Theoretical Computer Science 5 (1977) 223-255.
© North-Holland Publishing Company

LCF CONSIDERED AS A PROGRAMMING LANGUAGE

G.D. PLOTKIiN

Department of Artificial Intelligence, University of Edinburgh, Hope Park Square, Meadow I ane,
Edinburgh EH8 9NW, Scotland

Communicated by Robin Milner
Received July 1975

Abstract. The paper studies connections between denotational and operational semantics for a
simple programming language based on LCF. it begins wiith the connection between the
behaviour of a program and its denotation. It turns out that a program denotes L in any of severai
possible semantics iff it does not terminate. From this it follows that if two terms have the same
denotation in one of these semantics, they have the same behaviour in all contexts. The converse
fails for all the semantics. If, however, the language is extended to ailow certain parallel facilities.
behavioura: equivalence does coincide with denotational equivalence in one of the semantics
considered, which may therefore be called “fully abstract”. Next a connection is given which
actually determines ‘ne semantics up to isomorphism from the behaviour alone. Conversely, by
allowing further parallel facilities, every r.e. element of the fully abstract semantice becomes
definable, thus characterising the programming language, up to interdefinability, from the set of
r.e. elemcnis of “he domains of the semantics.

1. Introduction

We present here a siudy of some connections between the operational and
denotational semantics of a simple programming language based on LCF [3,5].
While this language is itself rather far from the commonly used languages, we do
hopc that the kind of connections studied will be illuminating in the study of these
languages too.

The first connection is the relation between the behaviour of a program and the
nature of its denotat:on. For us a program will be a term of ground type of an LCF
whose extra-logical constants are arithmetical. (Other possibilities for these con-
stants are considered later.) Its behaviour is given by an evaluation function which
specifies whether or not it terminates and its value when it does. It will be shown
that a program terminates iff it does not denote L. Its value, if it terminates, is that
specified by its denciation.

This kind of theorem has been proved in other cases. For example, systems of
recursion equations have been considered in [10], pure Lisp in {1], and maL, a
language of greater expressive power than aLGoL 60, in [4].

However more than one denctational semantics can be connected to a given
operational semantics in this way. The second connection allows rather more

223

224 G.D. Plotkin

restrictive requirements. Two terms (more generally, two members of the same
syntactic category in the specification of the language) are denotationally equiva-
lent iff in any environment they denote the same thing. It is natural to specify that
two terms are operationally equivalent if either can be removed from a program
and replaced by the other without altering the behaviour of the program. These
equivalences are induced by similarly defined quasi-orderings. We find that
semantic equivalence (quasi-ordering) implies operational equivalence (quasi-
ordering) but not conversely. The reason is that the denotational semantics allows
functions which require parallel facilities to realise while the programming lan-
guage is deterministic. However, we can now discriminate between different
denotational semantics by considering their closeness to the operational semantics
according to the various equivalence relations, or quasi-orderings.

Complete identity of all the relations is obtained by adding limited parallel
facilities to the programming language. The kind of parallelism considered does not
allow inconsistent (different) results in parallel computations. It remains an open
problem to find a denotational semantics whose quasi-ordering corresponds exactly
to the deterministic operational one.

Although it is probable that more than one denotational semantics can give the
same quasi-ordering as the operational one, nevertheless the denotational seman-
tics which we give for the language with some parallel facilities can be character-
ised, up to isomorphism, as the least such denotational semantics, in a sense to be
described.

Lastly we might consider how the operational semantics is determined by the
denotational one. It is clear that the first connection considered answers this
question since, if the connection is to hold, the evaluation function is completely
specified. A more interesting question along the same lines is whether keeping the
domains of the denotational semantics fixed we ought to add anything to the
programming language. The class of recursively enumerable elements of the
domains involved (see below) form a natural class to consider. It turns out that
while all the closed terms do define r.e. elements not all the r.e. elements are
definable. Hovever, adding one more parallel facility keeps all the nice properties
so far established and also allows all, and only, the r.e. elements to be defined. Of
course this is all really recursion theory, and indeed continues some work of Scott
{7] who needed a discontinuous search operator for his definability result. But it
also indicates how one might use denotational semantics to find facilities which may
have been unintentionally left out by the language designer.

Of course instead of inventing the programming language, we could have
interpreted these results directly in terms of LCF. However, we fee! that they
exemplify a programme for the investigation of programming languages which, in
fact, we learned from Wadsworth [11, 12]. In particular, we regard Theorems 3.1
and 4.3 as analogous for PCF of corresponding thecrems of his for the A-calculus.
Theorem 3.1 corresponds to that fact that in the standard Scott model of the

LCF considered as a programminy language 225

ABn-calculus a closed term denotes L iff it has no head normal form. Head normal
forms are a kind of weak normal form which capture our intuition about
non-termination for the A-calculus better than the usual normal forms. Theorem
4.3(2) corresponds to the fact that in that model two terms have the same
denotation iff embedding one in a context gives a term with a head normal form iff
embedding the other in the same context also does; Theorem 4.3(1) corresponds to
a sirailar fact. However, apart from the use of the Y”s below, the proof methods
are not directly analogous.

2. The programming language, PCF

PCF is a programiming language for computable functions, based on LCF, Scott’s
logic of computable functions [3]. The syntax of PCF is that of LCF, except that
only terms are considered and some of the terms are singled out as programs.

The set of types ic the least set containing ¢, ¢ and containing (o — 7) whenever it
contains o and 7. The Greek letters o and 7 range over types, (04,...,0.,T)
abbreviates (o, —> (2= * (3, — 7) - -)) (n =0) and ¢ and o are the ground types
(of individuals uad truthvalues respectively). The level of a type is defined by:
level{.) = level(0) = 0 and level(o — 7) = 1 + max {level (o), level (7)).

Starting with a collection # of constants, each having a fixed type, and
denumerably many variables a? (i =0) of each type, the &£-ferms are given by
the rules:

(1) Every variable af is an Z-term of type o.

(2) Every constani of type o is an £-term of type o.

(3) If M and N are #-terms of types (o — 7) and o respectively then (MIN) is an
£-term of type 7.

(4) If M is an L-term of type 7 then (Aa{M) is one of type (7 — 1) (i =0).

When £ is understood from the context it need not be used as a prefix. The
letters M and N, and, occasionally, other capital letters, possibly with sufices to
indicate type, will raage over £-terms, ¢ over &£ and « over the variables, x, y, z
will sometimes be meta-variables of type ¢ and p and g will ssmetimes be
meta-variables of type o.

FV (M), the set of free variables in M is defined by:

FV(a’)={a?}; FV()=0; FV((MN))=FV(M)UFV(N);
FV((Ac?M))= FV (M) {a?}.

The term M is closed if FV (M) =0 and open otherwise.

Terms of the form (MN) are called combinations and sometimes the brackets are
dropped, when they are understood as asscciating to the left; terms of the form
(AaM) are abstractions. Contexts are terms with one or more “holes™ in them

226 G.D. Plotkin

written as C[-, ...,]. They can be filled with terms of the appropriate type to give
a term: C[M,,...,M,]. We omit a formal definition.

[M,/a?]N is the result of substituting the term M, for all free occurrences of a7
in N, making appropriate changes in the bound variables of N so that no free
variables of M, become bound. We omit a formal definition and the derivation of
elementary properties.

The programs are the closed £-terms of ground type. The idea is that the ground
types are the datatypes and programs produce data (via the operational semantics).
The other terms are significant only as subterms of programs.

All languages, %, considered include %, the set of standard constants. These,
together with their types, are:

it:o,
ff:o,
D.:(0,t,4,t),
D, :(0,0,0,0),
Y. : ((oc = o)— o) (one for each o).
Generally we will be interested in a language £, for arithmetic which alsc has:
k. : ¢ (one for each integer in =0),
(+1):(t—>),
(=1:(=),
Z:(t—o0).

The operational semantics is given by a partial function, Evale, which gives
constants from programs. Evale is defined by means of an immediate reduction
relation, — < between terms by:

Eval, (M) =c if M 5 ¢, for aay program M and constant c.
&£

Here —£ is the transitive reflexive closure of —¢. For this definition to make
sense it is necessary thai M—.,c and M—¥%¢’ implies that ¢ and ¢’ are identical.
Notice that for constants, ¢, of ground tvpe Evale (¢) = c.

The definition of — »depends on &, and is given by some rules. These will always
include:

(§59) Dot MoN, — M,, D fM,N, — N, (o ground),
(12) Y. M —M (Y.M),

(13) (AaM)N) = [N/a]M,

LCF considered as a programming language 227

M? M’
(111) ,
(MN)—>(M'N)
M,—>M,
(1:2) = .
(O.M,)—2 (2. M5)

If =%, we also add:

(14) (+ 1k, = kmir (m =0),
{I5) (= Dkmsi 2 km (m =0),

(16) Zkopp 1t Zknn 22 ff,

N—=N'
£a

a13) (f Mis +1, —1 or Z).
(MN)> (MN')

The relation —, is actually a partial function, which is undefinec on constants
and so Evalg, is well-defined. Generally Evalg, is abbreviated to Evala and similar
abbreviations will be made elsewhere. This style of operational semantics is
different from the SECD style, although in fact an equivalent SECD-type semantics
could be given (cf. [6]). Here operational semantics is part of the provability
relation, e.g. if M—¢, N then M = N is provable in LCF togther with the axioms
for arithmetic [5]. Notice that, because of (I3), (II1) function calls are by name
rather than value.

Turning now :o the denotational semantics, we briefly recall some definitions and
facts. A fuller treatment containing proofs and other definitions can be found in [3)
which we are following with a few changes.

A subset X of a set D partially ordered by C is directed iff it is non-empty and
every pair of elzments of X have an upper bound in X.

A partial order (D,[Z) is a complete partial order (cpo) iff it has a minimum
element ip (or . if that causes no confusion) and every directed subset, X, of D has
a least upper bound, L1, X (or LJ X if that causes no confusion). (In [3] Milner takes
closure under lub’s of denumerabie chains rather than directed sets, but, as he
remarks, all of that paper goes through with closure under directed sets.)

A function f: D — E from a cpo D to another E is continuous ift f(LﬁDX) =
Ll {f(x): x € X} for all directed subsets of D. Then the set [D— E] of all
continuous functions in (D — E) is itself a cpo under the induced pointwise
ordering.

228 G.D. Plotkin

At the cost of some artificiality we could use complete lattices instead of cpo’s.
Example 3.5 shows what goes wrong if one uses them in the natural way. (A
complete lattice is a po in which every subset has a lub; if D, E are complete lastices
(and hence cpo’s), so is [D = E].)

A collection of domains for PCF is a family {D.} of cpo s, one for each type, such
that D,...=[D,— D.]. It is standard if D, is the truthvalue cpo T = {L,u,ff}

ordered as in Fig. 1.
u\\ /ﬂ‘
1

Fig. 1.

An interpretation of a language & is a collection, {D,} of domains for PCF
together with a mapping

oA:L-» U{D,}

which is type-respecting; that is if ¢ is a constant of type o, then #[c]is in D,.
Notice the use of decorated square brackuis when passing from syntactic entities to
denotational ones.

Such an interpretation is standard if {D,} is, £ 2 %, and:

Aln]=u,

A=K,
[x (if p = t)

Al 1p)x)y)= 'ly (itp=ff) (p€D., x,y €D, and o ground),
1 (fp=1)

ALY) =U o f (L) (FEDean)

n=0

Each #[c]is in D, for constants ¢ in %, of type o.
The standard collection of domains for arithmetic is the standard collection with
D.=N={1,0,1,...} ordered as in Fig. 2.

Fig. 2.

The standard interpretation of the crithmetic language, £a is the standard

LCF considered as a programming language 229

collection, {D,}, of domains for arithmetic together with the standard

interpretation,
i

; Aa 1 L — U{D,}
such that:

Aalk.]=n (n=0),
rx+1 (x=0)

Aa[(+ D](x) = (x € D),
L L (x=1)

x—-1 (x=1)
Aa (- D](x)= 3 (x €D.),
L L (x=1,0)
i (x=0)
AalZ)(x)=y fF (x>0) (x € D,).
LL (x=1)

Given an iaterpretation ({D, }, &) of £ we obtain a denotational semantics R4
for &.

First the set, Env, of environments is the set of type-respecting functions from the
set of variables to U {D,}. It is ranged over by p. If x € D,, then g [/a;] is that
environment p' such that:

d (a = ay),
p'ﬁal]={
pla] (a#al).

The denotational semantics </ : Terms— (Env— U {D,}) is defined by:
Ale?e)=plasl,
Alelp)=stlc],
ANMN)](p) = LIM1(p)(A [N T(p)),
Al(a?M)i(p)(x) = A [M](p[x/a?]). (x€D,).

This is a good definition and if p € Env; A [M](p) € D.. Further if & is a
standard intespretation all the axioms and rules of LCF are satisfied and &, also
satisfies the axioms for arithmetic. In particular, if M—¢, N then A [M(p) =
A [N](p) for all p.

Here and later we confuse &/ with ({D,}, &) and even oA

The following three assertions are made without proof.

230 G.D. Plotkin

If pla]=p'[a] for all @ in FV(M), then &?[[M]l(p)?&'iﬂM]I(p'). For
terms M and N, and any p, S[[M,/a?INl(p)=ALIN1(p[£LIM](p)/a?)). If
A[M](p)= L[N](p) for all p then for any context C[] for which M and N have
the appropriate type, &£ [C [M]1(p)= #[C[N]]1(p) for all p.
 Sometimes we will say that M defines (or denotes) f in the environment p, if
A[M](p)=f The reference to p is omitted if M is closed. The undefined
environment, 1, sends ay to Lp,.

3. Termination of PCF programs

The behaviour of a program, M, is determined by whether it terminates and its
value when it does; that is whether Eval, (M) exists and which constant it is, if it
does. From remarks made above, if Eval, (M) = c, then &4 [M J(L) = o[c]. So
here the behaviour of a terminating program determines its denotation. Our aim is
to fill the gap and show that nonterminating programs denote 1, demonstrating:

Theorem 3.1. For any Z.-program M and constant ¢, Eval, (M)=c iff
A IMJ(L)=Aac]

It is important here that a ground constant cannot denote L.

Theorem 3.1 could be proved directly by first establishing it for terms not
containing any Y, and then using Lemma 3.2 below. However, there is a more
flexible method, borrowed from proof theory [9], which allows easy extensions to
languages other than Z,, as will be seen. In proof theory the disadvantage of the
method is that it uses strong principles of proof and does not (directly) yield
information about certain proof-theoretic ordinals, as do methods involving proof
by induction on these ordinals. These do not constitute disadvantages for us, since
we have no inierest in using weak methods, and since no use is known for the extra
information provided by the other methods, which are also more difficult to carry
out [2].

The method is simply a proof of the required property by structural induction on
terms, which requires a suitable induction hypothesis at higher types. Predicates,
Comp,, are defined by induction on types by:

(1) If M, is a program then M, has property Comp, iff 4 [M](L)=a[c]
implies Eval, (M) = c.

(2) If M.., is a closed term it has property Comp ..., iff whenever N, is a
ciosed term with property Comp,, (M(,-..,N,) has property Comp..

(3} If M, is an open term with free variables a,, .. ., @, of types o, . .., 0, then it
has property Comp, iff [Ni/a]---[N./a.]M, has property Comp, whenever
N,,...,N, are closed terms having properties Comp,,, ..., Comp,, respectively.

A term M, is computable iff it has property Comp,. Clearly if M .., and N, are

LCF considered as a programming language 231

closed computable terms, so is (M. N,) and also a term M,, where o =
(o1, ..., 0n ') is computable iff M,N,,..., N, is computable whenever N,,..., N,
are closed computable terms of types o, ..., 0. and M, is a closed instantiation of
M, by computable terms. The latter assertion is proved by using clause 3 of the
definition if M, is open, and then clause 2 n times.

The only difficulty in proving all terms computable is caused by the recursion
operators, Y,. These can be approximated by certain terms Y, (n =0). Define
terms 2, by 2, =Y, (Aabas), 2, =Y, (Aasag) and Q.= Aaji),. Then the
terms Y¢ are defined by putting YP=QGo0)y and YTU=
(AaF~(af (Y ag™ ")),

Then L[Y.](L)=U{Z[Y?]: n =0} expresses the LHS as the union of a
denumerable chain, for any standard interpretation .

We also need some syntactic information. Let < be the least relation between
terms such that

1) 2, <M, and Y’ < Y,, for all o and n =0.

2) M, < M.,

3) If M., <M., and N, < N then (AaN,) < (AaN;) and (M., N;) =<
(M-~ Ns).

Lemma 3.2. If M < N and M— .M’ then either M' < N or else for some N’
N—-,N'"and M'< N'.

Proof. By structuial incuction on M and cases according to why M—,M'. [
Lemma 3.3. Every term is computable.

Proof. (1) Every variable « is computable since any closed instantiation, a, of it
by a computable term is computable.

(2) Every constant other than the Y,’s is computable. This is clear for constants
of ground type. Out of (+ 1), (- 1), Z, D,, D, we only consider (— 1) as an example.
It is enough to show {— 1)M, computable when M., is a closed computable term.
Suppose Aa (- DMY(L)=As[c]. Then c¢=k, tor some m and so
Aa[M](L)=(m +1). Therefore as M is computable, M—%k¢.., and so
(-DM-Xk.=c

(3) If M, _..,and N, are computable, s0 is (M ¢—n N). Xf (M., N,) is closed so
are M., and N, and its computability foliows from clause (2). If it is open, any
closed instant:ation L of it by computable terms has the form (M- No) where
M., and N, are such instantiations of M., and N, and are therefore
themselves computable which in turn implies the computability of L and hence of
(M o—r) N).

(4) If M, is computable so is (A@°M,). It is enough to show that the ground term
LN, -+ N, is computable when N, ..., N, are closed computable terms and L is a

232 ‘ G.D. Plotkin

closed instantiation of (Aa°M,) by computable terms. Here L must have the form
(Aa°M,) where M, is an instantiation of all the free variables of M,, except «”, by
closed computable terms. If &4 [LN,--- N,[(L) = sfa[c], then we have

Aa[Ni/a IMN;+ - N, J(L) = Sa[LN, - - - N, J(L) = Aa [c]

But [Ny/a] M, is computable and so too theretfore is [Ni//a] M,N. - - - N,. Therefore
LN, -+N,—4 [Ni/a]M.N,- - - N,—}¢, as required.

(5) Each Y, is computable. It is enough to prove Y,N,'::N, computable
when N;---N, are closed computable terms and Y.N,:---N, is ground
Suppose Za [YN; -+ N 1(L) = oa [c] Since a[Yo](L)= o sta [Y®D(L),
AL [Y™N; - Ne (L) = a [¢] for some n. Since #a [2,](L) = L for o ground,
Q, is computable for o ground. From this and (1), (3) and (4) proved above it
follows that every £, and Y{’ is computable. Therefore Y™ N, - -+ N,—X ¢ and so
by Lemma 3.2, Y,N,---N,—%c, concluding the proof. [

Theorem 3.1 follows at once from previous remarks and Lemma 3.3.

The denotational semantics {4 determines the operational semantics Eval,, if
we require Theorem 3.1 to be true, for at most one partial function Eval, from
programs to constants can satisfy the statement of the theorem. Of course, Eval,
can be defined in many ways, some of which, no doubt, give faster algorithms than
the one provided by the definition from — 4 (cf. [10, 11]). In the last section it will be
shown how starting with the collection of domains {D,} above one can determine,
to an extent, what ¥, and /4 and hence Eval, ought to be.

In the other direction, the mere requirement that Theorem 3.1 holds by no means
detersines &4 and 4. Some examples follow.

Example 3.4. Take the standard collection of domains {D,} generated from
D, ={1,0,1,...,»} ordered as in Fig. 3.

The interpretation &, is determined by the conditions for &4 together with:
S [(+ Do) = oA, [(— 1)]() = o, [Z]() = ff. Although &, is not a model of
the axioms for arithmetic, it is quite straightforward to modify the previous proof of
properties of s/ to show thai if Eval, (M) =c then si[M](L)= [c]. The
proof of the converse goes through word for word as above. However, it does not
follow that if a program does nct terminate that it denotes L, since it might denote

o, However this can also be ruled out by amending the first clause in the definition
of Comp, to:

LCF cansidered as a programming language 233

(1') If M, is a closed term of ground type then 5, has property Comp, iff either
M, (L) = [c] and Evala (M,) = ¢ or else s[M, I(L)=1.

Then only a slight change in part 2 of the proof of the computability lemma is
required.

Example 3.5. Take the collection of domains generated from Do,=T* and
D, =N"where T* ={L, T, ff} andN* = {1, T, 0, 1,...} are ordered as in Fig. 4:

N //l\

\/

Fig. 4.

The interpretation &, is determined by the conditions for &4 together with:
A 2. U(T)(x)(y)=T (x,y €D,),
A4 +1[(T)=[-1N(T)=T,
AIZI(T)=T.

The correspondence between the behaviour of a program and its denotation
according to &/, is similar to that of Example 3.4 and is left to the reacer. This
example would be a natural denotational semantics to use if only complet:: lattices
and not other cpo’s were considered. In the next section it will be shown how the
standard semantics corresponds more closely, in a certain sense, to Evala then &,.

4. Equivalence of PCF terms

Since i¢rms are only of interest insofar as they are part of programs, we can
regard two terms as operationally equivalent if they can be freely substituted for
each other in a program without affecting its behaviour. Therefore given Eval, we
define operational equivalence, =¢ by:

M,=¢N, iff whenever C[M,] and C[N,] are programs either both of
Evale (C[M,]) and Evale (C[N,]) are undefined or else both are defined and
equal.

It requ.res a little proof to show that =~ is an equivalence relation. Alcag the
same lines an operational quasi-order, C¢ can be defined by:

M, C. N, iff whenever C[M,] and C[N,] are programs then if Eval, (C[M,]) =
¢ so does Evale (C[N,]).

Clearly, M,=¢N, iff M,C N, and N,C¢M..

It is natural to compare C < and =~ with the relations C ., =, between terms
dcfined by:

234 | | G.D. Plotkin

M,C.N, iff Z[M.,1(p)CLIN.,1(p) for all p,
M‘,EMNO- iff M,,;,ggN,, and No;dMa.

This concern is the second connection between operational and denotational
semantics. Hopefully C ¢ and C ., will coincide and so will = ¢ and = In the former
case, we say that o is fully abstract, relative to Evale.

Under fairly general circumstances the denotational relations are included in the
corresponding operational ones.

Theorem 4.1. Suppose that A is a model of Evalg in the sense that if Evale (M) = ¢
then 4 [M (L) = o [c]and suppose too that if £ [M 1(L) 3 s [c] for a program M
then A[M](1)= £ [c]. Then the following are equivalent:

(i) For any program M, [M1(L)= s[c] implies Evals (M) = c.

(2) For any terms M., N,, M,C 4N, implies M,C ¢ N,.

(3) For any terms M., N,, M,=4N, implies M,=~:N.,.

Proof. (1) = (2). Suppose C[M,] and C[N,] are programs and
Evale (C[M,])=c. Then [CIN,]I(L)2L[C[M.]11(L)= L[c]
Therefore from hypothesis and (1), Evale (C[N,])=c.

(2) => (3). Trivial.

G)=> (). If 4[M](L)=L[c] then M=, . Therefore M=gc.

As Evale (¢) = ¢, it follows that Evale (M) = c.

From the previous section we know that the hypotheses of this theorem and (1)
are satisfied by all of o, ,, s,. Therefore if M,C 4 N,, M,C, N, or M,C, N, then
M.C AN, for any terms M, and N, and similarly for =, and =,.

Unfortunately the converses do not hold. For a counter-example, define M,
(i =0,1) by:

M, = Aa D, (attd,)(D. (af.tt) O. (FfF) (2.) (k:) (2.))(2)

where a has type (o, 0,0). The terms M, are, perhaps, more comprehensible if
written diagrammatically as in Fig. 5.

(attQ2,)
/ \+
0, (a/ Q.un)

Q, (effff)
/N
k. 0

Fig. 5.

LCF considered as a programming language 235

We are going to show that My~ , M, but neither M,C M, nor M,C M, when L is
any one of C 4, C, or C..
For Ca, C, define Vin D,,, by Table 1.

Table 1

vV | L Jii t

L |lLr 1
f L)i 4
n | a o
Then #a [M;](1)(V)= k; and similarly for ,.
The same thing works for C; if we define V* by Table 2.
Table 2

vl L Jid tt T

L 1 1 u i
il 1 F u T
" " t 3 i
T 13 T it T

Thereforc M, and M, are incomparable by any of C 4, C: or C.. On the other
hand M,= 4 M,. To see this it is necessary to gather some information about — ,.

The active subprogram in a program M, if any, is defined by:

(1) If M has one of the forms ((AaM,)---), (Y ---), ((+1)c), ((— 1)c), (Zc) or
(D.c - -+) then M is the active program in M.

(2) If M has cne of the forms ((=1)M,)(ZM,) or (DM, - - -) where M, is not a
constant, the active program in M, if any, is the one in M, if any.

Notice that if a program has no active program it is a constant and that if a
program terminates and has an active program then the active program also
terminates.

Lemma 4.2. (Activity lemma). Suppose C[M,,..., M,] is a terminating program
with value ¢, containing closed terms M,,...,M,. Then either C[M;,...,M,]
terminates with value c for all closed terms M. ...,M, of appropriate type or
else there is a coutext D[,...,] and an integer i, 1<i<m, and integers
di,...,d. such that for all closed terms Mji,...,M, of the appropriate types,
C[M.,...,ML]1>%D[Ml,...,M4] and the active program in D[Mi,...,M4]
exists and eisher is the active program in a term of the form (M- - -), or else has one of
the forms ((=1)M?), (ZM?) or (D Mi---).

Proof. We omit the proof which is a straightforward induction on n, where
C[M,,...,M,,]=Ny—,--—4N,=c, for appropriate N,..,N,. [

236 G.D. Plotkin

Now suppose C[M,] and C[M,] are programs, that C[M,] terminates and
C[M,] if it terminates does so with a different value. By the activity lemma applied
to C[M,], C[M,]—XM and the activc program in M.exists and terminates and
since M, has type ((0, 0,0), 0) it has the form (M,L). From the definition of M, it
follows that the programs L, LQ,tr and L{fff terminate with values #, # and ff
respectively. Applying the activity lemma to C'[#t, {2,] = Lit{2,, since {2, does not
terminate either Evals (LMgNg)=1n for all M; N; or else for all M)N/,
LM;N;—% some program M whose active program is the active program in M; or
else has the form (O,Mj- -) and terminates if LM N does. The first possibility is
ruled out because Evala (Lfff) = ff and the second because L 2, terminates but
0, does not. This contradiction proves that M,C 4 M;; M C 4 M, is proved in the
same way.

If we require that denotational and operational semaniics provide the same
equivalence relations and the appropriate analogue of Theorem 4.1 holds then we
must therefore reject &4, &, and .. If we want to choose between them according
to the closeness of = to = ,, it will be seen later that &/, is preferable to &/, and &/,
and thcy are incomparable.

It should be noted that examples like the M; can be given in ALGoL 60 if the
parameters of type o and ¢ are called by name; other examples at higher type can
be given if these are to be called by value.

One practical consequence of such mismatches is an unpleasant incompleteness
phenomenon in program proving systems. If we wish to prove an = relation, but
our proof system is based on axioms about =, we might not be able to prove
equivalences, such as M, = M; which on other operational grounds can be fairly
easily seen to hold. Further, proofs of #. relations may not even be valid.

The basic difficulty is that the collections of domains considered allow such
““parallel” functions as V or V* whereas — 4 provides a deterministic operational
semantics as is shown by ihe activity lemma: if a “‘subprocedure” is called first the
corresponding one is also called first in corresponding programs.

One way to close the gap would be to define a “smaller” collection of domains
containing only functions capable of deteriinisiic realisation and starting with
D, =Nand D, = T. Vuillemin in [10] detined a notion of sequential function which
seems appropriate for typcs of the form (o, . . ., 0.) with the 6,’s ground, but not at
higher types since everything in D _.,.. is sequential. We leave this as an open
problem.

It will prove more fruitfu! to extend £4 by adding some parallel facilities and also
extend of,, & amd of,. First it is convenient to change notation slightly by
replacing the subscripts A, 1, 2 by DA, D1, D2 respectively.

The new language Zpa consists of $pa together with two parallel
conditionals:

:De (0,0, 0,0) (o ground).

LCF considered as a programming lirguage 237

Th: operational semantics is given via —,, which is specified by the rules for
— ¢, together with:

(I7) :D.Mcc —pac, D MMN—paM, :D,ffMN-> s N

(113‘9 M"‘)pAM' N—)pA N' L“"pAL,
g oM —-ps : DM’ :D,MN—p, : D, MN"” D, MNL—,, :D,MNL"

Clearly —p, is non-deterministic. It is not hard toc show that it M,—ps M,
(i = 2,3) then there is an M, such that for each i either M; = M, or else M;—p, M..
Therefore — 34 has the Church-Rosser property and Evalg,, is well-defined.

Apa : Lea — U {D,} is the extension of &, such that:

x (p=u)
_ _ly @=1)
dpAﬂ’Dﬂﬂ(p)(x)(Y)— X (p=_Land x=y) (pEDo,x,YEDL)-

L (p=Landx#y)

Note that .Zp. is an extension of .sffm. The deterministic conditional D, can be
simulated by:

Aprairas(: D.p (: Dopaifd,)(: D.plla?))

which has the same denotation as D..

Also V is defined by ApAq (: D.puq).

The analogue of Theorem 3.1 holds, the proof in one direction being easy aad in the
other direction requires only a slight addition to part 2 of the proof of the
computability lemma:

To show that :D, is computable consider :D,L,M,N, where L,, M, and
N, are computable and suppose pal:D.L.M,N,[(L)=dpa[c]. Either
Aea[LJ(L)=1t and '5;«"4 IM,](L)= spallc] or else &‘QPA [L.J(L)=f and
ApalN1(L) = Healc] or else Hpa[M,](L)= pa[N,J(L)= Lealcl

In the first case : D, L.M,N,—%4 : D tM,N,—ps M,— 54 ¢, and similarly in the
second case. In the third case : D, L.M,N,—%4 DoL.cN,—%4 D, Lec—pa ¢, which
concludes the proof that: D, is computable.

The definitions of &fp, and 5, and their properties are now fairly clear and are
left to the reader.

We now have an example of a pair of semantics which provide the same partial
orders and equivalence relations:

Theorer: 4.3. (1) For any Lea-terins M, and N,, MC 4, N iff MCea N.
(2) For any Lpa-terms M, and N,, M=, N iff M=ps N.

The proof requires some information on the collection of domains {D,} in e,
and the elements in these domains definable by Fpa-terms.
An element d of a cpo(D,C) is finite iff whenever d [Z Li, X for a directed X,

dLC some ¢ in X.
g

238 G.D. Plotkin

A cpo(D,C) is algebraic if, for each x, the set {d C x: d finite} is directed and its
lub is x.

If d, e are finite members of D and E, then (d = e¢) is the member of
[D — E] defined by:

@=>am={% 39

A cpo D is consistently complete iff waenever x and y in D have an upper bound
they have a least upper bound, x Lly.

If D and E are consistently complete cpo’sand d,,. . ., d, are finite elements of D
and ey, ..., e, of E it is not hard to see that the set {d = e;} has a least upper
bound in [D - E] iff whenever a subset of {d;} has a lub so does the corresponding
subset of {e;}, and then the lub is given by

L{d, = e}(x)=U{e:xd:}

Lemma 4.4 (Scott). (1) T and N are consistently complete algebraic cpo’s.

(2) If D and E are consistently complete algebraic cpo’s so is [D — E].
Its finite elements are all ub’s of finite sets of elements of the form (d == e), with
d, e finite members of D and E respectively.

Proof. (1) Obvious.

(2) Suppose f, g in [D — E] have an upper bound h, then for any x, h(x) is an
upper bound of f(x) and g{x) and so as E is consistently complete we can define a
function k : D — E by

k(x)=f(x)ug{x) (x€D).

Clearly k is the lub of f and g in [D — E]. So[D — E] is consistently complete.

Now suppose (d =>> e)C UF where F is a directed subset of [D — E]. Then
e =(d => e)(d)C(UF)(d)=Uerf(d). As e is finite, e C f(d) for some f € F.
Then (d == e)LCf. Therefore (d => e) is finite and it follows that any lub of a
finite set of elements of the form (d => &) is also finite.

Take f € [D — E] and consider the set F = {LI F’: F' is a finite set of elements of
[D — E] of the form (d =>> e) and C f}. It will be shown that f = U F. Clearly if
f'€F then fOf', so LUF exists and f JUF. To show that fC (Ll F), take x € D
and a finite element e C f(x).

Then

eCf(xy=f(U{de D: d finite and Cx})
= U{f(d): d finite and C x}.

Therefore for some fimte d Cx, e f(d). Therefore (d => ¢)Cf and as
(d == e)EF, (UF)(x)2d. As d was arbitrary, (LIF)(x)2f(x).

LCF considered as a programming language 239

Now if f is finite then as F is directed, f is the lub of a finite set of elements of the
form (d = e), as required.

Therefore if instead f is an arbitrary member of [D — E], F is the set of all finite
members of [D — E], Cf. As f = UF, [D — E] is algebraic, concluding the proof
of the lemma. [J

So each D, is a consistently complete algebraic cpo. From Lemma 4.4 and the
fact that d = (eUe’)=(d => e)U(d = e’), one side existing iff the other
does, for d a finite member of a consistently complete cpo, D and e, e’ of another,
E, the finite members of D, are lub’s of finite subsets F of D, such that:

(1) Each element of F has the form (e, = -+ = (e. == d)---) where
es..., e, are finite elements of D,,,...,D,, and d € D, is not L.

@ Ife,=> - => (e =>d)--)and(ei=> - = (e, => d'}--")
are in F and e,Ue},...,e, e, exist then d =d'.

Here o = (a4,..., 0 7) With 7 ground.

Also a set F satisfying (1) has a lub iff it satisfies (2).

Lemma 4.5. Every finite element of each D, is definable by an Lpa-term.

Proof. The proof is by induction on types and shows that if e, y are finite elements
in D, then e,e => # and, if it exists, (¢ => #t)U(f => ff) are definable by
Zpa-terms.
o=o0: 1,1t and ff are defined by {2, t, and ff.

L= tt,# = tt and ff = 1t are defined by Aptt,

Ap(D.pit€2,) and Ap(D,piL.ff), respectively.

t = n)U = ff) and (f =)t = ff)

are defined by App and Ap(D,pfftt).
oc=1t¢: 1 and n are defined by {2, and k..

L => 1t and n => 1 are defined by Ax#t and

Ax (D,Z((— 1)"x)utd,); (k. => tt)U(k, => ff) and

tk, = tt)U(k., = [f), where m <n, are defined by

Ax (D, (Z((— D" x D1t (2. (Z((— 1)"x)) f£2,)) and

Ax (Do (Z((— 1) x D Oo (Z((— 1)"x)) 2142,)).
o =(0,...,0.,7) with 7 ground: Suppose e and f are lub’s of finite sets F, F' as
explained above. To show that e,e = tt are definable we use induction on the
size of F and then show (e = #)U(f => ff) derinable, if it exists.

For e, if F =0, e is dcfned by (..

Supposs F#@. If there are e, = -++ => e, =>> d and e¢; = =
e, =>d'" in F such that for some i, eLle; does not exist then
(& =>> 1)U (e} = ff) exists and is definable, say by M,. Also U(F~{e, =
coo => d}) and U(F<{e} => --- = d'}) are definable by, say. F, and F..
Then U F itself is definable by:

Al Aal (D, (MiaT)(Faf - ap)(Fraf- - a?)).

240 G.D. Plotkin

Otherwise if e, = - ==> d and ¢1 == -+ = d' are in F then d = d’,
and all the ¢, U e!’s exist. Take e, => -+ => e, => 4 in Fandlet E,,.. ., E,,
D, F, define (e, => #t),...,(e. == 1t), d and LUF \{e;, => -+- == d}. Then
U F is defined by

Aaf - Aag(: D, ((E1aT*)AND -+ - AND (E.a:"))D (Fiaf - - ai)).

Here AND is the term ApAq (D.p (D.q#ff)ff) and is used as an infix.

For e = t,if F =9, ¢ is defined by Aa“tt.

Suppose F# @ and takee;, => -+ == e, = din FandletE,,...,E,, D,F,
define ey,....e,, d = tt, (UF<{e;, = -+ => d}) => #t respectively. Then
¢ = tt is defined by:

Aa® (D, (D(a’E, - E.))(Fia®)).

If (¢ == n)U(f = ff) exists, eLIf does not and so there are e, =>
cv»=> e =>d in F and e1=> ---=> e, = d' in F’ such that
eiUel,...,e.LUe, exist but d#d'. Let E,,..,E,F,F;, D define
(eilel),....(e.Uer), e = tt,f == tt,(d = nt)U(d’ => [f)respectively.

Then (e == u)U(f = ff) is defined by:

Aa® (D, (D{a’E,;- - E.))(Fia”)(NEG(Fia")))

where NEG is the term Ap (D, pfftt).
This concludes the proof of the lemma. [J

It is now possible to prove Theorem 4.3. First suppose M, and N, are Fpa-terms
such that M, Cea N, but M, Z 4. N,. Suppose too that M, and N, are closed and
define f and g, respectively, in D, where o = (g4,...,0,, 7) with 7 ground. Then
f Z g. Therefore there are x,,..., %, in D,, ..., D,, such that f(x,)---(x,)# L and
f(x1)- - (x.) # g(x1) - - (xx). Since D,,, - - - D, are algebraic and every element of
D; is finite we can assume that x,,..., x, are finite and so, by Lemma 4.5 can l;e
defined by closed £pa -terms X, . .., X, say. Then, by the ana'ogue of Theorem 3.1,
M,X,; - -- X, terminates in a constant ¢ and, if N, X, ..., X, terminates it does so in
a different constant. This contradicts M,Cp.N, and therefore for closed M,,
N,, if M,CpsaN then M,C,..N, For open M, N, with free variables
{ai,...,a.}, we have M,Cpa N, implies Aa;- - AanMCpalda; - Aa. N implies
Ao AanMT oy Ay - - Aa. N implies M,C,,N,. That M,C.., N, implies
M.Cpa N, is already known from the remarks on sf-. above, and the rest of
Theorem 4.3 is immediate.

Now we shall see that the analogue of theorem 4.3 does not huid for either &5, or
Ap> and so we prefer the denotationai semantics for $p4 given by o, to either of
the 4p;, if we want a good correspondence with Eval,,.

For oz consider the term N =Y _.,(Aarx (D, (Zx)ko(a((— 1)x)))). Then
N=p, {Axx) as N=p, (Axx). But since &%.[[N]](.L)(oo) = 1, N#p;(Axx). Note too
that N=p,(Axx).

LCF considered as a programming language 241

For s, consider the terms N; and M; (i = 0,1) defined by: N, = Ap (D,ptt(},),
which defines (#t = #)U(T => T) and N,= Ap(DO.pL.ff) which defines
(f = f/)U(T => T) in the collection of domains {D,} given by fp..

Let

M, = (Aa (D, (@No)(2. (aN,) 2,1t) 2,)),
M, = (Aa (D, (aN,)(D. (aN\)) 12,)),

where a hastype (0 »o0)—o.Let h =((it = 1) = tt)U((f = ff) = f)
‘vhich exists as D {,..).0) iS a complete lattice.

Then e[Mo](L)(h) = tt# ff = Ap,[M,](L)(R). Therefore Mo#p; M,.

Switching to the collection, {D,} of domains for s, N, and N,
define (¢t ==> 1t) and (f = ff) respectively. Suppose h is D oo).). If
Sra [M,J(L)(h)# L then h(t => #)=1t and h(f => ff)=ff, which is a
contradiction as then h((t = u)U(f = ff))2t, ff. Thereiore M,=;, (2., for
the appropriate o and similarly M,=;, 2,. Therefore My#p, M, but My=~p, M,.
Note too that Mc=p, M,.

Returning tc £pa for a moment we can now verify an earlier claim. For any two
Zpa terms M,, N, we have M Cp N implies MCpx N implies MCp. N implies
MC,a N imp'ies MCpa N for i =1,2 and by the notes above since the various
counterexamples do not use a : D,, neither of Cp,, Cp; are included in the other.

We now consider to what extent interpretations of %, are restricted by
requiring that they be fully abstract relative to Evalp4. The answer depends on the
class of interpretations considered. For example, we shall see that any fully abstract
standard interpretation of Fps is isomorphic to &ea, but there are fully abstract
interpretations of a more general kind which are not isomorphic to #».. However
sdpa will stand out as a kind of weak initial element in the category formed from the
fully abstract general interpretations.

First of all we choose a convenient notion of general interpretation. A general
collection of di.mains for PCF is a family {D,} of cpo’s, one for each type and a
family {Ap7} of continuous maps, one for each pair of types such that:

Ap?:[D.-.—[D,— D.]].

When convenient we shail drop the Ap?’s and wriie f(x) instead of Ap7(f)(x).
Such a colle-tion is pointwise ordered iff for any types o, 7:

Vf,geD,.., fCg iff (VxED,,fx Cgx).

Clearly any collection of domains for PCF provides a pointwise ordered general
collection, if we take tl.. Ap7’s to be ordinary application.

A generali interpretation of £ is a general collection of domains ({D, },{Ap7}) for
PCF together with a type-respecting map,

o : Terms — (Env— U {D, D,

242 G.D. Plotkin

(where Env is ¢he set of type-respecting maps from the set of variables to U {D.}))
such that:

@ Llale)=plal, ,

@) AI(Moer.No)I(p) = L IM o]0) IN1(p))

(3) if M is closed & [M](p) is independent of p.

Sometimes & will be confused with the whole general interpretation
(4,{D,},{Ap?}). Clearly any interpretation provides a general interpretation. If a
general interpretation is 2 model of B-conversion, then we have:

(3)) If p and p’ have the same values on FV (M,) then A[MIp)=LI[M](p").

For, :

A[MIp)=A[(Aa:- - AanM)a; - a.](p) (by B-conversion)
= d[(Aar- - M) (E[:](p)) - (#[en](p)) (bY)
= sd[(Aa;- - 2a.)M 1) (p'[a:]) -~ - ([1)
(by (1), (3) and assumption)
=A[M](') (by (1),(2) and B-conversion). |

A general interpretation, &f of & is fully abstract relative to Evale iff for all terms
M, N,:

M,C¢N, iff (VpEEnvL[M](p)C L[N1(p)).

The ccadition on the right is written as: MC 2 N; M =4 N has the cbvious meaning.

With the evident definition of product one can show that the class of fully
abstract general interpretations of £ is closed under the product operation.
Therefore, for example, sps X Hpa is fully abstract, but not isomorphic to pa.

To compare general interpretations, we introduce a convenient noticn of
morphism. Suppose (,{D,}, {Ap?}) and (B, {E,},{Ap<’}) are general interpreta-
tions of Z.

A morphism @ : o — B is a collection of continuous maps, @, : D, — E, such
that:

(1) &.(Ap7if)(x))= Ap (P o (f)) (P, (x)) (for any types o and 7; f in D,_.,
and x in D,),

Q) O, (A[M, I(L)CBIM, W L)(M, a closed term of type o),

(3) D, (IM, I(L))=R[M,](L)(M, a program of type o).

Here L is the environment such that L(a°)= 1, If & and 9 are models of
B-conversion, one can prove a stronger version of (2):

2) ®o(AIM,]1(p))C BIM,I((U @)op) (M, any term of type o).
The identity morphism on & is Ids = {Idp,} where Idp,{x)=x for x in D..
Composition of morphisms is defined by @o¥ = {®,o¥,}. Thus we have a
category of general interpretations of a given language <.

LCF considered as a programming language 243

If @ : o/ — B is an isomorphism, then T can be replaced by = in condition (2)
and, consequently, ir condition (2').

Theorem 4.5. (1) If B is a general interpretation, which is fully abstract relative to
Evalpa, then there is a monomorphism @ : s — 3.

(2) If 4 is a general interpretation, which is fully abstract relative to Evalp,, and it
has the property ascribed to s in 1 then there is a unique isomorphism
D: &k}m -> &?.

First we check that the set on the RHS is directed. Suppose BIM.J(L) is in the
set for i = 1,2. Then each &4 [M;](L)C x and so by Lemma 4.4 there is a finite
Apa [M](L), where M is closed, such that e, IM (L) Hea [M](L)E x for
i =1,2. Then as ;4 is fully abstract M;[Cpa M and so AIM I(L)CBIMI(L) for
i = 1,2 as required, for B is fully abstract too.

Next we establish condition (2) for ¢ to be a morphism. Tiis follows at once
from the definition of @, and the fact that if M, M’ are closed terms such that
Apa [M'J(L)C Hoa [MI(L) then B[MI(L)SBIM'](L), as HAra and B are
fully abstract.

Now, if M, defin:s a finite element of D,, we can see that

@, (spa [M. 1(L)) = BIM. I(L).

This follows from condition (2) and the definition of @,. It establishes condition
(3) for @ to be a morphism and shows that for x in D,, @, (x)=U{P,(d): dTx
and finite}. This last remark implies that @, is continuous.

For condition (1) we calculate,

@, (f(x)) = LH{D, (f'(x’)): f',x’ finite and C f, x respectively} (@, is continuous)

= LU{®D, (Fpa [FI(L)(Hpa [X[(L))): F and X are Lpa-terms
defining finite elements C f, x respectively}

= U{(pf (&?PA ﬂFXB(-L)) v }
=U{B[FX](L):---} (each FX defines a finite element)
= L{ApI(BIFIL)@BIXT(L)): -+ -}

= Ap?(U{B[F](L): F defines a finite element C f1)
(LU{BTX](L): X defines a finite element T x})
(Ap? is continuous)

= Ap7(D o—a: (NP5 (x)).

244 ‘ G.D. Plotkin

Therefore & is indeed a morphism. To show that it is a monomorphism it is
enough to show that each @, is 1-1. This is clear for o ground since then all
elements D, are definable and we can use coadition (3). Suppose the @, are 1-1 for
i = 1, n. We show that &, is also 1-1 for o = (o4, . . ., 0w, 7) With 7 ground. Suppose
@, (f)= @, (g) for f,g € D,. Take x1,...,%, in D, ..., D,, respectively.

Then

D, (fx %)= Dy (f) Do (x1) + + P, (0) (by condition (1))
=@, (gx1" " Xn)

andso as @, is i-1, fx, -+ - x, = gx; - - - X.. Therefore &, is 1-1 and by induction @ is
a2 monomorphism.

(2) Let & be such an interpretation. Let & : Apa — 4 be the monomorphism
given in part I and let @": A — dpa be any monomorphism — and one exists, by
hypothesis. A straightforward induction on ¢ using conditions (1) and (3) shows
that op4 is rigid in the sense that the only morphism ¥ : Apa — lea is the identity.
Therefore P'o @ is the identity, and as @' is a monomorphism so is P P’'.

This concludes the proof. [

Presumably the @,’s defined in part 1 of the proof are not unique in general, so
that we cannot expect &lpa to be the initial object in the evident category. At any
rate the theorem does characterise ofpa as a kind ot weax initial object.

Theorem 4.7. Let (A, {E,},{ApZ}) be a pointwise ordered general interpretation of
Lrea, which is fully abstract relative to Evalpa. Suppose too that o[Yo l(L)() =
Ll.oof*(L) (f in E,.)) and that there are elements T and F in E .., such that:

{a‘«ﬂtt.nu) (if xZLIFIL)),
T(x)=

L (otherwise),

{ﬁﬁﬂ(l) (f x 2 [}(L)),
F(x)=

(G (otherwise).

Then A is isomorphic to Apa.

Proof. In this proof, we confuse ciused Fpa terms with their denotations and will
continue to drop Ap7’s when convenient.

We begin by showing that E, and D, are isomorphic. Notice that a§{*pCa
(:D p)af 1t)(al ff) since T 4,, holds between the terms and & and Hpa are
fully abstract.

It follows that fd C: D,d(f(#))(f(ff)) for any f in E.., and d in E, by choosing
an appropriate p and using conditions (1) and (2) on general interpretations.

LCF considered as a programming iuriguage 245

Similarly, fd 2 2.d(f(¢t))(f(ff)), for any f in E,,, and d in E,. These facts will be
used repeatedly.

We now show that every element, d, of D, is either C # or else is C ff. Suppose
otherwise and that d in D, is Z#t and Zff. Then e = (: D, (d)(&)(ff)) is 2«
and 3Jff.

For on the one hand,

126 (d)(#)(ff)A: 2. (d) () (L) = : D0 (d)(T () (T(ff))
JT(d) (by the above remarks)
=u (as dEZff),

and on the other,

120 (d)(e)(fF) 3: D0 (d)(L)(ff) = : D, (d) (F (1)) (F ()
JF(d) (by the above remarks)
=ff (asdZn).
Now £, dznotes L as {2, C s p and further £2, =4 D, p(D.pe, 1t)12,. Therefore,
L="2.{e)(D.(ej(L)(®))(L1)
22.() Q. N(L)()h (L) (as e D1, ff)
=t (as D.ffpg=aq and D, ttpg=4p).

But this contradicts ihe fact that ¢« Z 4 0..
Therefore we have indeed proved that every element d of D, is either C # or ff.
Now we show that every element, d, of E, is L, # or ff. Let

J= S:Ill[\p . Dop(ago.o)p)(a(lo.o)p)]](l[T/aao.o)][F/a(lo,o)]).

Clearly, J(x) = : D, (x)(T(x))(F(x)) for any x in E, as B-conversion is valid in &
Ve will show that J(x)=x (x in E,). We have:
x =:2,(x)()(ff) (as p=a(:D.ptff))
=12, (x)(J ()T (F))
3J(x)
22, (x)J ()T ()
Do (x) () ()
=x @ p=a(O.pttff))(x €D,).
Now let d be in E,. As dC #t or d Cff there are three cases.

246 G.D. Piotkin

(a) dCun and dCff. Then d = J(d)
= :Do (d)(—L)(J')
= 1 (as: D.pqq =z2q).

(b) dCtanddZff. Thend=J(d}
=12, (d)(#)(L)=: D, (d)(T(tt))(T(ff))
aT()

= .

(©) diZtt and dCff. Then d = J{d)=:2,(d)(L)(ff)
=12, (d)(F(u))(F(f))
JAF(d)
=f.

So E, ={L,uff}. Further L Ct,ff as 0, Catt,ff, 1t £ either L or ff as # Z,
either €2, or ff, and similarly ff is £ either L or . Therefore E, is isomorphic to D.,.
Let ¥, : E,— T be the isomorphism defined by: '

o (e=s[n](L)),
Y.(e)=1F (e=HIFIL),
L (e=o[02,1(L1).

Next we show that E. is isomorphic to D.. It is clear that the elements & [k. J(L)
are all incomparable and J &[2,](1) which is L. Now, x=4 Y., Mx where,

M = Aa 0, (Zx)k, (2§ - 1)+ 1)).

As Y. ,(f)=Ll..of" (L), it follows that, if d is in E, then d=
Ll,.o(M" (L)(d)) (by the continuity of Ap:).

We show by induction on n that for all d in D, M"(L)(d) is in
(k. I{(L1):n=0}U{L}. It will then follow immediately that E, is isomorphic to
D. and we may define an isomorphism ¥, : E, = D, by:

{h (¢ = Lika1(L)),
V. (e)=

L (otherwise).

Now for n =0, clearly M°(L)(d)= 1.

For n+1, M™'(L)(d) = (2. (Zd)(ko)(M" (L)(d — 1)+ 1)).

As Zd s E, it is either L, & or ff. If it is L or # then the LHS is L or ko as
D.42xy =48}, and D, ttxy =;x. Otherwise it is ff and the LHS is M"(1)(d — 1)+ 1

LCF considered as a programming language 247

as D,ffxy=a4y. Now M" (L)(d — 1) is either L or some k.. In the first case the LHS
is L as 2, +1=442,. In the second it is k.., as k, + 1=4k,.,. This completes the
inductive proof.

Let @ : &pa — & be the monomorphism constructed in the proof of Theorem
4.6. We will construct an inverse morphism ¥ : s — sfpa. The W,’s are defined
by induction. First ¥, and ¥, are as defined above; ¥,.,:E_..,,— D, is
lefined by:

Vour(f)(d)= V. (Ap7(f)(P- (A))(f € Eor x € D).
it is clearly continuous.
We now prove by induction that @, and ¥, are inverses for all 7. This is clear
when 7 is ground. For o — 17, f in E,_., and e in E,, we calculate:
Ap7(Poro Vourr(f))(e) = AT (P oo W orsr (D © W (¢))
(by induction hypothesis)
= &, (o NN (e (€))
= & (V. (Ap7(f)(D- (V. (e)))
{by definition of ¥,..,)
= Ap7(f)(2) (by induction hypothesis).
As o is pointwise ordered, it follows that @, ..o ¥, .= Idg, .. Further,
D, o (Vs @)= (Poaro ¥yr)o Py,
=Idg,..,° Poss
=@,...°ldp,_,,-

Therefore as &, is 1-1, ¥,..,odP,_.,.=ldp,..,, which concludes the induction.
We can now establish condition (1) that ¥ be a morphism. For f € E,..and x in
E,, we have:

Vo (¥, ()= ¥, (Ap2(f) (D, ° ¥, (x))) (by definition of ¥._..)
=¥, (ApI(f)(x)) (as @, ° ¥, =1Idg,).
For conditions (2) and (3) it is enough to prove that
(*) @, (4 [M.1)(L) = BIM1(L),
(M, a closed term of type o) as it then follows that
V(G IMD(L) = W, ° D (A{M,D)(L) = o [M, J(L).

When o is of ground type (*) holds by virtue of condition (3) that @ be a
morphism. For ¢ = (01,. .., 0y, 7), with 7 ground, let ey, . .., e, be tinite elements of

248 G.D. Plotkin

E,,..., E.. Then there are closed terms M,, ..., M, of types 1,..., 0. defining the
finite elements ¥, (e.), ..., ¥s(e.). Then,

@, (AIM1(L))(es) - (en) =
= @, (LM, H(L)(@Por (L TMJ(LY) -+ (P, ([M, (L))
=@, (4[M,M,, -+ M,](1))
= BIM.M,,--- M, J(L1)
= BIM, J(L)NBIM (L)) - (BIM., 1(L))
= BIM, J(LUPo(HIMI(L)) -+ - (Po, (F T Mo, 1(L)))
(by a known property of @)
= BIM.I(L)(e) " (en).

Therefore as o is pointwise ordered and E, is algebraic, (*) holds. Therefore ¥
is a morphism. Now, as @, and ¥, are inverses for all o, so are @ and ¥. Both are
therefore isomorphisms, concluding the proof. [

A careful examination of the proof shows that we do not need to use all the
power of full abstraction. One only actually needs a recursive subset of the relations
{MEsN:MCps N}

The theorem applies io any fully abstraci standard interpretation and indeed to
any fully abstract interpretation in which Y., is given the standard denotation. It
also applies to any fully abstract pointwise ordered general interpretation whose
ground domains are isomorphic to the corresponding ground domains of Apa,
although it is quicker to note that in the above proof the assumptions about Y., T
and F are only used to establish the ground domain isomorphisms. We conjecture

that there is a fully abstract interpretation in which Y., is not given the standard
deiiotation.

5. Computability

It is now time to face a question raised in Section 3. Suppose we are given the
collection, {D, } of domains for £pa provided by opa. Is Lra the correct language in
the sense that all computable elements are definable by $pa -terms and, conversely,
all Zpa -terms define computable elements? It seems natural to take as computable
elemenis the lub’s of recursively enumerable sets of finite elements. To make this
idea precise we show first how to code the finite elements by integers.

g=o0:Let0Ocode esg=1,1codeei=1trand?2,3,...code e3,e3,... where et = ff
if n =2. Thus ¢g,ef,... enumerates the finite elements of D.,.

LCF considered as a programming language 249

o=u: Let 0 code e;= 1 and (n + 1) code e;., = n. Thus e}, e},... enumerates
the finite elements of D..

o =(0y,...,0.,7) with 7 ground and n >0: Let (-,...,) be any coding function
of (n+1)-tup'es of integers, each integer m being the code of
((m)1, cony (m)m (m)n+i)°

Then m = 2,.,2™ codes e, = LUF where, if

F'= {(e(mm == - => (e = e(,,.‘,)("“)):i ?0}

‘hen either F' satisfies the conditions mentioned after Lemma 4.4, anc¢ F = F’' or
JIse if F' does not satisfy these conditions F = @. In the second case we say that m is
trivial as a o-code. Then e§, e, . .. enumerates the finite elements of D,, e = 1.

The relations enCen, erllen exists and the functions e (e)=e; and
e Uern = ei, where e;Llen, = enUen, if it exists and eg otherwise, are all primitive
recursive in their indices.

So we say that x € D, is computable iff {n: e C x} is r.e.

An equivalent definitioa is that x is the lub of a chain e;,Ce?,C - - - where the
sequence no, 1, - .. is primitive recursive.

It turns out that every Zpa-definable element is computable, but, perhaps
surprisingly, ti.e converse fails. One way to see that every %pa-term defines a
computable element is first to notice by the ucual combinatory methods that, to
within =p,, all the terms are combinations of the terms (+ 1), (= 1), ko, &, ff, Z, D.,
: D6, Yo, Soimey and K, o, (all 04, &2 and o5 and ground o) where:

onoy — AQ AR O
Kopo,= AaAafa
Sal onaon = Aa (01,0203) ,\a (o.0)) ,\a l((a("l T “J)Q"I)(a("l o) a“l))

Secondly all these terms define computable elements and the class of computable
elements is closed under application. To see this for K, ., So,0.0. and Y,,, one
proves, without much difficulty that:

K., ., defines

Ufeq => e = el:ny,n=0),
S o000, defines
U{(ent = en; == e3) == (eni = e3) == el = e73ny, ny, 3 =0),
and Y,, defines
Li{((el: = em)U---U(eq = e71.)) = el
if it exists, for k =1, n,,..., m+, =0}
The other terms are easy and closure under application follows from:

f(x)=1d{e:(d = e)CfanddCx} (fED..,x€ED,).

250 G.D. Plotkin

One computable element which is not Zp4-definable is 3: D.0).0) defined by:

fFod@L=mn,
A(f)=4 # (f(n)=ut for some n =0),

1 (otherwise).

It can be regarded as the best continuous approximation to thc cxisteniial
quantifier.

Let F be a term defining L, = ff and let T, be a term defining n == 1t for
each n =0. We prove that whenever E, is a term of ground type with FV(E)=
{a“~*} such that [F/a“~?]E and [T./a“"”]E denote different things neither of
which is L,, for infinitely many n =0 then [F/a ¢=91E cannot terminate in less
than k steps for any k (that is if [F/a“~]E Z>¢ then k'> k). Since a definition,
M, of 3 would provide such a term, namely Ma “~, we would then find that MF
cannot terminate, and yet denotes ff which contradicts the analogue for PA of
Theorem 3.1 showing that 3 is not Zpa-definable.

The proof proceeds by induction on k and cases on the form of E,. We can
assuine w.l.o.g. that Dp does not occur in E,. For k = 0 since [F/a“~]E, is not a
constant the assertion is obvious.

For k >0 the first case is when E, has the form:

(Aa¢E,)E;- -

Here E—p E'Mff E'= [Ezla]E, . Since E'=p, E we can apply the induction
hypothesis to E’.

The case where E has the form YE,-- - is similar.

The case where E is a constant cannot cccur.

In the case where E has the form ((+1E,) or ((— 1)E,) or (ZE,) apply the
induction hypothesis to E;.

The case E = (a“~” E,) leads to a contradiction, for then there are n,n'=0,
with n# n’ such that neither of [T,/a“"]E nor [T, /a*"?]E define L,. Then
[T./a“"?]E, and [T,./a“~"]E, must define n and n’ respectively. So if T defines
(n = w)ud{n’' =), [T/a“">]E, defines something Jn,n’, which is a
contradiction.

Finally we consider the case where E has the form: D E,E,E,.

Suppose [F/a“"?]E terminates in k steps. There are three subcases.

(1) [F/a“"*]E, terminates in k, steps with value #t and [F/a“~*]E, terminates
in k; steps, and k > (k,+ k7). By induction assumption, for all but finitely many
n=0,[T,/a]E, defines 1, and [T,./a]E. defines L. Then for all but finitely many
n=0, [T./a“"]E defines L,. This contradiction finishes this subcase.

(2) As in case (1) but with [F/«“"]E, terminating with value ff and
[F/a“~""1E; terminating.

LCF considered as a programming language 251

(3) [F/a“"*’])E,; terminates in k; steps with value ¢, for i = 1,2 where k, + k, < k.
Here for almost alln =0,and i =1,2[T,/a“"*]E, defines L,, which concludes the
proof.

It is now natural to add a constant 3 of type ((¢, 0), 0) to Lpa obtaining Fpa.3and
adding a clause in the definition of %pa, obtaining the definition of &fps.s. The
definition of Evale,.3 and the examination of its properties is postponed. From the
point of view of computability no more constants need be introduced.

Theorem 5.1. (Definability theorem.) An element of D, is computable iff it is
definable from ZLpa .a.

First we may regard a primitive recursive function f of n arguments as a member
f of D, where o =(i,...,4t) by:

L (if some x; = 1),

fx) - (xa)=

f(x1,...,x,) (otherwise).

Under this identification it is straightforward to show that every primitive
recursive functicn is definable by an %pa-term.

Similarly if 2 primitive recursive predicate P of n arguments is regarded as a
member of D, with o = (4,...,t,0) in the corresponding way, it can be defined by
an Ypa-term.

The apartness relation #° on D, is defined by:

x #°y iff x and y have no upper bond.

In general, x # °v iff there are finite elements d, e C x,y respectively such that
d # °e. A critenon for the existence of an upper bound of d and e has been given
earlier.

For o = (g,-»> 02), x #°y iff for some finite e in D,,, x(e)# “y(e).

From this one can show that for x,y,z € D,, if y U z exists then x #° (y U z) iff
x#%y or x #°z.

A computable approximation to x # e, is provided by #7: D, — D, defined
by:

ff (xde),
#(x)=3 8t (x#%e7),

L L (otherwise).

That #; is continuous follows from previous remarks.

Lemma 5.2. There are Lpa.a terms # 7 : D 4.0y such that (#°k,) defines # 7. If
o is ground #° is an Lpa-term.

252 G.D. Plotkin

Proof. The proof is like that of Lemma 4.5. It is an induction on o, but the
subcases are, as it were, handled primitive recursively inside the # “’s rather than
in the proof.

In fact the terms # { and also closed terms EN”: (¢, ¢, 0) are defined by induction
on o. Each (EN°k,) defines a function f, such that:

f(L)3es,

f(0),f(1),... is a list of ihe finite elements of D, which are Jey.

o = o0: Take #° = AxAp (if, Zx then ff else (if Z((— 1)x) then NEG p else p)) and
EN° = AxAy (if, Zx then Z((— 1)y) else Z((— 1)x)).

Here (if, - - then --- else ~ ~ ~) abbreviates (O, (-**)(---)(~ ~ ~));

NEG is the term defined in the proof of Lemma 4.5.

o =: Take #*' = AxAy (if, Zx then ff else NEG (EQ((— 1)x)y)), and EN* = AxAy
(if. Zx then (— 1)y else (— 1)x).

Here EQ is an %pa-term defining the (p.r.) equality predicate, under the above

identification.

o =(o,...,0, 1) with 7 ground and n >0: First define the context OR[] by:

OR[]= Yiawo,(Aa“"? Ax (if, Zx then jf else V ([]x)(a“~"((— 1)x)))).

Here V is the term defining parallel o~ given above.

If F:(t—o0) is an open term then if all of (Fk,)--:(Fk,) define ff in an
environment p then (OR[F]k,.) defines ff in p and if one of them defines # in p,
(OR|[F}k..) defines tt in p, (m =1).

Also (OR[F]ko) defines f.

Then take

#7 = AxAa” (OR[Az3(Ay # ' (SECOND xz)
(a” (EN“ (FIRST xz)y)))](SIZE x)).

Here o'=(c2,...,0,7) and FIRST, SECOND and SIZE define primitive
recursive functions f, g and h such that if m is a trivial o-code or the set F
associated with ey, by m is empty then h(m) = 0; otherwise h(m) is the size of F
and F = {einiy => €%mn:i =1,h(m)}.

It follows from the facts that e%#°d iff (efgni) = €Timi) #°d for some i
between 1 and 4 (m) iff there is a finite e J e ¢, such that e .., # ° d(e), for some

i between 1and h(m)(d € D,; h(m)= 1), that this is a correct definiticn of # °.
Next set

K = Aai Aa 7 AYAQ Gy (Y ooy (M@ (73, A2 (if. Z2 then afysyy
else (: D, ((#(COMP yk,z)aTi)v-- v
(# 7 (COMP yk,z)a) (e6en) ((— 1)2))(EN"k, (COMP yk,.,z ;) (SIZE z)).

COMP: D....,defines a primitive recursive function j such that if & (m) # 0 then

LCF considered as a programming language 253

the set F associated with e, by i1 is {€ min ==> '+ ==> €;(nn) ==> €Jmns1n):
1<l<h(m)}.

Notice that if, for x,,...,x, in D,,,...,D,,emx:- " x. =d'# Land d' # e n+11)
then for some i, with 1<i<n, e pni #%x; (h(m)>0 and 1 <[< h(m)).

K defines k: D, o, and if the set F associated with m is @ then
kxi...,x.md=d andifelx, - - x,=d' = Lthenkx, - --x,md = d’' and if for all
I, with 1<[<h(m) there is an i with '<i=<n such that x{" # ej., then
kx,---x.md=d (x, € D,,d € D,).

Finally, if e;x,- - - x, = L, and whenever e ...y # “ x; is false for all i between 1
awd n, ejmn+1.n=d then kx,---x,md = d and otherwise kx, - x,md = L.

Now we can take

EN? = AxAvAa i - Aam(Kai - - arx(Kai - - ayf),). O

It is now possible to prove the definability theorem. Suppose x € D, is
computable. If o is ground it is certainly definable, and if it is L it is defined by {(2..
Otherwise there are primitive recursive functions fi, ..., f., g such that

x =U{efim => = €frm) = €z m =0},

where o =(0y,....0.,7) with 7 ground, and g(m)>0 for all m =0. Let
F,,...,F, G define f,,...,f, g respectively.
Then x can oe defined by the term:

Aa7is A g (Yo Aa e AX D ((#(Fix)af)v - v

(# 7 (Fox)a s) (@t (+ Dx))(EN"ko Gx))))ko).

It is interesting to notice that only recursion operators of level 3 have been used.
Notice too that 3 is only needed to define elements of level =2, confirming the
impression that only systems cf McCarthy-recursion equations perhaps with some
parallel facilities. are needed to define functions of level 1.

1t is not difficuit to define enumeration functions { }”: D,_, such that if n codes
an r.e. set of finite elements with lub, f then {n}® = f. Indeed this follows from
the definability theorem. There are computable functions a?:D..., such that
{n}"({m})={ai(n)(m)}” (m,n € D,# 1), and one then obtains a version of
Kleene’s second recursion theorem: if f: D, — D, is computable then f(n)={n}"
for some n € D.. All of this is taken from [7]. We resist the temptation to go any
further into recursion theory.

The definability theorem is a corapleteness result. If #pa .3 is extended by adding
other constants znd then p4.3 is extended to give them computable values, they
can already be defined by %4 .a-terms. So there can be no new parallel facilities of
the type exemplified by 3 or: D,, end Lpa.3 is determined as the maximal language
of computable functions of {D.}, to within interdefinability.

Having satisfied ourselves as to the definability credentials of £pa .3 we give it an

254 G.D. Plotkin
operational semantics which is provided by the rules for the reduction relation of

Pra, extended to all Zpa.a-terms together with the following:

FQ, —»3ff Fk, —3it
(18) E"F‘*aﬁ ’ BF-‘)a it (

(1) M,—3iM,,

M, -»sM, M,—iM;
M, —>3iM?)

m =0),

(1112)

Here —3 abbreviates —«,, ..

Clearly —% as defined is the transitive reflexive closure of —3 for terms of type o.
It can be shown (by a simultaneous induction) that —s is consistent in the sense that
IF—aff and AF—3 1t cannot both hold and that if M;—3 M, (i =2,3) then for
some term M, M;->3% M, (i = 2,3). Then the Church-Rosser theorem holds for —3
and we can define the evaluation function, Evalps.a by:

Evalpa.a(M) = c iff M—*¢, for any program M.

The computability lemma goes ii:irough as before, with addition of the easy
proof of the computability of 3. Thus we find that Evalpa.a(M)=c iff
Aoaa] MI{L)= Hra.alc], since the other half is routine. The proof - Theorem
4.3 clearly extends and we have M,Cpa+a N, iff M,Crs .2 N, and also M, =pa+a N,
iff M,=pa.aN,. Finally the analogue of Theorems 4.6 and 4.7 hold, the proofs
being similar and of course the definability theorem holds too. With all this, we
have at last an example of an operational and denotational semantics which fit
together harmoniously.

As regards the problem of generalising these results to other domains than the
integers, it seems feasible to carry them over to other discrete cpo’s, that is, cpo’s
with no increasing chains of length >2, considering in some way effectively given
domains and base functions on them for the computability considerations. A more
challenging problem would be to give a good definition of ‘“‘concrete datatype’” and
take D to be an arbitrary one. Among the concrete datatypes should be the
denumerable discrete domains, and the cpo of all finite and infinite sequences of
integers with C taken as the initial subsequence ordering, and also, perhaps, the
cpo of real intervals described in [8]. Roughly, the concrete datatypes should be
effectively given cpo’s for which a good notation exists so that notations for
approximations to elements can be printed out, bit by bit.

Acknowledgements

This work has been carried out with the aid of an S.R.C. grant under the
direction of Dr. R.M. Burstall.

LCF considered as a programming language 255

References

[1] M. Gordon, Evaluation and denotation cf pure Lisp programs: a worked example in semantics,
Ph.D. Thesis, University of Edinburgh, Edinburgh (1973).

[2] W.A. Howard, Assignment of ordinals to terms for primitive recursive functionals of finite type, in:
A. Kino, J. Myhill, R. E. Vesley, eds., Intuitionism and Proof Theory (North-Holland, Amsterdam,
1970).

{3} R. Milner, Models of LCF, Memo. AIM-186, Stanford Artificial Intelligence Laboratory, Stanford
University, Stanford, CA (1973).

{4’ R. Milne, The formal semantics of computer languages and their implementations, Ph.D. Thesis,
University of Cambridge, Cambridge (1974).

{¢, M. Newey, Axioms and theorems for integers, lists and finite sets in LCF, Memo AIM-184,
Compute: Science Department, Stanford University, Stanford, CA (1973).

6] G. D. Plutkin, Call-by-name, call-by-value and the A-calculus, Theoret. Comput. Sci 1 (1975).

[7] D. Scott, A theory of computable functions of higher type, unpublished seminar notes, University
of Oxfor:, Oxford (1969).

[8] D. Scott, Lattice thcory, data types and semantics, in: P. Rustin, ed., Formal Semantics of
Programn:ing Languages (Prentice-Hall, Englewood Cliff, NJ, 1970).

[9] A.S. Trocistra, ed., Metamathematical Investigation of Intuitionistic Arithmetic and Analysis,
Lecture Notes in Math. 344 (Springer, Berlin, 1973).

[10] J. Vuillemin, Correci and optimal implementations of recursion in a simple programming language,
Proc. Fifta ACM Symposium on Theory of Computing (1973) 224-239.

[11] C.P. Wadsworth Semantics and pragmatics of the lambda-calculus, University of Oxford, Oxford
(1971).

[12] C.P. Wadsworth, The relationships between lambda-expressions and their denotations in Scott’s
models for the lambda-calculus (to appear).

