obtains a' methcd of

answering H3 given h, and a formal problem:

"Answer Hh so as to obtain a consistent, complete and efficient

algorithm for finding an h which answers H3."

Such an algorithm should cover a large range of possible sets of

phenomena, and perhaps some range of possible belief systems k.




