
Configuration Structures

R.J. van Glabbeek∗

Computer Science Department
Stanford University

Stanford, CA 94305-9045, USA
rvg@cs.stanford.edu

G.D. Plotkin∗

Department of Computer Science
University of Edinburgh
Edinburgh EH9 3JZ, UK

gdp@dcs.ed.ac.uk

In this paper the correspondence between safe Petri nets
and event structures, due to Nielsen, Plotkin and Winskel,
is extended to arbitrary nets without self-loops, under the
collective token interpretation. To this end we propose a
more general form of event structure, matching the expres-
sive power of such nets. These new event structures and
nets are connected by relating both notions with configura-
tion structures, which can be regarded as representations of
either event structures or nets that capture their behaviour
in terms of action occurrences and the causal relationships
between them, but abstract from any auxiliary structure.

A configuration structure can also be considered logi-
cally, as a class of propositional models, or—equivalently—
as a propositional theory in disjunctive normal from. Con-
verting this theory to conjunctive normal form is the key
idea in the translation of such a structure into a net.

For a variety of classes of event structures we charac-
terise the associated classes of configuration structures in
terms of their closure properties, as well as in terms of the
axiomatisability of the associated propositional theories by
formulae of simple prescribed forms.

Introduction

The aim of this paper is to connect several models of
concurrency, by providing behaviour preserving trans-
lations between them.

Occurrence
nets

Prime event
structures

w. bin. conflict

Prime algebraic
coherent domains

Families of
configurations

unfol ding

Safe Petri Nets

In Nielsen, Plotkin & Winskel [17] event struc-
tures were introduced as a stepping stone between
Petri nets and Scott domains. It was established that
every safe Petri net can be unfolded into an occurrence
net; the occurrence nets are then in correspondence

∗This work was supported by ONR under grant number
N00014-92-J-1974.

with event structures; and they in turn correspond bi-
jectively with prime algebraic coherent Scott domains.
In Winskel [23] a more general notion of event struc-
ture was proposed, corresponding to a more general
kind of Scott domain. The event structures from [17]
are now called prime event structures with binary con-
flict.

The translation from event structures to domains
passes through a stage of families of configurations of
event structures. Van Glabbeek & Goltz [6] found
it convenient to use such families as a model of concur-
rency in their own right. In this context the families
were called configuration structures.

1-occurrence
nets

Configuration
structures

Event
structures

Propositional
theories

Transition
systems

occ. nets

families domains

prime
[17]

1-

unf

Pure Petri Nets

[4]

The present paper generalises the cor-
respondence between safe Petri nets and
configuration structures to unsafe nets without self-
loops (the pure nets). For this purpose we use a more
general kind of configuration structure than in [6], the
set systems. These have an attractive alternative pre-
sentation as propositional theories, which is exploited
in their translation to nets. We also generalise the
event structures of [23], so that again our configura-
tion structures arise as their families of configurations.
The connection between configuration structures and
Scott domains is generalised in Van Glabbeek [4],

1

where transition systems are proposed as alternative
presentations of domains.

We now consider the models in more detail.

1 Four models of concurrency

In this section we present the four models of con-
currency mentioned in the introduction, and provide
translations between them.

1.1 Configuration structures

Definition 1.1 A set system is a pair C = /
\E, C\

/ with
E a set and C ⊆ P(E) a collection of subsets.

When a set system is used to represent a concurrent
system, we call it a (pure) configuration structure. The
elements of E are then events and the elements of C
configurations. An event represents an occurrence of
an action the system may perform; a configuration x
represents a state of the system, namely the state in
which the events in x have occurred.

Definition 1.2 A configuration x ∈ C in a configura-
tion structure C = /

\E, C\
/ is reachable if there is a se-

quence of events e1, e2, ..., en such that x = {e1, ..., en}
and ∀k ≤ n. {e1, ..., ek} ∈ C. Let R(C) be the set of
reachable configurations in C.

A configuration structure is connected if all its con-
figurations are reachable, and if C = /

\E, C\
/ is any con-

figuration structure, then its reachable part is given by
R(C) = /

\E, R(C)\/.

For configuration structures representing discrete sys-
tems, performing only a finite number of actions in
any finite time, one could argue, depending on their
precise computational interpretation, that only their
reachable parts contain relevant information.

The configuration structures of [6] were required
to be nonempty, connected and closed under bounded
unions. In the present paper a more expressive kind
of configuration structure is considered, not bound by
these requirements. Two further generalisations of this
model were previously proposed by Pinna & Poigné
[18] and Hoogers, Kleijn & Thiagarajan [12].
The event automata of [18] and the local event struc-
tures of [12] both are configuration structures together
with a transition relation between the configurations.

Our configuration structures are, up to isomor-
phism, the extensional Chu spaces of Gupta & Pratt
[11, 10, 21]. It was in their work that the idea arose
of using the full generality of such structures in mod-
elling concurrency. It should be noted however that
the computational interpretation in [11, 10, 21] differs

somewhat from that in [23, 6, 18, 12, 4]. In particu-
lar, in [11, 10, 21] unreachable configurations may be
semantically relevant (cf. the notions of causality and
internal choice in [11, 21] and the notion of history
preserving bisimulation in [10]).

1.2 Propositional theories

A set system can also be considered from a logical
point of view: E is thought of as a collection of propo-
sitions and C as the collection of models. Connecting
with the computational point of view, we associate
with an event the proposition that it has happened.
This point of view is due to Pratt [11, 21]. We can
now represent a set system by the theory T (C) of all
valid sentences, those holding in all models; these are
the laws of C.

To make this precise, we choose a language: infini-
tary propositional logic with E as the set of proposi-
tional variables, and closed under ¬ (negation) and

∧

(conjunction of sets of formulae). We make free use of
other standard connectives such as ⇒,

∨

,⊥,>: they
are all definable from ¬ and

∧

.

Definition 1.3 An (infinitary) propositional theory is
a pair /

\E, T\/ with E a set of propositional variables and
T a class of infinitary propositional formulae over E.

A formula φ is valid in a set system C = /
\E, C\

/ iff it
is true in all models, that is, elements of C; the theory
associated to C is T (C) = /

\E, T (C)\/, where T (C) de-
notes the class of formulae valid in C. Equally, given
a propositional theory T = /

\E, T\/, its associated set
system is M(T) = /

\E,M(T)\/, where M(T) is the set
of models of T , those interpretations making every for-
mula in T true. We say that T axiomatises M(T). A
formula φ is a logical consequence of a theory T if φ is
true in any model of T. Two propositional theories T
and T′ are logically equivalent if M(T) = M(T′), i.e.
iff they have the same logical consequences.

Proposition 1.1 Let C = /
\E, C\

/ be a set system.
Then T (C) axiomatises C, i.e. M(T (C)) = C.

Proof: The single formula
∨

X∈C(
∧

X ∧¬
∨

(E−X))
already constitutes an axiomatisation of C. It is called
the disjunctive normal form of T (C). 2

Thus T and M provide a bijective correspondence be-
tween set systems and infinitary propositional theories
up to logical equivalence. For any two subsets X,Y of
E, let the clause X ⇒ Y abbreviate the implication
∧

X ⇒
∨

Y . Now for any set system C = /
\E, C\

/, the
set of clauses {X ⇒ (E − X) | X 6∈ C} constitutes
another axiomatisation of C. A theory consisting of a
set of clauses is said to be in conjunctive normal form.

2

1.3 Event structures

Definition 1.4 An event structure is a pair /
\E,`\/

with

• E a set of events,

• ` ⊆ P(E)× P(E), the enabling relation.

Like a configuration structure, an event structure de-
scribes a concurrent system in which the events repre-
sent action occurrences. In previous notions of event
structure [23, 24], one only had singleton enablings:
` ⊆ P(E)× E. Here we generalise ` to a relation be-
tween sets of events. As before, the enabling relation
places some restrictions on which events can happen
when. The idea here is that when X is the set of events
that happened so far, an additional set U of events can
happen (concurrently) iff every subset of X ∪U is en-
abled by a set of events that happened before, i.e. a
subset of X.

In Section 2 we will explain how the event structures
above generalise the ones of [17, 23, 24]. In these pa-
pers the behaviour of an event structure is formalised
by associating to it a family of configurations. How-
ever, there are several ways to do so; here we consider
the most liberal and the most restrictive variant. A
third variant, together with a computational explana-
tion of the notion S(E) below, will appear in Section
2.1.

Definition 1.5 Let E = /
\E,`\/ be an event structure.

The set L(E) of left-closed configurations of E is given
by

X ∈ L(E) ⇔ ∀Y ⊆ X. ∃Z ⊆ X. Z ` Y

and the set S(E) of secured configurations of E by

X ∈ S(E) ⇔

∃e1, . . . , en ∈ X. X = {e1, ..., en}
∧∀k ≤ n. ∀Y ⊆ {e1, ..., ek}.
∃Z ⊆ {e1, ..., ek−1}. Z ` Y.

Such a sequence e1, . . . , en is called a securing of X.
The left-closed configuration structure associated to E
is L(E) = /

\E, L(E)\/, and likewise S(E) = /
\E, S(E)\/ is

the secured one.
Two event structures E and F are L-equivalent if

L(E) = L(F) and S-equivalent if S(E) = S(F).

For every event structure E we have S(E) ⊆ L(E). We
now introduce a class of event structures E on which
S(E) can be interpreted as the reachable part of L(E).

Definition 1.6 An event structure is pure if X ` Y
only if X ∩ Y = ∅

Proposition 1.2 Let E be a pure event structure.
Then S(E) = R(L(E)).

Proof: As S(E) ⊆ L(E) and S(E) is always connected
we have S(E) = R(S(E)) ⊆ R(L(E)).

Now suppose x ∈ R(L(E)). Then x = {e1, ..., en}
such that ∀k ≤ n. {e1, ..., ek} ∈ L(E). Take k ≤ n
and Y ⊆ {e1, ..., ek}. We must show that there is a
Z ⊆ {e1, ..., ek−1} with Z ` Y . Suppose first that
ek ∈ Y . Then, since {e1, ..., ek} ∈ L(E), there must be
a Z ⊆ {e1, ..., ek} with Z ` Y . As E is pure, ek 6∈ Z,
and so Z ⊆ {e1, ..., ek−1}. Next, suppose instead that
ek 6∈ Y . Then, as {e1, ..., ek−1} ∈ L(E), there must
be a Z ⊆ {e1, ..., ek−1} with Z ` Y . It follows that
x ∈ S(E). 2

Hence on pure event structures L-equivalence is finer
than S-equivalence. The following example shows that
this is strictly so.

Example 1 Take as events the set |Q of rational
numbers and define ` by ∅ ` X for any X with
|X| 6= 1, and X ` {e} iff X = {d ∈ |Q | d < e}.
We have S(E) = {∅}, whereas L(E) additionally
contains representatives of all reals as well as extra
copies of the rationals and |Q itself (infinity). If E′ is
/
\ |Q, {(∅, ∅)}\/ we have S(E) = S(E′), yet L(E) 6= L(E′).

We now show that any configuration structure can be
obtained as the left-closed configuration structure as-
sociated to a pure event structure, and hence any con-
nected configuration structure can be obtained as the
secured configuration structure associated to a pure
event structure.

Definition 1.7 Let C = /
\E, C\

/ be a configuration
structure. The event structure associated to C is
E(C) = /

\E,`\/, with X ` Y iff X ∩Y =∅ ∧ X ∪Y ∈C.

Theorem 1 Let C be a configuration structure. Then
L(E(C)) = C.

Proof: Let C = /
\E, C\

/ and E(C) = /
\E,`\/. Suppose

x ∈ C. For any Y ⊆ x take Z = x − Y . Then Z ⊆ x
and Z ` Y . So x ∈ L(E(C)). Conversely, suppose
X ∈ L(E(C)). Then there is a Z ⊆ X such that Z ` X.
By construction, X = Z ∪X ∈ C. 2

Corollary 1 Let C be a connected configuration
structure. Then S(E(C)) = C (= L(E(C))).

Proof: S(E(C)) = R(L(E(C))) = R(C) = C. 2

Hence, E and L provide a bijective correspondence be-
tween configuration structures and (pure) event struc-
tures up to L-equivalence, and E and S between con-
nected configuration structures and (pure) event struc-
tures up to S-equivalence.

The following shows that Proposition 1.2 does not
extend to impure event structures. For those, L and
S represent mutually inconsistent interpretations.

3

Example 2 Let E = /
\{e}, {(∅, ∅), ({e}, {e})}\/. Then

L(E) = /
\{e}, {∅, {e}}\/, whereas S(E) = /

\{e}, {∅}\/.
Both configuration structures are connected.

Let E′ = /
\{e}, {(∅, ∅), (∅, {e})}\/. Then we have

L(E) = L(E′) but S(E) 6= S(E′).

However, under either interpretation the impure event
structures are redundant: for every event structure
there exists a pure one with the same configurations.
Obviously, which one depends on whether the left-
closed or the secured configurations are to be pre-
served.

Corollary 2 For any event structure E there is a pure
event structure EL with L(EL) = L(E), and a pure
event structure ES with S(ES) = S(E).

Proof: Take EL = E(L(E)) and ES = E(S(E)). 2

A structure EL = /
\E,`L\/ can also be directly obtained

by putting `L= {(X − Y, Y) | X ` Y }.

Event structures vs. propositional theories

With any event structure E = /
\E,`\/ we associate the

propositional theory T (E) = /
\E, T (E)\/, where

T (E) = {X ⇒
∨

{
∧

Y | Y ` X} | X ⊆ E}.

This logical view of event structures corresponds ex-
actly with their left-closed interpretation:

Proposition 1.3 M(T (E)) = L(E) for any event
structure E.

Proof: Immediate from the definitions. 2

Likewise, with any propositional theory T = /
\E, T\/ in

conjunctive normal form we associate the event struc-
ture E(T) = /

\E,`T
\
/, where

X `T Y ⇔ ∀Z. ((Y ⇒ Z) ∈ T ⇒ X ∩ Z 6= ∅).

Proposition 1.4 L(E(T)) = M(T) for any theory T
in conjunctive normal form.

Proof: Let x ∈ M(T) and Y ⊆ x It suffices to show
that x `T Y . Let Z ⊆ E be such that (Y ⇒ Z) ∈ T .
As Y ⇒ Z is true in x we have Z ∩ x 6= ∅. It follows
that x ∈ L(E(T)).

Now let x ∈ L(E(T)) and let (Y ⇒ Z) ∈ T . We
have to show that Y ⇒ Z is true in x. In case Y 6⊆ x
this is trivially the case, so suppose Y ⊆ x. Then there
must be a W ⊆ x with W `T Y , hence W ∩ Z 6= ∅. It
follows that x ∩ Z 6= ∅, which had to be shown. 2

Thus T and E provide a bijective correspondence be-
tween event structures up to L-equivalence and propo-
sitional theories up to logical equivalence.

1.4 Rooted and finitary structures

In order to translate between the models of concur-
rency seen so far and Petri nets, we have to restrict to
structures that are rooted and finitary.

Definition 1.8 A configuration structure C = /
\E,C\

/

is rooted if ∅ ∈ C. A propositional theory is rooted
if it has no clause of the form ∅ ⇒ X as a logical
consequence. An event structure E = /

\E,`\/ is rooted
if ∅ ` ∅.

Proposition 1.5 If C is rooted, then so are T (C) and
E(C). If T is rooted, then so are M(T) and E(T). If
E is rooted, then so are L(E), S(E) and T (E).

Proof: Straightforward. 2

Definition 1.9 A configuration structure is finitary if
all its configurations are finite. A propositional theory
is finitary if, for every infinite X ⊆ E, it has the clause
X ⇒ ∅ as a logical consequence. An event structure
/
\E,`\/ is finitary if X ` Y only holds for finite sets Y .

Proposition 1.6 If C is finitary, then so are T (C)
and E(C). If T is finitary, then so are M(T) and E(T).
If E is finitary, then so are L(E), S(E) and T (E).

Proof: Straightforward. 2

Note that connected configuration structures are al-
ways finitary, and are either rooted or have an empty
set of configurations.

1.5 Petri nets

Definition 1.10
A Petri net is a tuple N = /

\S, T, F, I\/ with
• S and T two disjoint sets of places and transitions,
• F : (S × T ∪ T × S) → IN, the flow relation,
• and I : S → IN, the initial marking.

Petri nets are pictured by drawing the places as circles
and the transitions as boxes. For x, y ∈ S∪T there are
F (x, y) arcs from x to y. A net is said to be without
arcweights if the range of F is {0, 1}.

When a Petri net represents a concurrent system,
a global state of such a system is given as a marking,
which is a multiset over S, i.e. a function M ∈ INS .
Such a state is depicted by placing M(s) dots (tokens)
in each place s. The initial state is given by the mark-
ing I. In order to describe the behaviour of a net, we
describe the step transition relation between markings.

Definition 1.11 For two multisets M and N over S,
or more general for functions M, N ∈ ZS , write M ≤
N if M(s) ≤ N(s) for all s ∈ S; M + N ∈ ZS is

4

the function given by (M + N)(s) = M(s) + N(s),
and 0 ∈ INS the one with 0(s) = 0 for all s ∈ S;
M −N ∈ ZS is given by (M −N)(s) = M(s)−N(s).

A multiset M over S is finite if {s ∈ S | M(s) > 0}
is finite. A multiset M ∈ INS with M(s) ≤ 1 for all
s ∈ S is identified with the set {s ∈ S | M(s) = 1}.

Note that for multisets M and N , the function M −N
need not be a multiset.

Definition 1.12 For a finite multiset U : T → IN of
transitions in a Petri net, let •U, U• : S → IN be the
multisets of pre- and postplaces of U , given by

•U(s) =
∑

t∈T

F (s, t)·U(t) and U•(s) =
∑

t∈T

U(t)·F (t, s)

for s ∈ S. U is enabled under a marking M if •U ≤ M .
In that case U can fire under M , yielding the marking
M ′ = M − •U + U•, written M U−→ M ′.

A chain I U1−→ M1
U2−→ · · · Un−→ Mn is called a firing

sequence. A marking M is reachable if there is such a
sequence ending in M = Mn.

If a multiset U of transitions fires, for every transition
t in U and every arc from a place s to t, a token moves
along that arc from s to t. These tokens are consumed
by the firing, but also new tokens are created, namely
one for every outgoing arc of t. These end up in the
places at the end of those arcs. If t occurs several times
in U , all this happens several times (in parallel) as well.
The firing of U is only possible if there are sufficiently
many tokens in the preplaces of U (the places where
the incoming arcs come from).

As for event structures, the behaviour of a net can
be explained by associating to it a family of configura-
tions. Again we consider two ways of doing so, analo-
gously to the left-closed and secured configurations of
event structures, respectively.

Definition 1.13 A configuration of a net is any finite
multiset X of transitions with the property that the
function MX : S → Z given by MX = I − •X + X• is
a marking (i.e. MX ≥ 0). The firing relation between
markings induces one between the configurations of a
net:

X −→ Y ⇔ (X ≤ Y ∧MX
Y−X−−−−→ MY).

Let L(N) denote the set of configurations of the net N.

Note that if X is a configuration and MX
U−→ M ′

then X + U is a configuration and M ′ = MX+U . So
if I U1−→ M1

U2−→ · · · Un−→ Mn is a firing sequence, then
X = U1 + · · ·+ Un is a configuration and Mn = MX .

Definition 1.14 The set S(N) of secured configura-
tions of a net N consists of the multisets Σn

i=1Un such
that there is a firing sequence

I U1−→ M1
U2−→ · · · Un−→ Mn.

By the above, we have S(N) ⊆ L(N).
Next we will determine which nets can be described

by means of set systems.

Definition 1.15 A 1-occurrence net is a net in which
every configuration is a set.

This implies that any transition can fire at most once,
i.e. in every firing sequence M0

U1−→ · · · Un−→ Mn the
multisets U1, ..., Un are sets and disjoint. If N =
/
\S, T, F, I\/ is a 1-occurrence net, then /

\T, L(N)\/ is a
set system.

In general the induced firing relation of a net is
not determined by its set of configurations. The 1-
occurrence nets P and Q below have very different be-
haviour: in P the transitions d and e can be done in
parallel (there is a transition ∅ −→ {d, e}), whereas
in Q there is mutual exclusion. Yet their configura-

P: •

d

•

e

Q: •

•d

•

e

tions are the same: L(P) = L(Q) = S(P) = S(Q) =
{∅, {d}, {e}, {d, e}}. Therefore it is not a good idea
to equate every 1-occurrence net N = /

\S, T, F, I\/ with
its configuration structure /

\T, L(N)\/. However, for the
subclass of pure Petri nets this can be justified:

Definition 1.16 A net N = /
\S, T, F, I\/ is pure if there

is no s in S and t in T with F (s, t) > 0 and F (t, s) > 0,
i.e. if it is without self-loops.

Proposition 1.7 In a pure net N we have X −→ Y
iff X ≤ Y ∧∀Z(X ⊂ Z ⊂ Y ⇒ Z ∈ L(N)) for all X, Y
in L(N).

Proof: “only if”: Let X −→ Y for X,Y ∈ L(N).
Then MX = I −• X + X• ≥ 0 and Y −X is enabled
under MX , i.e. •(Y −X) ≤ MX . Now let X ⊂ Z ⊂ Y .
Then •(Z − X) ≤ •(Y −X) ≤ MX , so MZ =
I − •Z + Z• = I − •X + X•− •(Z −X) + (Z −X)• =
MX − •(Z −X) + (Z −X)• ≥ 0 + (Z −X)• ≥ 0, i.e.
Z is a configuration of N. Note that for this direction
pureness is not needed.

“if”: Suppose X ∈ L(N) and X ≤ Y , but X 6−→ Y .
Then Y −X is not enabled under MX , i.e. there is a

5

place s ∈ S, such that •(Y −X)(s) > MX(s). Let U be
the multiset of those transitions t in Y −X for which
F (s, t) > 0. Then •U(s) = •(Y −X)(s) > MX(s).
As N is pure, for all those transitions t we have
F (t, s) = 0, and therefore U•(s) = 0. Hence
M(X+U)(s) = MX(s) − •U(s) + U•(s) < 0, i.e.
X + U 6∈ L(N). Yet X ⊆ (X + U) ⊆ Y . 2

It follows that for a pure net the induced firing relation
is completely determined by its set of configurations.

Definition 1.17 Let N = /
\S, T, F, I\/ be a pure 1-

occurrence net. Its associated configuration structure
L(N) is /

\T, L(N)\/. Two such nets N and N′ are configu-
ration equivalent—written N =L N′—if L(N) = L(N′).

Similarly, one could define the associated secured con-
figuration structure S(N) of N. Using Proposition 1.7
it follows that again S(N) is the reachable part of
L(N).

Corollary 3 Let N = /
\S, T, F, I\/ be a pure 1-occur-

rence net. Then S(N) = R(L(N)). 2

The configuration structure associated to a Petri net
is always finitary and rooted. We now proceed to
show that every such configuration structure can be
obtained as the image of a pure 1-occurrence net.

Definition 1.18 Let T = /
\E, T\/ be a finitary rooted

propositional theory in conjunctive normal form. We
define the associated Petri net N (T) as follows. As
transitions of the net we take the events of the con-
figuration structure. For every transition we add one
place, containing one initial token, that has no incom-
ing arcs, and with its only outgoing arc going to that
transition. These 1-occurrence places make sure that
every transition fires at most once. For every clause
X ⇒ Y in T with X finite, we introduce a place in
the net. This place has outgoing arcs to each of the
transitions in X, and incoming arcs from each of the
places in Y . Let n be the cardinality of X. As T is
rooted, n 6= 0. We finish the construction by putting
n− 1 initial tokens in the created place:

X

•••
X ⇒ Y

Y

The place belonging to the clause X ⇒ Y does not
place any restrictions on the firing of the first n− 1
transitions in X. However, the last one can only fire

after an extra token arrives in the place. This can hap-
pen only if one of the transitions in Y fires first. The
firing of more transitions in Y has no adverse effects,
as each of the transitions in X can fire only once. Thus
this place imposes the same restriction on the occur-
rence of events as the corresponding clause.

Theorem 2 Let T be a finitary rooted propositional
theory in conjunctive normal form. Then

L(N (T)) = M(T).

Proof: Z ∈ L(N (T)) iff Z is finite and MZ(s) ≥ 0 for
any place s. We have MZ(s) ≥ 0 for all 1-occurrence
places s exactly when no transition fires twice in Z,
i.e. when Z is a set. For a place s belonging to the
clause X ⇒ Y we have MZ(s) ≥ 0 iff either one of the
transitions in Y has fired, or not all of the transitions
in X have fired, i.e. when X ⇒ Y holds in Z, seen
as a model of propositional logic. As T is finitary,
all its models will be finite; furthermore, the clauses
X ⇒ Y of T with X infinite surely hold in any finite
configuration Z. Thus, Z ∈ L(N (T)) iff Z is a model
of T. 2

The net N (T) is always without arcweights. Now we
examine under which circumstances it is pure.

Definition 1.19 A propositional theory in conjunc-
tive normal form is pure if it only contains clauses
X ⇒ Y with X ∩ Y = ∅.

Clearly every propositional theory is logically equiva-
lent to a pure one; thus a finitary rooted configuration
structure can be axiomatised by a finitary rooted pure
propositional theory. Now note that for such a theory
T the net N (T) is pure as well. It follows that

Corollary 4 For every finitary rooted configuration
structure there exists a pure 1-occurrence net without
arcweights with the same configurations. 2

Thus there exists a bijective correspondence between
finitary rooted configuration structures and pure 1-
occurrence nets up to configuration equivalence. More-
over, every pure 1-occurrence net is configuration
equivalent to a pure 1-occurrence net without arc-
weights.

From nets to theories and event structures

Let N = /
\S, E, F, I\/ be a 1-occurrence net. For any

place s ∈ S let s• = {t ∈ E | F (s, t) > 0} be its set of
posttransitions and •s = {t ∈ E | F (t, e) > 0} its set of
pretransitions. For any set Y ⊆ s• of posttransitions
of s, •Y (s) is the number of tokens needed in place s

6

for all transitions in Y to fire, so •Y (s) − I(s) is the
number of tokens that have to arrive in place s before
all transitions in Y can fire. Furthermore, for any n ∈
IN, let ns = {X ⊆ •s | X•(s) ≥ n} be the collection of
sets X of pretransitions of s, such that if all transitions
in X fire, at least n tokens will arrive in s. Write Ys
for

•Y (s)−I(s)s. One of the sets of transitions in Ys has
to fire entirely before all transitions in Y can fire.

The formula ϕn
s =

∨

X∈ ns

∧

X expresses which
transitions need to fire for n tokens to arrive in place
s. The formula

∧

Y ⇒ ϕ
•Y (s)−I(s)
s expresses that one

of the sets of transitions in Ys has to fire entirely before
all transitions in Y can fire. The propositional theory
associated to N is defined as T (N) = /

\E, T (N)\/, where
T (N) consists of all formulas

∧

Y ⇒ ϕ
•Y (s)−I(s)
s with

s ∈ S and Y ⊆ s•. It follows that

Proposition 1.8 M(T (N)) = L(N) for any pure 1-
occurrence net N.

For any set of transitions Y ⊆ E, let SY be the set of
places s with Y ⊆ s• and •Y (s)− I(s) > 0. Now write
X `N Y whenever X =

⋃

s∈SY
Xs with Xs ∈ Ys. The

event structure associated to N is defined as E(N) =
/
\E,`N

\
/.

Proposition 1.9 Let N be a pure 1-occurrence net.
Then L(E(N)) = L(N) and S(E(N)) = S(N).

Proof: Straightforward. 2

2 Other brands of event structures

Event structures have been introduced in Nielsen,
Plotkin & Winskel [17] as triples /

\E,≤, #\
/, in

Winskel [23] as triples /
\E,Con,`\/ and /

\E,Con,≤\/,
and in Winskel [24] as triples /

\E, #,`\/ and /
\E, #,≤\/.

Here we will explain how our event structures gener-
alise these previous proposals. The components #,
Con, ` and ≤ that occur in the triples mentioned
above can be defined in terms of our event structures
as follows.

Definition 2.1 Let E = /
\E,`\/ be an event structure.

Two events d, e ∈ X are in conflict, written d#e, if

¬∃Z. Z ` {d, e}.

A finite set of events X ⊆fin E is consistent or conflict-
free, written Con(X), if

∀Y ⊆ X. ∃Z ⊆ E. Z ` X.

For X ⊆fin E and e ∈ E, write X `′ e for

Con(X) ∧ ∃Y ⊆ X. Y ` {e}.

The causality relation ≺ ⊆ E × E is given by

d ≺ e ⇔ ∀X. (X ` {e} ⇒ d ∈ X).

Let ≤ be the reflexive and transitive closure of ≺.

It would be possible to extend the definition of Con to
infinite sets of events, and likewise for `. This would
allow a better formulation of the forthcoming Propo-
sitions 2.1–2.3. The reason to stick to the definitions
above is to stay as close as possible to [23, 24].

The next definition gives various properties of our
event structures which, in suitable combinations, de-
termine subclasses corresponding to the various event
structures in [17, 23, 24].

Definition 2.2 An event structure E = /
\E,`\/ is

• singular if X ` Y ⇒ X = ∅ ∨ |Y | = 1,

• conjunctive if Xi ` Y (i ∈ I 6= ∅) ⇒
⋂

i∈I Xi ` Y ,

• locally conjunctive if Xi ` Y (for i ∈ I 6= ∅) ∧
∃Z. Z `

⋃

i∈I Xi ∪ Y ⇒
⋂

i∈I Xi ` Y ,

• S-irredundant if every event occurs in a secured
configuration, i.e. E =

⋃

x∈S(E) x,

• L-irredundant if every event occurs in a left-closed
configuration, i.e. E =

⋃

x∈L(E) x,

• and cycle-free if there is no chain
e0 ≺ e1 ≺ · · · ≺ en ≺ e0

and has

• finite causes if X ` Y ⇒ X finite,

• finite conflict if X infinite ⇒ ∅ ` X

• and binary conflict if |X| > 2 ⇒ ∅ ` X.

The event structures of [17, 23, 24] all correspond to
event structures in our sense that are rooted, singular
and with finite conflict. The event structures given as
triples involving # even have binary conflict, the ones
involving ` have finite causes, and the ones involv-
ing ≤ are conjunctive, L-irredundant and cycle-free.
The event structures of [23, 24] that involve ≤ are
moreover S-irredundant, a property that implies L-
irredundancy and cycle-freeness. The requirement of
stability in [23, 24] corresponds to our notion of local
conjunctivity.

For the singular event structures E, the enabling
relation consists of two parts: enablings of the form
∅ ` Y , and enablings of the form X ` {e}. When E
has finite conflict, the first part can be fully expressed
in terms of Con, at least to the extend in which it de-
termines which sets of events are configurations. When
E has finite causes, the second part can similarly be
expressed in terms of `′. One obtains the following.

7

Proposition 2.1 Let E be a singular event structure
with finite causes and finite conflict. Then

X ∈ L(E) ⇔
{

∀Y ⊆fin X. Con(Y)∧
∀e ∈ X. ∃Z ⊆ X. Z `′ e

and

X ∈ S(E) ⇔

Con(X)∧
∃e1, . . . , en ∈ X. X = {e1, ..., en}∧
∀k ≤ n. {e1, ..., ek−1} `′ ek.

It follows that such structures can alternatively be rep-
resented as triples /

\E,Con,`\/ with Con ⊆ Pfin(E) and
` ⊆ Con× E, as are the structures of [23].

When E moreover is rooted and with binary con-
flict, Con can be fully expressed in terms of #.

Proposition 2.2 Let E be a rooted, singular event
structure with finite causes and binary conflict. Then

X ∈ L(E) ⇔
{

∀d, e ∈ X. ¬(d#e)∧
∀e ∈ X. ∃Z ⊆ X. Z `′ e

and

X ∈ S(E) ⇔

∀d, e ∈ X. ¬(d#e)∧
∃e1, . . . , en ∈ X. X = {e1, ..., en}∧
∀k ≤ n. {e1, ..., ek−1} `′ ek.

It follows that such event structures can alternatively
be represented as triples /

\E, #,`\/ with # ⊆ E×E and
` ⊆ Con× E, as are the structures of [24].

When d ≤ e, any configuration containing e also
contains d. When E = /

\E,`\/ is conjunctive, for any
consistent event e ∈ E there is a smallest set X ⊆ E
with X ` e. Therefore the part of the enabling relation
consisting of enablings X ` e is in essence completely
determined by the causality relation ≤. In case E is
furthermore singular and cycle-free, every finite X ∈
L(E) can be seen to be in S(E). We obtain

Proposition 2.3 Let E be a singular, conjunctive,
cycle-free event structure with finite conflict. Then

X ∈ L(E) ⇔
{

∀Y ⊆fin X. Con(Y)∧
∀d, e ∈ E. d ≤ e ∈ X ⇒ d ∈ X

and X ∈ S(E) ⇔ X ∈ L(E) ∧X is finite.

If E moreover is rooted and with binary conflict, then

X ∈ L(E) ⇔
{

∀d, e ∈ X. ¬(d#e)∧
∀d, e ∈ E. d ≤ e ∈ X ⇒ d ∈ X.

It follows that such structures can alternatively be rep-
resented as triples /

\E,Con,≤\/ with Con ⊆ Pfin(E)
and ≤ ⊆ E × E, as are the prime event structures of
[23], respectively as triples /

\E, #,≤\/, as are the prime
event structures of [17, 24].

2.1 Infinitary secured configurations

Neither the secured nor the left-closed configura-
tions correspond exactly to the configurations used in
Winskel [23, 24] to describe the behaviour of event
structure. A generalisation of Winskel’s notion of a
configuration to the event structures of this paper is
the following.

Definition 2.3 Let E = /
\E,`\/ be an event structure.

The set S∞(E) of infinitary secured configurations of
E is given by

X ∈ S∞(E) ⇔

∀n ∈ IN. ∃Xn ⊆ E. X =
⋃∞

n=0 Xn

∧X0 = ∅ ∧ ∀n ∈ IN. Xn ⊆ Xn+1 ∧
∀Y ⊆ Xn+1. ∃Z ⊆ Xn. Z ` Y.

Such a sequence X0, X1, . . . is called a stepwise secur-
ing of X. The infinitary secured configuration struc-
ture associated to E is S∞(E) = /

\E, S∞(E)\/.

Computationally this notion can be understood by
partitioning time in countably many successive inter-
vals In (n ≥ 1). The set Xn−Xn−1 contains the events
that occur in the interval In. These events must be en-
abled by events occurring in earlier intervals. The set
X contains all events that happen during such a run.

The secured configurations of Definition 1.5 can be
explained by imposing two restrictions on the config-
urations above. First of all X = Xn for some n ∈ IN,
i.e., X represents a state that can be reached in a fi-
nite amount of time; secondly |Xk − Xk−1| ≤ 1 for
k = 1, ..., n, i.e., in each interval at most one event
takes place. The following propositions connect these
two notions.

Proposition 2.4 Let E = /
\E,`\/ be an event struc-

ture. Then S(E) = {X ∈ S∞(E) | X is finite}.

Proof: Let X be in S(E). Take a securing e1, ..., en

as exists by Definition 1.5, and let Xi = {e1, ..., ei} for
i = 0, ..., n. Let Xi = Xn for i > n. Then X0, X1, ... is
a stepwise securing of X.

Now let X0, X1, ... be a stepwise securing of X, with
X finite. Then X = Xn for some n ∈ IN. Furthermore,
if Xk−1 ⊆ Y ⊆ Xk for some 1 ≤ k ≤ n, then adding
Y between Xk−1 and Xk preserves the property of
the sequence being a stepwise securing. In this way
the stepwise securing X0, ..., Xn can be refined into a
stepwise securing Y0, ..., Ym with |Yk − Yk−1| ≤ 1 for
k = 1, ..., m. The latter can be written as a securing
in the sense of Definition 1.5. 2

The proof above shows that events cannot be “syn-
chronised” in event structures. If a finite number of
events takes place simultaneously, they could just as
well have occurred one after the other, in any order.

8

The next proposition says that for certain event
structures, including the ones from [17, 23, 24], the
infinite secured configurations are completely deter-
mined by the finite ones.

Proposition 2.5 Let E = /
\E,`\/ be a singular event

structure with finite causes and finite conflict. Then

X ∈ S∞(E) ⇔ ∀Y ⊆fin X. ∃Z ∈ S(E). Y ⊆ Z ⊆ X,

i.e. S∞(E) is the set of directed unions over S(E).

Proof: “⇒”: Let X ∈ S∞(E) and Y ⊆fin X. Let
X0, X1, ... be a stepwise securing of X and choose n
in IN such that Y ⊆ Xn. For k = n, n − 1, n − 2, ..., 0
choose the finite subset Yk of Xk recursively as follows.
Yn = Y . Given Yk with 1 ≤ k ≤ n, choose for any
event e ∈ Yk a set Ze ⊆ Xk−1 with Ze ` e, and let
Yk−1 =

⋃

e∈Yk
Ze. Because E has finite causes, the

sets Ze are finite, and so is Yk−1. As E is singular we
have ∅ ` Z for any Z ⊆ X with |Z| 6= 1. Therefore
the sets

⋃k
i=0 Yi for k ≤ n form a stepwise securing of

the finite set Z =
⋃n

i=0 Yi. Hence, by Proposition 2.4,
Z ∈ S(E). Furthermore we have Y ⊆ Z ⊆ X.

“⇐”: Let X ⊆ E be such that the right-hand
side holds. Take Xn = {en | ∃e1, . . . , en−1 ∈ X.
∀k≤n. ∀Y ⊆ {e1, ..., ek}. ∃Z ⊆ {e1, ..., ek−1}. Z ` Y }
for n > 0, and take X0 = ∅. As a sequence e1, ..., en

as occurs above can be prolonged by repeating events,
we have Xn ⊆ Xn+1 for all n ∈ IN. By Definition 1.5
we have X =

⋃∞
n=0 Xn. Now let Y ⊆ Xn+1. It re-

mains to be shown that ∃Z ⊆ Xn. Z ` Y . First sup-
pose Y = ∅. As S(E) 6= ∅, E must be rooted, and
we may take Z = ∅. Now suppose |Y | = 1. Then
∃e1, ..., en+1 ∈ X. Y = {en+1} ∧ ∀k ≤ n + 1. ∀Y ′ ⊆
{e1, ..., ek}. ∃Z ⊆ {e1, ..., ek−1}. Z ` Y ′. So in
particular ∃Z ⊆ {e1, ..., en}. Z ` Y . Furthermore
Z ⊆

⋃n
i=1 Xi = Xn. Finally suppose |Y | ≥ 2. In

case Y is infinite we have ∅ ` Y since E is singu-
lar and with finite conflict. Otherwise there must be
a W ∈ S(E) ⊆ L(E) with Y ⊆ W ⊆ X. Hence
∃Z ⊆ W. Z ` Y . As E is singular, Z = ∅. 2

Thus for singular event structures with finite causes
and finite conflict we have S∞(E) = S∞(E′) iff
S(E) = S(E′), i.e., S∞-equivalence coincides with S-
equivalence.

Next, we augment Propositions 2.1 to 2.3 with char-
acterisations of the infinitely secured configurations.
To this end, we show that for the event structures of
Proposition 2.1 their family of secured configurations
is closed under consistent unions.

Lemma 1 Let E be a singular event structure with
finite causes and finite conflict. Then

X, Y ∈ S(E) ∧ Con(X ∪ Y) ⇒ X ∪ Y ∈ S(E).

Proof: Let e1, ..., en be a securing of X and d1, ..., dm

be one of Y , then e1, ..., en, d1, ..., dm is a securing of
X ∪ Y . The obtained securing may have repeated ele-
ments; if desired these can be eliminated by omitting
all but the first occurrences of events. 2

Proposition 2.6 Let E be a singular event structure
with finite causes and finite conflict. Then

X ∈ S∞(E) ⇔

∀Y ⊆fin X. Con(Y)∧
∀e ∈ X. ∃e0, . . . , en ∈ X. e = en ∧
∀k ≤ n. {e0, ..., ek−1} `′ ek.

Proof: “⇒” follows immediately from Propositions
2.5 and 2.1. For “⇐” let X ⊆ E be such that the right-
hand side holds. Let Y ⊆fin X. Using Proposition 2.5
it suffices to find a Z ∈ S(E) with Y ⊆ Z ⊆ X. For any
e ∈ Y let Ze = {e0, ..., en} with e0, ..., en a sequence as
mentioned above. Then Ze ∈ S(E) by Proposition 2.1
and so Z =

⋃

e∈Y Ze ∈ S(E) by Lemma 1. Moreover,
Y ⊆ Z ⊆ X. 2

In case E has binary conflict we even have

X ∈ S∞(E) ⇔

∀d, e ∈ X. ¬(d#e)∧
∀e ∈ X. ∃e0, . . . , en ∈ X. e = en ∧
∀k ≤ n. {e0, ..., ek−1} `′ ek.

Proposition 2.7 Let E be a singular, conjunctive, S-
irredundant event structure with finite causes and fi-
nite conflict. Then S∞(E) = L(E).

Proof: “⊆” follows immediately from Definition 2.3.
“⊇”: For any e ∈ E, let ↓ e be {d ∈ E | d ≤ e}.
Any secured or left-closed configuration containing e
must contain ↓e. As E is S-irredundant, e must occur
in a secured configuration. Hence ↓ e is finite, and
Con(↓e). Thus ↓e ∈ S(E) by Proposition 2.3.

Now suppose X ∈ L(E). For any Y ⊆fin X, let
↓Y be

⋃

e∈Y ↓ e. It must be that ↓Y ⊆fin X. Hence
Con(↓ Y). Now Lemma 1 implies that ↓ Y ∈ S(E).
Moreover, Y ⊆ ↓Y ⊆ X, so Proposition 2.5 implies
that X ∈ S∞(E). 2

2.2 The event structures of Winskel [23]

These are defined as triples E = /
\E,Con,`\/ where

• E is a set of events,

• Con ⊆ Pfin(E) is a nonempty consistency predi-
cate such that: Y ⊆ X ∈ Con ⇒ Y ∈ Con,

• and `⊆ Con × E is the enabling relation, which
satisfies X ` e ∧X ⊆ Y ∈ Con ⇒ Y ` e.

Such an event structure is stable if it satisfies

X ` e ∧ Y ` e ∧ Con(X ∪ Y ∪ {e}) ⇒ X ∩ Y ` e.

9

The family S∞(E) of configurations of such an event
structure (written F(E) in [23]) consists of those X ⊆
E which are

• consistent: every finite subset of X is in Con,

• and secured: ∀e ∈ X. ∃e0, . . . , en ∈ X. en = e ∧
∀i ≤ n. {e0, ..., ei−1} ` ei,

just as in Proposition 2.6. In addition, L(E) and S(E)
can be defined exactly as in Proposition 2.1 (reading
` for `′). Again, we write L(E) for /

\E, L(E)\/, and
likewise for S(E) and S∞(E).

Here we will show that up to L-, S- and S∞-
equivalence these event structures are exactly the ones
in our sense which are rooted, singular, with finite
causes and with finite conflict; and the stable event
strutures of [23] are the ones which are moreover lo-
cally conjunctive.

For E = /
\E,Con,`′\/ an event structure as in [23],

let the event structure E(E) = /
\E,`\/ be given by

X ` Y iff

either Y = {e}, Con({e}) and X `′ e
or |Y | 6= 1, X = ∅ and Con(Y)
or Y is infinite and X = ∅.

Proposition 2.8 Let E be an event structure as in
[23]. Then E(E) is rooted, singular and with finite
causes and finite conflict. If E is stable then E(E)
is locally conjunctive. Moreover, L(E(E)) = L(E),
S(E(E)) = S(E) and S∞(E(E)) = S∞(E).

Proof: Let E = /
\E,Con,`′\/ be an event structure

as in [23]. As Con is nonempty and subset-closed we
have ∅ ∈ Con. Thus ∅ ` ∅, i.e. E(E) is rooted. By
construction, E(E) is singular and with finite causes
and finite conflict. That the stability of E implies the
local conjunctivity of E(E) follows because every col-
lection of finite sets has a finite subcollection with the
same intersection. With Propositions 2.1 and 2.6 one
easily checks that L(E(E)) = L(E), S(E(E)) = S(E)
and S∞(E(E)) = S∞(E). 2

For E = /
\E,`\/ a rooted event structure, the structure

W(E) = /
\E,Con,`′\/, where Con and `′ are given by

Definition 2.1, is clearly an event structure in the sense
of [23].

Proposition 2.9 Let E be a rooted, singular event
structure with finite causes and finite conflict. Then
L(W(E)) = L(E), S(W(E)) = S(E) and S∞(W(E)) =
S∞(E). Moreover, W(E) is stable if E is locally con-
junctive.

Proof: Trivial, with Propositions 2.1 and 2.6 2

2.3 The event structures of Winskel [24]

These are defined as triples E = /
\E, #,`\/ where

• E is a set of events,

• # ⊆ E × E is a symmetric, irreflexive conflict
relation. Write Con for the set of finite, conflict-
free subsets of E, i.e. those finite subsets X ⊆ E
for which

∀e, e′ ∈ X. ¬(e#e′),

• and `⊆ Con × E is the enabling relation, which
satisfies X ` e ∧X ⊆ Y ∈ Con ⇒ Y ` e.

Such an event structure is stable if it satisfies

X ` e ∧ Y ` e ∧ Con(X ∪ Y ∪ {e}) ⇒ X ∩ Y ` e.

The family S∞(E) of configurations of such an event
structure (written F(E) in [24]) consists of those X ⊆
E which are

• conflict-free: ∀e, e′ ∈ X. ¬(e#e′),

• and secured: ∀e ∈ X. ∃e0, . . . , en ∈ X. en = e ∧
∀i ≤ n. {e0, ..., ei−1} ` ei.

Note that a set of events X is conflict-free iff every fi-
nite subset of X is in Con. In addition, L(E) and S(E)
can be defined exactly as in Proposition 2.2 (reading
` for `′).

Say that an event structure /
\E,Con,`\/ in the sense

of [23] has binary conflict if for any X ⊆fin E:

Con(X) ⇔ ∀Y ⊆ X. (|Y | = 2 ⇒ Con(Y)).

Clearly, the event structures of [24] are just a reformu-
lation of the event structures of [23] that have binary
conflict. A small variation of the arguments from the
previous section shows that, up to L-, S- and S∞-
equivalence, the event structures of [24] are exactly
the ones in our sense which are rooted, singular, with
finite causes and with binary conflict; and the stable
event strutures of [24] are the ones which are moreover
locally conjunctive.

2.4 The prime event structures of [23]

These are defined as triples E = /
\E,Con,≤\/ where

• E is a set of events,

• Con ⊆ Pfin(E) is a nonempty consistency predi-
cate such that: Y ⊆ X ∈ Con ⇒ Y ∈ Con, and
{e} ∈ Con for all e ∈ E,

• and ≤ ⊆ E × E is a partial order, the causality
relation, satisfying

– d ≤ e ∈ X ∈ Con ⇒ X ∪ {d} ∈ Con
– and ↓e = {d ∈ E | d ≤ e} is finite for all e ∈ E.

10

The set L(E) of configurations of such an event struc-
ture consists of those X ⊆ E which are

• consistent: every finite subset of X is in Con,

• and left-closed: ∀d, e ∈ E. d ≤ e ∈ X ⇒ d ∈ X,

just as in Proposition 2.3. In addition, S(E) could be
defined as the set of finite configurations in L(E).

Here we will show that up to L and S-equivalence
these event structures are exactly the ones in our sense
which are rooted, singular, conjunctive, S-irredundant
and with (finite causes and) finite conflict.

For E = /
\E,Con,≤\/ a prime event structure as in

[23], let the event structure E(E) = /
\E,`\/ be given by

X ` Y iff

Y = {e} and X = {d | d < e}
or |Y | 6= 1, X = ∅ and Con(Y)
or Y is infinite and X = ∅.

Proposition 2.10 Let E be a prime event structure
as in [23]. Then E(E) is rooted, singular, conjunctive,
S-irredundant and with finite causes and finite con-
flict. Moreover, L(E(E)) = L(E) and S(E(E)) = S(E).

Proof: Let E = /
\E,Con,≤\/ be a prime event struc-

ture as in [23]. As Con is nonempty and subset-closed
we have ∅ ∈ Con. Thus ∅ ` ∅, i.e. E(E) is rooted. By
construction, E(E) is singular and with finite causes
and finite conflict. As for every set of events Y there is
at most one set of events X with X ` Y , E(E) is surely
conjunctive. With Proposition 2.3 one easily checks
that L(E(E)) = L(E), and hence L(E(E)) = L(E)
and S(E(E)) = S(E). For every event e ∈ E we
have e ∈ ↓ e ∈ S(E) = S(E(E)). Hence E(E) is S-
irredundant. 2

For E = /
\E,`\/ a rooted, S-irredundant event struc-

ture, the structure W ′(E) = /
\E,Con ′,≤\/, where

Con ′(X) iff Con({d ∈ E | ∃e ∈ X. d ≤ e}), and
Con and ≤ are given by Definition 2.1, is clearly a
prime event structure in the sense of [23]. In partic-
ular, for all e ∈ E, the set ↓ e has to be finite, and
Con({e}), since otherwise e could not occur in any
secured configuration, contradicting S-irredundancy.
As S-irredundancy implies cycle-freeness, ≤ must be
a partial order.

Proposition 2.11 Let E be a rooted, singular, con-
junctive, S-irredundant event structure with finite
conflict. Then L(W ′(E))=L(E) and S(W ′(E))=S(E).

Proof: Trivial, with Proposition 2.3. 2

Note that the requirement of having finite causes is not
needed in Proposition 2.11. It follows that, preserving

L- and S-equivalance, any rooted, singular, conjunc-
tive, S-irredundant event structure with finite conflict
can be converted into one that has also finite causes.

On the class of event structures corresponding to
the prime event structures of [23], Proposition 2.7 says
that S∞ coincides with L. Thus each of S∞ and L
can be understood as generalisation of the notion of
configuration for prime event structures from [23].

2.5 The event structures of [17]

These are triples E = /
\E,≤, #\

/ where

• E is a set of events,

• ≤ ⊆ E×E is a partial order, the causality relation,

• # ⊆ E × E is an irreflexive, symmetric relation,
the conflict relation, satisfying

∀d, e, f ∈ E. d ≤ e ∧ d#f ⇒ e#f,

the principle of conflict heredity.

The set L(E) of configurations of such an event struc-
ture consists of those X ⊆ E which are

• conflict-free: # \(X ×X) = ∅,
• and left-closed: ∀d, e ∈ E. d ≤ e ∈ X ⇒ d ∈ X,

just as in Proposition 2.3. In addition, S(E) could be
defined as the set of finite configurations in L(E).

The prime event structures of [24] are defined like-
wise, but additionally requiring

{d ∈ E | d ≤ e} is finite for all e ∈ E,

the principle of finite causes.
Here we will show that up to L and S-equivalence

these event structures are exactly the ones in our
sense which are rooted, singular, conjunctive, L-
irredundant, cycle-free and with binary conflict, and
for the ones from [24] also S-irredundant.

For E = /
\E,≤, #\

/ a prime event structure as in [17],
let the event structure E(E) = /

\E,`\/ be given by

X ` Y iff

Y = {e} and X = {d | d < e}
or Y = {d, e}, d 6= e, X = ∅ and ¬(d#e)
or |Y | 6= 1, 2 and X = ∅.

Proposition 2.12 Let E be an event structure as in
[17]. Then E(E) is rooted, singular, conjunctive, L-
irredundant, cycle-free and with binary conflict. If E
satisfies the principle of finite causes then E(E) is more-
over S-irredundant. Furthermore, L(E(E)) = L(E)
and S(E(E)) = S(E).

Proof: Let E = /
\E,≤,#\

/ be an event structure as
in [17]. By construction, E(E) is rooted, singular and

11

with binary conflict. As for every set of events Y there
is at most one set of events X with X ` Y , E(E)
is surely conjunctive. The relation ≺ coincides with
<, so E(E) is cycle-free. With Proposition 2.3, triv-
ially L(E(E)) = L(E). Hence L(E(E)) = L(E) and
S(E(E)) = S(E).

For every e ∈ E, the set ↓e = {d ∈ E | d ≤ e} must
be conflict-free, by the principle of conflict heredity
and the irreflexivity of #. Hence, e ∈ ↓ e ∈ L(E) =
L(E(E)). Therefore E(E) is L-irredundant. In case E
satisfies the principle of finite causes, ↓ e is moreover
finite and e ∈ ↓e ∈ S(E) = S(E(E)). In this case E(E)
is even S-irredundant. 2

For E = /
\E,`\/ a rooted, L-irredundant, cycle-free

event structure, the structure WNP (E) = /
\E,≤, #′ \

/,
where d#′e iff ∃d′ ≤ d. ∃e′ ≤ e. d′#e′, and ≤ and #
are given by Definition 2.1, is clearly an event struc-
ture in the sense of [17]. In particular, ≤ is a partial
order since E is cycle-free, and #′ is irreflexive since
if e#′e then e could not occur in any configuration,
contradicting L-irredundancy. In case E is moreover
S-irredundant, then the sets ↓e have to be finite, since
otherwise e could not occur in any secured configura-
tion. In this case WNP (E) is a prime event structure
as in [24].

Proposition 2.13 Let E be a rooted, singular, con-
junctive, L-irredundant and cycle-free event structure
with binary conflict. Then L(WNP (E)) = L(E) and
S(WNP (E)) = S(E).

Proof: Trivial, with Proposition 2.3. 2

If E falls in the class of event structures that according
to Proposition 2.13 is L-equivalent to a prime event
structure in the sense of [24], then S∞(E) = L(E), by
Proposition 2.7. This does not extend to the structures
corresponding to the event structures of [17] however:

Example 3 Let E be given by E = {e0, e1, ...}∪{e∞},
= ∅ and ei < ej iff i < j. Then E ∈ L(E) but
E 6∈ S∞(E).

2.6 Summary and remarks

The left-closed configurations of an event structure
generalise the left-closed and conflict-free subsets of
events considered in Nielsen, Plotkin & Winskel
[17], as well as the families of configurations of prime
event structures as considered in Winskel [23, 24].
The infinitary secured configurations generalise the
families of configurations of event structures (prime
and otherwise) considered in [23, 24]. The families of
configurations of such event structures are completely

determined by their finite secured configurations. Now
up to L- and S∞- and S-equivalence the following cor-
respondences have been established.

ev. str. [23] rtd, sing, f.causes & f.conflict S∞,L
stable [23] same & locally conjunctive S∞,L
prime [23] same & conjunctive & S-irr. S∞,L
ev. str. [24] rtd, sing, f.causes & bin.conflict S∞,L
stable [24] same & locally conjunctive S∞,L
prime [24] same & conjunctive & S-irr. S∞,L
ev. str. [17] rtd, sing, b.c., conj, L-irr & c.-f. S,L

In the characterisations of the prime event struc-
tures from [23] and [24] the requirement of having finite
causes is optional, i.e. any rooted, singular, conjunc-
tive, S-irredundant event structure with finite conflict
can be converted into one that also has finite causes.

Any event structure E = /
\E,`\/ can be converted

into an S-irredundant structure, namely by omitting
from E all events that do not occur in any secured con-
figuration, and omitting from ` any enablings X ` Y
in which such events occur in X or Y . This clearly
preserves S(E), as well as the properties rootedness,
singularity, conjunctivity and having finite causes and
finite or binary conflict. If E is singular and with finite
causes and finite conflict, it also preserves S∞(E), by
Proposition 2.5. Thus, up to having the same infini-
tary secured configurations, the prime event structures
of [23] (resp. [24]) even correspond to the class of our
event structures that are rooted, singular, conjunctive
and with finite (resp. binary) conflict, i.e. not requiring
S-irredundancy. However, it should be noted that this
correspondence does not hold up to S∞-equivalence,
as the set of events is not preserved.

Preserving S-equivalence, any event structure can
be converted into one with finite causes and finite con-
flict, namely by adding all enablings ∅ ` Y with Y
infinite, and omitting the enablings X ` Y with X
infinite. This procedure preserves the other properties
of Definition 2.2, except L-irredundancy. Hence, up to
S-equivalence the correspondences hold without finite
causes and finite conflict.

Finally, also preserving S-equivalence, every event
structure can be converted into a finitary one, namely
by omitting all enablings of the form X ` Y with Y
infinite. This conversion preserves the properties of
Definition 2.2, except L-irredundancy and, of course,
finite conflict; it preserves binary conflict only in the
form

2 < |X| < ∞⇒ ∅ ` X.

12

3 Comparing Models

Having seen the general correspondences between our
various models of computation—event structures, con-
figuration structures and propositional theories—we
now trace the relationships for various natural sub-
classes; we are guided by the exploration of previous
notions of event structures in the last section (Petri
Nets are tied in in Section 3.3). In Section 3.1 we give
properties of configuration structures corresponding to
those of event structures, and provide corresponding
classes of prepositional theories (described according
to the syntactic form of the allowed formulae). In Sec-
tion 3.2 we tackle the converse completeness problem:
given a collection of properties of a configuration struc-
ture is there an event structure (or a propositional the-
ory) satisfying the corresponding properties and which
yields the given configuration structure? Note that,
following our general point of view, we understand the
configuration structures as providing our (semantic)
model of behaviour, and so we use them to mediate
the comparisons between the (more syntactic) models
of computation.

3.1 corresponding behaviours

Event Configuration Propositional
structures structures theories
pure - pure
rooted rooted (≥0, any)
finitary finitary finitary
singular closed under

⋃

(1, any), (any, 0)
conjunctive closed under

⋂

• (any, ≤1)
locally conj. closed under

⋂

• (any, ddc)
finite confl. finite conflict (finite, any)
binary confl. binary conflict (≤2, any)

Table 1: Corresponding properties

Table 1 gives the various corresponding properties.
We have already defined all those needed for event
structures. For configuration structures

⋂

•,
⋂

• and
⋃

stand for closure under nonempty intersections,
nonempty bounded intersections and bounded unions
respectively, where these notions and two others—of
finite and binary conflict—are defined as follows:

Definition 3.1 Let C = /
\E, C\

/ be a configuration
structure. A set of events X ⊆ E is consistent, written
Con(X), if ∃Y ∈ C. X ⊆ Y . C is said to be closed
under bounded unions (

⋃

) if

Xi ∈ C (for i∈I) ∧ Con(
⋃

i∈I Xi) ⇒
⋃

i∈I Xi ∈ C.

C is closed under nonempty intersections (
⋂

•) if

Xi ∈ C (for i∈I 6=∅) ⇒
⋂

i∈I Xi ∈ C

and under bounded nonempty intersections (
⋂

•) if

Xi ∈ C (for i∈I 6=∅) ∧ Con(
⋃

i∈I Xi) ⇒
⋂

i∈I Xi ∈ C.

C has finite conflict if

[∀Y ⊆X. (Y finite ⇒ ∃Z∈C. Y ⊆ Z ⊆ X)] ⇒ X ∈ C

and binary conflict if

[∀Y ⊆X. (|Y | ≤ 2 ⇒ ∃Z∈C. Y ⊆ Z ⊆ X)] ⇒ X ∈ C.

The first three conditions are particularly natural
as they are couched in terms of the order-theoretic
structure of sets of events, and do not involve discus-
sion of individual events. A natural replacement of this
kind for finite conflict is closure under directed unions.
This property is in fact strictly weaker than finite con-
flict as the configuration structure consisting of the
co-singleton sets of natural numbers illustrates. How-
ever the two properties coincide for those configuration
structures closed under non-empty intersections.

A configuration-oriented condition corresponding to
binary conflict is coherence:

Definition 3.2 Let C = /
\E, C\

/ be a configuration
structure. It is coherent iff for every nonempty family
Xi(i ∈ I) of configurations:

[∀j, k∃Y ∈ C.Xj∩Xj ⊆ U ⊆ Y ⊆ ∩i∈IXi] ⇒ ∩i∈IXi ∈ C.

As before, binary conflict is the stronger, with the co-
singletons again providing a counterexample; and, as
before, in the presence of closure under non-empty in-
tersections, the two conditions coincide.

Proposition 3.1 Let E be an event structure. If E
has any of the properties of Table 1, then L(E) has the
corresponding property.

Proof: The details are routine and are omitted. 2

When dealing with combinations of properties a lit-
tle more information will be helpful.

Definition 3.3 Let C = /
\E, C\

/ be a configuration
structure. It has strong finite conflict iff

∀Y ⊆X.(| Y |= 1 ⇒ ∃Z ∈ C.Y ⊆ Z ⊆ X)∧(Y finite ⇒ Con(Y)] ⇒ X ∈ C

and it has strong binary conflict iff

∀Y ⊆ X.(| Y |= 1 ⇒ ∃Z ∈ C.Y ⊆ Z ⊆ X)∧(| Y |≤ 2 ⇒ Con(Y)] ⇒ X ∈ C.

13

Proposition 3.2 (continued) Let E be a singular
event structure. If it has finite conflict then L(E) has
strong finite conflict, and if it has binary conflict then
L(E) has strong binary conflict.

We now turn to axiomatisations. We say that a
formula has the form (any,≤ 1) if it is a clause with
no restriction on its antecedents and with at most
one consequent; and and (any,ddc) indicates an im-
plication whose premise can be any conjunction of
propositional letters, and whose conclusion has the
“ddc” form. This is a formula ·∨ j∈J

∧

Zj where
the Zj are sets of letters, and we write ·∨ Φ for
(
∨

Φ) ∧
∧

{¬(φ ∧ φ′) | φ, φ′ ∈ Φ, φ 6= φ′}, the dis-
joint disjunction of Φ. In case all the Zj are finite, we
have the “ddfc” form. The meaning of the other forms
of formula used in Table 1 should now be self-evident.

Proposition 3.3 Let T be a set of formulae over a set
E all of whose elements have one of the forms given in
a row of Table 1. Then M(T) has the corresponding
property, as given in the table.

Proof: We consider only the first case, leaving the
others to the reader To this end we show that the
collection of models of a family of implications of the
form

∧

X ⇒ ·∨ j∈J
∧

Zj is closed under bounded non-
empty intersections. Suppose that {mi | i ∈ I} is
such a collection, with upper bound m′. Let m be the
intersection of the mi; we must show it is a model.
To this end, choose one implication of the above form
and suppose that m includes its premise X. Then so
does m′ and hence there is a unique j in J such that
Zj ⊆ m′; but since, for any i in I, mi is a model with
X ⊆ mi ⊆ m′ we have that Zj ⊆ mi. So Zj ⊆ m, and
this must be the unique such j as m ⊆ m′, since I is
non-empty. 2

3.2 Completeness

We begin with the relationship between event struc-
tures and configuration structures.

Theorem 3 A configuration structure C has all of the
properties of a given row of Table ?? iff there is a
(pure) event structure E with the corresponding prop-
erties such that L(E) = C. The same holds with the
addition of rootedness to all the entries.

Proof: The implications from right to left follow at
once from Proposition ??.

For the converse, let C = (E,C) be a configuration
structure. We first consider E = E(C); by Proposi-
tion ?? we have that L(E) = C. It is straightforward
to check that

– E is always pure,
– if C is rooted, then so is E,
– if C is closed under

⋂

• then E is conjunctive,
– and if C is

⋂

•-closed then E is locally conjunctive.
This construction therefore covers the cases of rows

1 and 5 of the table, with or without rootedness.
Next let C have finite conflict. Set E = (E,`∪ `ω)

with ` defined as before, and X `ω Y iff X = ∅ and
Y infinite. It is straightforward to check that
– E is always pure and with finite conflict,
– if C is rooted, then so is E,
– if C is closed under

⋂

• then E is conjunctive,
– and if C is

⋂

•-closed then E is locally conjunctive.
We show that L(E) = C. That C ⊆ L(E) goes exactly
as in the previous case, so suppose X ∈ L(E). For any
finite Y ⊆ X there must be a Z ⊆ X with Z ` Y . By
construction, Z ∪ Y ∈ C. As Y ⊆ Z ∪ Y ⊆ X, and C
has finite conflict, we have X ∈ C.

This construction therefore covers the cases of rows
2, 6 and 13 of the table, with or without rootedness.
The case where C has binary conflict goes similarly.

Now assume C is closed under bounded unions (
⋃

).
Let E = (E,`1 ∪ `2) with

X `1 Y iff |Y | = 1, X ∩ Y = ∅ and X ∪ Y ∈ C,
X `2 Y iff X = ∅, |Y | 6= 1 and Con(Y).

It is straightforward to check that
– E is always pure and singular,
– if C is rooted, then so is E,
– if C is closed under

⋂

• then E is conjunctive,
– and if C is

⋂

•-closed then E is locally conjunctive.
We show that L(E) = C. Suppose X ∈ C. For any

Y ⊆ X take Z = X−Y if |Y | = 1 and Z = ∅ otherwise.
Then Z ⊆ X and Z ` Y . So X ∈ L(E). Conversely,
suppose X ∈ L(E). Then there is a Z ⊆ X such that
Z ` X. In case |X| = 1 we have X = Z ∪ X ∈ C.
In case |X| > 1 it must be that Z = ∅ and Con(X).
Moreover, for any e ∈ X there is a Ze ⊆ X such
that Ze ` {e}. By construction, Ze ∪ {e} ∈ C. As
⋃

e∈X(Ze ∪ {e}) = X and Con(X), and C is closed
under nonempty bounded unions, X ∈ C. In case
X = ∅, we have that ∅ ∈ C.

This covers rows 2,6, and 13 of the table, with or
without rootedness. The case of binary conflict is sim-
ilar, and we omit the details.

Next assume C is closed under
⋃

• and with binary
conflict. Let E = (E,`1 ∪ `2 ∪ `3) with

X `1 Y iff |Y | ≤ 1, X ∩ Y = ∅ and X ∪ Y ∈ C,
X `2 Y iff X = ∅, |Y | = 2 and Con(Y),
X `3 Y iff X = ∅ and |Y | > 2.

14

It is straightforward to check that
– E is always pure, singular and with binary conflict,
– if C is rooted, then so is E,
– if E is finite than C and E are trivially finitary,

otherwise C and E can not be finitary,
– if C is closed under

⋂

• then E is conjunctive,
– and if C is

⋂

•-closed then E is locally conjunctive.
We show that L(E) = C. That C ⊆ L(E) goes

exactly as in the previous case, so suppose X ∈ L(E).
In case |X| ≤ 1 there again is a Z ⊆ X such that
Z ` X, and we have X = Z ∪ X ∈ C. So suppose
|X| > 1. For every Y ⊆ X with |Y | = 2 there is a Z
with Z ` Y . It must be that Z = ∅ and Con(Y). As
C has binary conflict we have Con(X), i.e. ∃W ∈ C.
X ⊆ W . Moreover, for any e ∈ X there is a Ze ⊆ X
such that Ze ` {e}. By construction, Ze ∪ {e} ∈ C.
As

⋃

e∈X(Ze ∪ {e}) = X ⊆ W ∈ C, and C is closed
under nonempty bounded unions, X ∈ C. 2

3.3 Tying Petri nets

15

3 Event vs. configuration structures

Definition 3.1 Let C = /
\E,C\

/ be a configuration
structure. A set of events X ⊆ E is consistent or
conflict-free, written Con(X), if ∃Z ∈ C. X ⊆ Z.
X is finite-conflict-free, written Confin(X), if

∀Y ⊆fin X. Con(Y).

and binary-conflict-free, written Con2(X), if

∀Y ⊆ X. (|Y | ≤ 2 ⇒ Con(Y)).

C is said to be closed under bounded unions (
⋃

) if

Xi ∈ C (for i∈I) ∧ Con(
⋃

i∈I Xi) ⇒
⋃

i∈I Xi ∈ C,

under finite-conflict-free unions (
⋃f

) if

Xi ∈ C (for i∈I) ∧ Confin(
⋃

i∈I Xi) ⇒
⋃

i∈I Xi ∈ C

and under binary-conflict-free unions (
⋃2

) if

Xi ∈ C (for i∈I) ∧ Con2(
⋃

i∈I Xi) ⇒
⋃

i∈I Xi ∈ C.

C is closed under nonempty intersections (
⋂

•) if

Xi ∈ C (for i∈I 6=∅) ⇒
⋂

i∈I Xi ∈ C

and under bounded nonempty intersections (
⋂

•) if

Xi ∈ C (for i∈I 6=∅) ∧ Con(
⋃

i∈I Xi) ⇒
⋂

i∈I Xi ∈ C.

C has finite conflict if

[∀Y ⊆X. (Y finite ⇒ ∃Z∈C. Y ⊆ Z ⊆ X)] ⇒ X ∈ C

and binary conflict if

[∀Y ⊆X. (|Y | ≤ 2 ⇒ ∃Z∈C. Y ⊆ Z ⊆ X)] ⇒ X ∈ C.

Theorem 4 Let E be an event structure.

• If E is conjunctive, then L(E) is closed under
⋂

•.

• If E is locally conjunctive, then L(E) is
⋂

•-closed.

• If E has finite conflict, then so does L(E).

• If E has binary conflict, then so does L(E).

• If E is singular, then L(E) is closed under
⋃

.

• If E is singular and with finite conflict, then L(E)

is closed under
⋃f

.

• If E is singular and with binary conflict, then L(E)

is closed under
⋃2

.

The same can be said for S∞(E) and S(E).

Event Configuration Propositional
structures structures theories
pure - pure
rooted rooted (≥0, any)
conjunctive closed under

⋂

• (any, ≤1)
locally conj. closed under

⋂

• (any, ddc)
finite confl. finite conflict (finite, any)
binary confl. binary conflict (≤2, any)
singular closed under

⋃

(1, any), (any, 0)

sing. & fin. con. closed under
⋃f

(1, any), (fin., 0)

sing. & bin. con. closed under
⋃2

(1, any), (≤2, 0)

Table 2: Corresponding properties

Theorem 4, together with Proposition 1.5, is illus-
trated in the first two columns of Table 2. Here
⋂

•,
⋂

•,
⋃

,
⋃f

and
⋃2

stand for nonempty inter-
sections, nonempty bounded intersections, bounded
unions, finite-conflict-free unions and binary-conflict-
free unions, respectively.

Note that a configuration structure that is closed
under

⋃f
is also closed under

⋃

and has finite conflict.
Likewise, a configuration structure that is closed un-
der

⋃2
is also closed under

⋃

and has binary conflict.
Now call a set of properties from the second column of
Table 2 a package if it contains the property “closed
under

⋃f
” when it contains the properties “closed un-

der
⋃

” and “having finite conflict”, and it contains the

property “closed under
⋃2

” when it contains the prop-
erties “closed under

⋃

” and “having binary conflict”.

Theorem 5 A configuration structure C has any
package of properties from the second column of Ta-
ble 2 iff there is an event structure E with the corre-
sponding properties such that L(E) = C.

Proof: Let C = /
\E,C\

/ be a configuration structure.
Define E = /

\E,`\/ by X ` Y iff X ∩Y = ∅∧X ∪Y ∈C.
It is straightforward to check that
– E is always pure,
– if C is rooted, then so is E,
– if C is closed under

⋂

• then E is conjunctive,
– and if C is

⋂

•-closed then E is locally conjunctive.
We show that L(E) = C. Suppose x ∈ C. For any
Y ⊆ x take Z = x − Y . Then Z ⊆ x and Z ` Y .
So x ∈ L(E). Conversely, suppose X ∈ L(E). Then
there is a Z ⊆ X such that Z ` X. By construction,
X = Z ∪X ∈ C.

Next let C have finite conflict. Let E = /
\E,`∪ `ω\

/

with ` defined as before, and X `ω Y iff X = ∅ and
Y infinite. It is straightforward to check that

16

– E is always pure and with finite conflict,
– if C is rooted, then so is E,
– if C is closed under

⋂

• then E is conjunctive,
no! and if C is

⋂

•-closed then E is locally conjunctive.
We show that L(E) = C. That C ⊆ L(E) goes exactly
as in the previous case, so suppose X ∈ L(E). For any
finite Y ⊆ X there must be a Z ⊆ X with Z ` Y . By
construction, Z ∪ Y ∈ C. As Y ⊆ Z ∪ Y ⊆ X, and C
has finite conflict, we have X ∈ C.

The case that C has binary conflict goes similarly.
Now assume C is closed under bounded unions (

⋃

).
Let E = /

\E,`1 ∪ `2
\
/ with

X `1 Y iff |Y | = 1, X ∩ Y = ∅ and X ∪ Y ∈ C,
X `2 Y iff X = ∅, |Y | 6= 1 and Con(Y).

It is straightforward to check that
– E is always pure and singular,
– if C is rooted, then so is E,
– if C is closed under

⋂

• then E is conjunctive,
– and if C is

⋂

•-closed then E is locally conjunctive.
We show that L(E) = C. Suppose x ∈ C. For any
Y ⊆ x take Z = x−Y if |Y | = 1 and Z = ∅ otherwise.
Then Z ⊆ x and Z ` Y . So x ∈ L(E). Conversely,
suppose X ∈ L(E). Then there is a Z ⊆ X such that
Z ` X. In case |X| = 1 we have X = Z ∪ X ∈ C.
In case |X| 6= 1 it must be that Z = ∅ and Con(X).
Moreover, for any e ∈ X there is a Ze ⊆ X such
that Ze ` {e}. By construction, Ze ∪ {e} ∈ C. As
⋃

e∈X(Ze ∪ {e}) = X and Con(X), and C is closed
under bounded unions, X ∈ C.

Next assume C is closed under
⋃2

.
Let E = /

\E,`1 ∪ `2 ∪ `3
\
/ with

X `1 Y iff |Y | = 1, X ∩ Y = ∅ and X ∪ Y ∈ C,
X `2 Y iff X = ∅, (|Y | = 0 or |Y | = 2) and Con(Y),
X `3 Y iff X = ∅ and |Y | > 2.

It is straightforward to check that
– E is always pure, singular and with binary conflict,
– if C is rooted, then so is E,
– if C is closed under

⋂

• then E is conjunctive,
no! and if C is

⋂

•-closed then E is locally conjunctive.
We show that L(E) = C. That C ⊆ L(E) goes exactly
as in the previous case, so suppose X ∈ L(E). In case
|X| = 1 there again is a Z ⊆ X such that Z ` X, and
we have X = Z ∪ X ∈ C. So suppose |X| 6= 1. For
every Y ⊆ X with |Y | = 0 or |Y | = 2 there is a Z with
Z ` Y . It must be that Z = ∅ and Con(Y). Hence
Con2(X). Moreover, for any e ∈ X there is a Ze ⊆ X
such that Ze ` {e}. By construction, Ze∪{e} ∈ C. As
⋃

e∈X(Ze ∪ {e}) = X and Con2(X), and C is closed
under binary-conflict-free unions, X ∈ C.

The case that C is closed under
⋃f

goes likewise. 2

3.1 Axiomatisation of set systems

In this section we consider set systems C = /
\E,C\

/

from a logical point of view: E is thought of as a
collection of propositions and C as the collection of
models. Connecting with the computational point of
view, we associate with an event the proposition that
it has happened. There is an associated theory T (C)
of all valid sentences, those holding in all models; these
are the laws of C.

To make this precise, we choose a language: infini-
tary propositional logic with E as the set of proposi-
tional variables, and closed under ¬ (negation) and

∧

(conjunction of sets of formulae). We make free use of
other standard connectives such as ⇒,

∨

,⊥,>: they
are all definable. A formula φ is valid in /

\E, C\
/ iff it is

true in all models, that is, elements of C; T (C) denotes
the class of formulae valid in C. Equally, given a class
T of formulae over a set E, we can define a set system
C(T) = /

\E,M(T)\/, where M(T) is the set of models
of T , those interpretations making every formula in T
true. We say that T axiomatises C(T). In particular
T (C) axiomatises C for any set system C.

This point of view is due to Pratt [11, 21]. He noted
a natural “conjunctive normal form.” For any two
subsets X,Y of E, let the clause X ⇒ Y abbreviate the
implication

∧

X ⇒
∨

Y ; we say that the elements of
X are the antecedents of the clause, and those of Y its
consequents. Then for any /

\E, C\
/, if T is the collection

of clauses valid in /
\E, C\

/ we have /
\E, C\

/ = C(T). Thus
any set system can be axiomatised by a set of clauses.

We now consider correspondences between axioma-
tisations by classes of formulae and closure conditions
on set systems.

First, there is logical interest in Horn clauses where
there are finitely many antecedents and one conse-
quent, and also in Scott clauses where, more generally,
there may be finitely many consequents [3, 22].

Proposition 3.1 A set system /
\E, C\

/ is Horn clause
axiomatisable iff C is closed under intersections and
directed unions. It is Scott clause axiomatisable iff C
is closed in the product topology on 2E .

Proof: For the first part, the implication from left to
right is easy to see. For the converse, we refer forward
to the fifth entry in Table 3.1 where we have an ax-
iomatisation by clauses of the form X ⇒ Y where Y is
empty or a singleton. But the first case cannot obtain,
as here E is a model.

For the second part, the product topology on 2E is
the E-fold power of the discrete topology on the two-
point set. It has as basis all sets of the form Ux,y =
{m ⊆ E | x ⊆ m, (m ∩ y) = ∅} where x,y are finite

17

subsets of E. The first part now follows, noting that
the complement of Ux,y is the set of models of x ⇒ y.
2

Next we consider closure conditions that arise natu-
rally when considering configuration structures. We
denote closure under non-empty intersections by

⋂

•,
under bounded non-empty intersections by

⋂

•, un-
der bounded non-empty unions by

⋃

and under di-
rected unions by

⋃

↑. The results appear below. The

stable
⋂

• ≡ (any,ddc)
⋂

•,
⋃

↑ ⇐ (finite,ddfc)
⋂

•,
⋃

≡ (≤1, ddc)
⋂

•,
⋃

↑,
⋃

⇐ (≤1, ddfc)

prime
⋂

• ≡ (any,≤1)
⋂

•,
⋃

↑ ≡ (finite,≤1)
⋂

•,
⋃

≡ (≤1, 1), (any, 0)
⋂

•,
⋃

↑,
⋃

≡ (≤1, 1), (finite, 0)

union
⋃

≡ (≤1, any), (any, 0)
⋃

,
⋃

↑ ⇐ (≤1, any), (finite, 0)
⋃

↑ ⇐ (finite, any)

last column indicates the form of the allowed formulae
which are all implications. For example: (any,≤1) in-
dicates a clause with no restriction on its antecedent
and whose consequent has at most one element; and
(any, ddc) indicates an implication whose premise can
be any conjunction of propositional letters, and whose
conclusion has the “ddc” form. This is a formula·∨ j∈J

∧

Zj where the Zj are sets of letters, and we
write ·∨ Φ for (

∨

Φ)∧
∧

{¬(φ∧φ′) | φ, φ′ ∈ Φ, φ 6= φ′},
the disjoint disjunction of Φ. In case all the Zj are
finite, we have the “ddfc” form. So, for example the
sixth entry states that a configuration structure is ax-
iomatisable by clauses of the form (finite,≤1) iff it
is closed under non-empty bounded intersections and
directed unions; this is essentially due to Larsen and
Winskel [14] as axiomatisations of the form (finite,≤1)
correspond to Scott information systems. The entries
with ⇐’s indicate that only the implication from right
to left holds.

We now show the validity of all entries of Table 3.1.
The implications from right to left are straightforward.
As an example we do the first one, leaving the rest
to the reader. To this end we show that the collec-
tion of models of a family of implications of the form
∧

X ⇒·∨j∈J
∧

Zj is closed under bounded non-empty
intersections. Suppose that {mi | i ∈ I} is such a col-
lection, with upper bound m′. Let m be the intersec-
tion of the mi; we must show it is a model. To this end,

choose one implication of the above form and suppose
that m includes its premise X. Then so does m′ and
hence there is a unique j in J such that Zj ⊆ m′; but
since, for any i in I, mi is a model with X ⊆ mi ⊆ m′

we have that Zj ⊆ mi. So Zj ⊆ m, and this must be
the unique such j as m ⊆ m′, since I is non-empty.

Next, for a counterexample to the implications from
left to right for the second, fourth and the last two
entries, take the collection of all co-singleton proper
subsets of the natural numbers. This is closed un-
der non-empty bounded meets, non-empty bounded
unions and directed unions. However any valid for-
mula of any of the forms (finite, ddfc), (finite, any) or
(≤1, any) holds also of the set of all natural numbers.

We now consider the converse implications, consid-
ering a configuration structure C = /

\E, C\
/ and showing

that various closure conditions on C yield correspond-
ing axiomatisations of C. We begin with the first “sta-
bility” entry, and suppose C closed under bounded
non-empty intersections. For any X ⊆ E, consider
the implication φX =

∧

X ⇒ ·∨ j∈JX

∧

γj , where γj

(j ∈ JX) is a 1-1 indexing of all minimal elements of
C that contain X. Since C is closed under non-empty
bounded intersections, every element of C that con-
tains X contains a unique γj (see ???). This means
that the implications are valid in C. So it is enough
to show that any model m of these formulae is in C.
Now m is a model of φm and so for some j we have
m ⊇ γj . But γj ⊇ m, so m is in C, as required.

In the third entry, we must show that C is axioma-
tised by the implications φx where x is empty or a
singleton, together with the valid clauses of the form
X ⇒ ∅. The conclusion will then follow, as X ⇒ ∅ is
equivalent to > ⇒ (

∧

X)·∨>.
So suppose that m is a model of these formulae; we

will show it is a configuration. First, m ⇒ ∅ cannot be
valid in C, and so m has an upper bound γ in C. Next,
in case m is empty, considering φ∅ we see that it is in C.
Otherwise, for each e in m, considering φ{e} we obtain
a configuration γe in C such that e ∈ γe ⊆ m ⊆ γ. But
now we have that γe (e ∈ m) is a non-empty bounded
collection of configurations, and so its union m is a
configuration, as required.

Let us now turn to the “prime” entries where closure
under non-empty intersections is always assumed. In
that case if there is a configuration containing a set
X ⊆ C, there is a least such configuration, γX . We
now show that in the first such entry, C is axiomatised
by the set of valid clauses of the form (any,≤1). Let
m be a model of this set; we have only to show that it
is a configuration. Since m does not satisfy the clause
m ⇒ ∅, that cannot be valid; so there is a configuration
containing m and γm exists. Now if e is in γm then

18

m ⇒ e is valid (by the definition of γm); so e is in m.
We therefore have that m is a configuration, being γm.

For the next entry, it is also assumed that C is
closed under directed unions. Let us prove that if a
clause X ⇒ Y is valid, then so is x ⇒ Y for some
finite subset x of X. (The result will then follow from
the previous axiomatisability result.) Suppose, for the
sake of contradiction, that no such x ⇒ Y is valid.
Then if x ⊆fin X there is a configuration containing x
but with empty intersection with Y . So γx exists and
γx ∩ Y = ∅. Further, by the definition of γx, we have
that if x ⊆ y ⊆fin X then γx ⊆ γy. But then, by the
assumption of the closure of C under directed unions,
⋃

{γx | x ⊆fin X} is a configuration not satisfying
X ⇒ Y , providing the required contradiction.

We now show that if C is closed under bounded,
non-empty unions (but not necessarily under directed
unions) then if a clause of the form X ⇒ Y is valid,
with Y empty or a singleton, then either X ⇒ ∅ is
valid, or x ⇒ Y is valid, with x ⊆ X empty or a sin-
gleton. Together with the previous result on closure
under directed unions, this will establish the correct-
ness of the third and fourth entries.

So, consider X ⇒ Y . If either X ⇒ ∅ or ∅ ⇒ Y are
valid, we are done. Otherwise, Y is a singleton, there
is a configuration containing X, and X is non-empty.
Suppose now, for the sake of contradiction, that no
e ⇒ Y is valid, with e in X. Then for e ∈ X there is a
configuration containing e and with empty intersection
with Y ; so γ{e} is also such a configuration, and it
is contained in γX . But now, by the assumption of
closure of non-empty bounded unions,

⋃

{γ{e} | e ∈
X} is a configuration not satisfying X ⇒ Y , providing
the required contradiction.

Turning to the “union” entries, we have only to
consider the case where C is closed under non-empty
bounded unions. We show that it is axiomatised by
all valid formulae of any of the forms e ⇒

∨

λ∈Λ
∧

Xλ,
or

∧

X ⇒⊥ or else > ⇒
∨

E. The result then follows
by expanding out the formulae of the first kind into
disjunctive normal form.

Let m be a model of these valid formulae. If it is
empty, then it does not satisfy > ⇒

∨

E; so some
configuration also does not satisfy this formula. That
configuration must also be ∅ and so equal to m. Oth-
erwise, we can assume that m is non-empty. Now, as
m does not model

∧

m ⇒⊥, that formula cannot be
valid, and so m is contained in some configuration, γ.
Next consider the formulae:

e ⇒
∨

λ∈Λe

∧

γλ

for e ∈ m, where γλ runs through the configurations

containing e. As these are evidently valid, m is a model
of them, and so we find for each e ∈ m a configura-
tion γe ⊆ m(⊆ γ). But then, by the assumed closure
condition, m =

⋃

e∈m γe is itself a configuration. With
this, we have established the validity of all entries in
Table 3.1.

A minor, but useful, variation on these results is
to restrict to rooted configuration structures (those
containing ∅); then in the last column one changes
“any” to “non-empty,” and “finite” to “finite and non-
empty” and “≤ 1” to “1”on the left of the implications
(but not the right). Further in the ???

We now consider axiomatisations of event struc-
tures. As the set-theoretic characterisation of event
structures involves other than closure conditions –
finiteness and coincidence-freeness, we do not expect
a precise result. Say that T axiomatises a configura-
tion structure C up to its standard part iff the standard
parts of C and C(T) are event isomorphic. The results
are given in Table 3; they hold both with and without
the parenthetical conjunctions; it is assumed that all
configuration structures involved contain ∅. For exam-
ple, the second row asserts that, up to standard parts,
the configuration structures of general event structures
are those containing ∅ and closed under non-empty
bounded unions (and directed unions), and are ax-
iomatised by formulae of one of the two forms: (1, any)
or (finite and non-empty, 0). The first row suggests
the intriguing possibility of a yet more general form of
event structure, corresponding to arbitrary configura-
tion structures.

19

Table 3: Standard part characterisations

unknown (
⋃

↑) (finite and non-empty, any)

general
⋃

(and
⋃

↑) (1, any), (finite and non-empty, 0)

stable
⋃

,
⋂

•(and
⋃

↑) (1, ddc), (finite and non-empty, 0)

prime
⋃

,
⋂

•(and
⋃

↑) (1, 1), (finite and non-empty, 0)

4 Petri nets

Definition 4.1
A labelled Petri net is a tuple /

\S, T, F, I, l\/ with
/
\S, T.F, I\/ a net and l : T → Act, the labelling function.

Labelled Petri nets are pictured by inscribing the label
of a transition in its corresponding box.

Definition 4.2 A net is said to be without arcweights
if the range of F is {0, 1}. It is safe if all reachable
markings are plain sets (as opposed to multisets) and
every transition has at least one preplace.

4.1 Unbounded parallelism

It is tempting to generalise the firing rule of Defini-
tion 1.12 to infinite multisets. The simplest imple-
mentation of this idea, however, yields infinitary mark-
ings, as illustrated in Figure 1. After all transitions ti

I: •

t0

•

t1

•

t2

•

t3 · · ·
s L: ∞

t•

t0

•

t1

•

t2

•

t3 · · ·
J:

•

t0

•

t1

•

t2

•

t3 · · ·

t

K:

Figure 1: Unbounded parallelism
(i ∈ IN) of net I have fired (in one step) there are

infinitely many tokens in place s, contrary to the def-
inition of a marking. One way to fix this problem is
to allow infinite markings. This, however, causes the
problem illustrated by the net L: after transition t has
fired countably often, are there tokens left to fire once
more? Such problems are best avoided by sticking to
finitary markings. Another solution is to allow a mul-
tiset of transitions to fire only if by doing so none of its
postplaces receives an infinite amount of tokens. This
would enable any finite multiset over {ti | i ∈ IN} to
fire initially, but no infinite one. A disadvantage of
this solution is that the nets I and J, which normally
would be regarded equivalent, have now a different be-
haviour, as in J all transitions ti can still fire in one
step. As a consequence, our forthcoming theorem that
any net is step bisimulation equivalent to a safe net,
or a prime event structure, would no longer hold; I
constitutes a counterexample.

Therefore we stick in this paper to the convention,
formalised by Definition 1.12, that only finitely many
transitions can fire in a finite time. As a consequence,
the transition t in net K can never fire and this net is
semantically equivalent to I and J.

4.2 Self-concurrency

In older papers on Petri nets a multiset of transitions
was allowed to fire only if it was a set, i.e., no tran-
sition could fire multiple times concurrent with itself.
The argument for this restriction was that a transi-
tion could be thought of as a subsystem like a printer,
that can only print one file at a time. When there
are enough tokens in its preplaces (representing print-
requests and other preconditions for printing) to han-
dle two files, these have to be printed one by one. This
argument has been convincingly rebutted in Goltz &
Reisig [8], and since then multisets are generally al-
lowed to fire. In any case, the behaviour of nets under
the self-sequential firing rule can easily be encoded into
the behaviour of nets under the self-concurrent firing
rule of Definition 1.12 by the following proposition.

Proposition 4.1 Any net N can be transformed into
a net N′ such that

20

• under the self-sequential firing rule N′ behaves the
same as N,

• in N’ we have M U−→ M ′ only if U is a set.

Proof: For any transition t in N add a self-loop, con-
sisting of a place st with I(st) = F (st, t) = F (t, st) = 1
and ∀u 6= t.F (st, u) = F (u, st) = 0. This yields the
required net N′. 2

Further on we assume the firing rule of Definition 1.12,
but indicate when necessary what has to be changed
in case the self-sequential firing rule is assumed.

4.3 Individual vs. collective tokens

There are two different schools of thought in in-
terpreting the causal behaviour of nets, which can
be described as the individual and collective token
philosophy.1 The following example illustrates their
difference.

A: • a • b •

In this net, the transitions labelled a and b can fire
once each. After a has fired, there are two tokens in
the middle place. According to the individual token
philosophy, it makes a difference which of these to-
kens is used in firing b. If the token that was there
already is used (which must certainly be the case if b
happens before the token from a arrives), the transi-
tions a and b are causally independent. If the token
that was produced by a is used, b is causally depen-
dent on a. Thus, the net A above has two maximal
computations, that can be characterised by the partial
orders a

b and a - b. According to the collective token
philosophy on the other hand, all that is present in the
middle place after the occurrence of a is the number
2. The preconditions for b to fire do not change, and
consequently b is always causally independent of a.

The individual token approach has been formalised
by the notion of a process, described in Goltz &
Reisig [8]. A causality respecting bisimulation rela-
tion based on this approach was proposed by Best,
Devillers, Kiehn & Pomello [1] under the name
fully concurrent bisimulation. Below we contribute a
few rather fine equivalences based on the collective to-
ken philosophy. That both philosophies yield incompa-
rable notions of equivalence follows from the following
example.

1The individual token interpretation of ordinary nets should
not be confused with the concept of Petri nets with individual
tokens; there the individuality is hardwired into the syntax of
nets.

B: • a • b •

In the collective token philosophy the precondition of
b expressed by the place in the middle is redundant,
and hence A must be equivalent to B. A and B are not
fully concurrent bisimulation equivalent however, as B
lacks the computation a - b. On the other hand, A is
fully concurrent bisimulation equivalent with C below.

C: • a b •

b•

In fact, C is the occurrence net obtained from A by
the unfolding of Meseguer, Montanari & Sassone
[15], mentioned in the introduction. In the individ-
ual token philosophy, both nets have the computations
a - b and a

b . However, A does not have a run a - b
in the collective token philosophy, and can therefore
not be equivalent to C in any causality preserving way.

4.4 1-Unfolding

Below we show that the restriction to 1-occurrence
nets is not very crucial; every net can be “unfolded”
into a 1-occurrence net without changing its behaviour
in any essential way. However, the unfolding cannot be
configuration equivalent to the original, as the identity
of transitions cannot be preserved.

Definition 4.3 Let N = /
\S, T, F,K, I, l\/ be a Petri

net. Its 1-unfolding N ′ = /
\S′, T ′, F ′,K ′, I ′, l′\/ into a

1-occurrence net is given by (for s ∈ S, t ∈ T , u ∈ T ′)

• T ′ = T × IN and l′((t, n)) = l(t),

• S′ = S ∪ (T ′ × {∗}),
• F ′(s, (t, n)) = F (s, t) and F ′((t, n), s) = F (t, s),

• F ′(u, (u, ∗)) = F ′((u, ∗), u′) = F (u′, (u, ∗)) = 0
and F ′((u, ∗), u) = 1 for u, u′ ∈ T ′ with u 6= u′,

• K ′(s) = K(s) and K((u, ∗)) = ∞,

• I ′(s) = I(s) and I ′((u, ∗)) = 1.

Thus, every transition is replaced by countably many
copies, each of which is connected with its environ-
ment (though the flow relation) in exactly the same
way as the original. Furthermore, for every such copy
u an extra place (u, ∗) is created, containing one ini-
tial token, and having no incoming arcs and only one
outgoing arc, going to u. This place guarantees that u
can fire only once. In any reachable marking of the un-
folded net, one can see exactly which transitions have
fired, namely those transitions u for which the place

21

(u, ∗) is empty. Hence every such marking has only
one configuration.

Note that the construction in Definition 4.3 does
not introduce self-loops. Thus unfoldings of pure nets
remain pure.

It is possible to give a slightly different interpre-
tation of nets, namely by excluding transitions from
firing concurrently with themselves.2 This amounts
to simplifying Definition 1.12 by requiring U to be a
set rather than a multiset. Under this interpretation
our unfolding could introduce concurrency that was
not present before. However, for this purpose Defini-
tion 4.3 can be adapted by removing the initial tokens
from the places ((t, n), ∗) for t ∈ T and n > 0 (but
leaving the token in ((t, 0), ∗)), and adding an arc from
transition (t, n) to place ((t, n + 1), ∗) for every t ∈ T
and n ∈ IN.

References

[1] E. Best, R. Devillers, A. Kiehn & L. Pomello
(1991): Concurrent bisimulations in Petri nets. Acta
Informatica 28, pp. 231–264.

[2] G. Boudol (1990): Flow event structures and flow
nets. In I. Guessarian, editor: Semantics of Systems
of Concurrent Processes, Proceedings LITP Spring
School on Theoretical Computer Science, La Roche
Posay, France, LNCS 469, Springer-Verlag, pp. 62–
95.

[3] D.M. Gabbay (1981): Semantic Investigations in
Heyting’s Intuitionistic Logic, Synthese Library 148.
D. Reidel.

[4] R.J. van Glabbeek (1995): History preserving pro-
cess graphs. Report, Stanford University, Available at
ftp://boole.stanford.edu/pub/DVI/history.dvi.gz.

[5] R.J. van Glabbeek & U. Goltz (1989): Equiv-
alence notions for concurrent systems and refine-
ment of actions. In A. Kreczmar & G. Mirkowska,
editors: Proceedings 14th Symposium on Mathe-
matical Foundations of Computer Science, Pora.............bka-
Kozubnik, Poland 1989, LNCS 379, Springer-Verlag,
pp. 237–248.

[6] R.J. van Glabbeek & U. Goltz (1990): Refine-
ment of actions in causality based models. In J.W.
de Bakker, W.P. de Roever & G. Rozenberg, editors:
Proceedings REX Workshop on Stepwise Refinement
of Distributed Systems: Models, Formalism, Correct-
ness, Mook, The Netherlands, May/June 1989, LNCS
430, Springer-Verlag, pp. 267–300.

2This distinction is independent of the individual–collective
token dichotomy, thus yielding four computational interpreta-
tions of nets.

[7] R.J. van Glabbeek & F.W. Vaandrager (1987):
Petri net models for algebraic theories of concurrency.
In J.W. de Bakker, A.J. Nijman & P.C. Treleaven,
editors: Proceedings PARLE conference, Eindhoven,
Vol. II (Parallel Languages), LNCS 259, Springer-
Verlag, pp. 224–242.

[8] U. Goltz & W. Reisig (1983): The non-sequential
behaviour of Petri nets. Information and Computa-
tion 57, pp. 125–147.

[9] J. Gunawardena (1992): Causal automata. Theo-
retical Computer Science 101, pp. 265–288.

[10] V. Gupta (1994): Chu Spaces: A Model of Concur-
rency. PhD thesis, Stanford University. Available at
ftp://boole.stanford.edu/pub/gupthes.ps.gz.

[11] V. Gupta & V.R. Pratt (1993): Gates accept con-
current behavior. In Proc. 34th Ann. IEEE Symp. on
Foundations of Comp. Sci., pp. 62–71.

[12] P.W. Hoogers, H.C.M. Kleijn & P.S. Thia-
garajan (1993): Local event structures and Petri
nets. In E. Best, editor: Proceedings CONCUR 93,
Hildesheim, Germany, LNCS 715, Springer-Verlag,
pp. 462–476.

[13] R. Langerak (1992): Transformations and Seman-
tics for LOTOS. PhD thesis, Department of Com-
puter Science, University of Twente.

[14] K.G. Larsen & G. Winskel (1991): Using infor-
mation systems to solve recursive domain equations.
Information and Computation 91(2), pp. 232–258.

[15] J. Meseguer, U. Montanari & V. Sassone (1992):
On the semantics of Petri nets. In W.R. Cleaveland,
editor: Proceedings CONCUR 92, Stony Brook, NY,
USA, LNCS 630, Springer-Verlag, pp. 286–301.

[16] R. Milner (1980): A Calculus of Communicating
Systems, LNCS 92. Springer-Verlag.

[17] M. Nielsen, G.D. Plotkin & G. Winskel (1981):
Petri nets, event structures and domains, part I. The-
oretical Computer Science 13(1), pp. 85–108.

[18] G.M. Pinna & A. Poigné (1995): On the nature of
events: another perspective in concurrency. Theoret-
ical Computer Science 138(2), pp. 425–454.

[19] G.D. Plotkin & V.R. Pratt (1988): Teams can
see pomsets. Manuscript available at
ftp://boole.stanford.edu/pub/DVI/pp2.dvi.gz.

[20] V.R. Pratt (1991): Modeling concurrency with ge-
ometry. In Proc. 18th Ann. ACM Symposium on
Principles of Programming Languages, pp. 311–322.

22

[21] V.R. Pratt (1994): Chu spaces: complementarity
and uncertainty in rational mechanics. Tech. report,
TEMPUS Summer School, Budapest. Available at
ftp://boole.stanford.edu/pub/DVI/bud.dvi.gz.

[22] D.S. Scott (1974): Completeness and axiomatizabil-
ity in many-valued logic. In L. Henkin et al., editors:
Proc. Tarski Symposium, AMS, pp. 411–435.

[23] G. Winskel (1987): Event structures. In W. Brauer,
W. Reisig & G. Rozenberg, editors: Petri Nets: Appli-
cations and Relationships to Other Models of Concur-
rency, Advances in Petri Nets 1986, Part II; Proceed-
ings of an Advanced Course, Bad Honnef, September
1986, LNCS 255, Springer-Verlag, pp. 325–392.

[24] G. Winskel (1989): An introduction to event
structures. In J.W. de Bakker, W.P. de Roever &
G. Rozenberg, editors: REX School/Workshop on
Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency, Noordwijker-
hout, The Netherlands, May/June 1988, LNCS 354,
Springer-Verlag, pp. 364–397.

A topic for future research will be to reconcile the
two interpretations by adapting the definitions of S, L
and R for impure event structures—without touching
the pure case—in such a way that S = R ◦ L holds
everywhere. This will involve extending the universe
of configuration structures as well. When this is done,
the current ones will be called pure.

5 From previous intro

Formulae In Section 3.1 we consider set systems
from the point of view of (infinitary) propositional
logic: E is now thought of as the set of propositions and
C as the set of models. Following Pratt [21] we ob-
serve a bijective correspondence between configuration
structures and infinitary propositional theories up to
logical equivalence. We give a number of results equat-
ing the closure of C under certain operations with its
axiomatisation by formulae of certain simple forms.

The left-closed interpretation corresponds with a
logical view of event structures as propositional theo-
ries. A somewhat different logical view was presented
in Gunawardena [9]. The precise relations with ours
are yet to be investigated.

Petri nets In Meseguer, Montanari & Sassone
[15], arbitrary (non-safe) Petri nets are unfolded into
occurrence nets. Their unfolding generalises the one of
[17] and preserves the behaviour of nets under a par-
ticular interpretation due to Goltz & Reisig [8]. We
call this interpretation the individual token interpreta-
tion. It follows that under the individual token inter-
pretation the behaviour of any Petri net can be repre-

sented by a prime event structure. An alternative way
of understanding the behaviour of nets is the collec-
tive token interpretation. In the latter view there are
nets which cannot be represented by an event struc-
ture, let alone by a prime one with binary conflict, or
an occurrence net.

In Section 4 we establish a connection between pure
nets and configuration structures. Pure nets are nets
without self-loops. We 1-unfold pure nets into pure 1-
occurrence nets, which generalise the occurrence nets
of [17]. These pure 1-occurrence nets are shown to cor-
respond with rooted finitary configuration structures
through translations in both directions. The trans-
lation from configuration structures to nets passes
through the propositional representation of configura-
tion structures. These translations preserve the iden-
tity of events and configurations, i.e. translating a con-
figuration structure to a net and back results in the
original configuration structure. Information is lost in
the translation of pure 1-occurrence nets to configu-
ration structures, but we argue that the behaviour of
nets expressible in terms of action occurrences and the
causal relationships between them—under the collec-
tive token interpretation—is preserved. Although the
translations can easily be extended to nets with self-
loops, the latter argument would no longer apply.

In future work we plan to extend our models and trans-
lations to match the expressive power of arbitrary nets
with self-loops. We also would like to connect our mod-
els with appropriate versions of higher dimensional au-
tomata [20].

Acknowledgment We thank Vladimiro Sassone for
helpful comments.

23

