
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 17, 209-236 (1978)

TU as a Universal Domain

G. PLOTKIN

Department of Artificial Intelligence, University of Edinburgh,
Edinburgh EH8 9NW, United Kingdom

Received February 11, 1977; revised October 19, 1977

In mathematical semantics, in the sense of Scott, the question arises of what domains
of interpretation should be chosen. It has been felt by the author, and others, that lattices
are the wrong choice and instead one should use complete partial orders (cpo’s), which
do not necessarily have the embarrassing top element. So far, however, no mathematical
theory as pleasant as that developed for Pw in the paper “Data Types as Lattices” has
been available. The present paper is intended to fill this gap and is a close analog of the
Pw paper, replacing Pw by 8”‘, the w-power of the three-element truthvalue cpo, T.

1. INTRODUCTION

The category of continuous lattices [ll] has a very pleasant mathematical theory.
For the purpose of giving mathematical semantics for programming languages one
only considers the separable ones-those which have a countable basis for their open
sets. They can be analyzed in a simple way by using the framework of Pw-the lattice
of subsets of w-as presented by Scott in [12]. Various constructions can be given by easy
definitions and in particular many inverse limit constructions can be easily obtained
using least fixed points. One has a single language, LAMBDA, which serves to define
both domains and continuous functions between them. The language LAMBDA also
provides a general theoretical definiton of computability. With this mathematical foun-
dation one can give a semantics for programming languages and use LCF-like logics [7]
for investigating their properties and proving programs correct.

The present paper discusses complete partial orders (cpo’s) using BU, the Cartesian
product of denumerably many copies of 8, the truthvalue cpo. The treatment is more or
less that of Scott in [12]. Our intention is to show how one can do without the top element,
T, but retain many of the advantages of lattices. That is, we are addressing the issues
raised in Sections 1.9 and 3.3 of [13]. If so desired, Uw and its attendant theory can be
given and discussed within the framework of PW itself.

With lattices difficulties are caused by the top element. Sometimes T can be inter-
preted as the mcst multivalued element, as in [12] It may also be possible to interpret
it as the maximal degree of inconsistency. In most applications though, T has no real
computational significance and instead is an embarrassment which causes a plethora of
special decisions in definitions and cases in proofs For example, when there are four

209
0022~0000/78/0172-0209$02.00/O

Copyright 0 1978 by Academic Press, Inc.
All rights of reproduction in any form reservrd.

210 G. PLOTKIN

truthvalues there are two different possibilities for defining the conditional function:

COND(T, x, y) = T

or else

COND(T, x, y) = x u y.

Either one leads to a failure of an expected identity among those given in [5], say. As
illustrated in [8] such difficulties can lead to the natural semantics using lattices not being
“fully abstract.”

To avoid the top element we use complete partial orders. Two examples are given in
Fig. 1.

I
The qo Q,

tt ff

V 1
The CPO T

FIGURE 1

DEFINITION. A completepartial order (cpo) is a partial order with a bottom element (I)
in which every directed subset, X, has a least upper bound (lub), Ll X.

Any Cartesian product of cpo’s is itself a cpo under the natural componentwise ordering.
So, for example, UW is the cpo which is the Cartesian product of w copies of 8.

It is not difficult to carry out the inverse limit construction on cpo’s, as in [16], or to
use retractions instead, as in [2], with the aid of a single “logical” space such as:
D g T + (D -+ D). However, one would rather have a simple universal space, like
PUJ, and develop it along the lines indicated above for lattices.

Just as the category of separable continuous (or algebraic) lattices was more appropriate
than that of all complete lattices so one expects to deal with special categories of cpo’s.
The natural cpo to try as a universal space is Tw as PW = 6P. The appropriate category
is then that of the separably continuous coherent cpo’s. The definition of separable
continuity is found in Section 4, but it is worth giving the definitions of coherence and
the weaker property of consistent completeness here.

DEFINITIONS. Let D be a cpo. A subset, X, of D is bounded iff for some d in D and
every x in X, d E x; X is pairwise consistent iff every pair of elements of X is bounded.
A cpo D is consistently complete iff every bounded subset has a lub; it is coherent iff every
pairwise consistent subset has a lub.

Coherence seems to have been explicitly defined for the first time in [4]. The first
cpo shown in Fig. 2 is not consistently complete. The second is, but is not coherent.

In [12] Scott recommends using the closed subsets of the retracts of Pw to avoid the
top element. These turn out to be the separably continuous consistently complete cpo’s
rather than just the coherent ones. It is not clear to the author how much good coherence

u”’ AS A UNIVERSAL DOMAIN 211

FIGURE 2

is, but on the other hand all the usual domains are coherent and all the usual constructions,
except the powerdomain constructions [9, 151 preserve coherence. One of these construe-
tions does not even preserve consistent completeness and so it seems we are still some way
off from an equally pleasant framework for handling the semantics of programs with
nondeterministic features.

Section 2 of this paper introduces U 0. It emphasizes a view of elements of P as disjoint
pairs of sets of integers which provide both positive and negative information. This
extends the view of elements of PW as providing positive information. Continuous func-
tions are “coded” as elements of Tw by extending the idea used for Pw which only
provides the positive part of the coding. Section 3 presents a language, called LANIBDA,
for defining elements of and functions over T W, thus fulfilling the same purposes as does
Scott’s language of the same name for Pw. Our language is theoretically adequate as it
is shown that LAMBDA definability coincides with computability for both elements and
functions. We also invest some effort to show why it is even convenient to use LAMBDA
to make definitions by developing some notation for truthvalues, integers, and infinite
sequences of truthvalues, giving pairing and projection functions, and showing how to
make recursive definitions with the least fixed-point operator, which is itself defined by
the paradoxical combinator.

Section 4 discusses the category of domains which are retracts of P. By generalizing
the idea used for embedding the function space it is shown that they are, as mentioned
above, the separably continuous coherent cpo’s. We can then define the effectively given
ones to be those given by the computable retractions. This leads to a definition of the
computable elements of such domains and the computable functions between them. The
result of section three shows that all such retractions, elements, and functions are
LAMBDA definable. We invest some effort to show why LAMBDA is convenient for
giving definitions of domains via retractions. Following Scott in [12] we give simple
definitions of the retractions for some basic domains such as the integers and the truth-
values, show how constructions such as sum, product, and exponentiation are effected
and how domain equations can be solved using least fixed points. Section 5 discusses the
important subcategory of the algebraic domains which are the ones generally used for
semantics. They are the retracts given by the partial closures which form a more inclusive
class of retractions than the usual closures. Section 6 discusses the topological aspects
of Tw. We present an appropriate analog of the notion of injective space [1 I] and of the
extension and embedding theorems in [12]. The idea is to adapt the work from the lattice
case by using a stronger notion of subspace in the definition of injective space.

In general, whenever theorems are mechanical reworkings of theorems in [12] (or

212 G. PLOTKIN

are just easy) their proofs will be omitted. It should perhaps be admitted that in the end
it is more cumbersome to work with cpo’s than lattices, but we still feel that the lattices
have some unnatural properties. The present paper and [12] demonstrate the pleasures
of two categories of separably continuous, complete cpo’s. One wonders if there are other
such categories and whether they would prove useful for mathematical semantics. Such
categories should, in the light of present experience, be Cartesian closed, have w-products,
and be closed under retracts (or perhaps just partial closures).

2. Tw AND ITS CONTINUOUS FUNCTIONS

There are three slightly different ways to define lJm. First we have already seen it as
the Cartesian product of w copies of T. So each element t is a vector:

(t(O), t(l), t(2) ,...).

The ordering is that inherited from 8: t E II iff (Vi > 0, tti) E n(i)). The vector point of
view motivates many of the definitions given below.

From a second point of view, Uw is the set of partiul predicates, p: w --tp (0, 1). If
predicates are subsets of w x (0, l), the ordering is the subset ordering. It turns out that
no extra generality would be obtained by using partial functions, f: w _tp w, instead.
For we shall see in Section 4 that NW is a computable retract of UW. Here FV is the integer
cpo, { 1, 0, 1 ,,..I with the discrete ordering: x c y iff x = y or x = 1_.

However, the preferred interpretation of Uw in this paper is as the class of pairs of
disjoint sets of integers. Thus:

urn = iho , UJ 1 u. C w A u1 _C w A u. n u1 = ia}.

The ordering is given by:

+o 9 %> E (vo f fJl> iff u. C v. and u1 Cv,.

If t = (u. , z+) is in Uw, we put (t)i = ui (i = 0, 1). Th’ 1s viewpoint is closest to that of
PW and seems to give a relatively natural development. In the case of Pw, an element,
u can be regarded as givingpositive information about a set of integers; an element (u, v)
of Uw gives both positive and negative information. It partially specifies a set which con-
tains u and whose complement contains v. The maximal elements give perfect or total
specifications. They are the elements, t, such that (t). u (t)l = u and also correspond to
the total predicates.

Since there are so many maximal elements, TU is not a lattice. Let us call two elements
x and y of a cpo computible(= consistent = bounded) if they have an upper bound and denote
that by x T y. The contrary case is written as x # y. In the case of Uw, x # y
iff MO n (rh f or or (-+ n (rlo Z 0. If x tu then (W. u (Y>~ 7 (4 u (r)J is in
Tw and is the least upper bound of x and y. Thus:

vx, y E Tw, x 1 y + x u y exists.

T” AS A UNIVERSAL DOMAIN 213

In conjunction with the fact that lP is a cpo, we see that Uu is consistently complete. So
lJw would become a complete lattice if a top element were added. In general, consistent
completeness implies the existence of greatest lower bounds of nonempty sets (glb’s).
In the present case for any nonempty subset, X, of Uw we find:

n x = (n w. I x E xj, n f(4 1 x E w).
The cpo Tw is even coherent. Suppose {x, y, Z} is a pairwise consistent subset of U,‘.

Thus ((4 ” (YM n ((4 ” (r>A = 0 and so on. Then, ((x)~ u (y)a u (z),,) n ((x)~ u
(-v)i u (z)i) = 0, showing:

It then follows by induction that every finite pairwise consistent set has a lub. Since
Uw is a cpo, we conclude that it is coherent. In the presence of consistent completeness,
coherence can be rephrased as:

vx fz l-w, t/Y i: -Ku, u Y exists A x # u Y -+ 3y f Y, x #Y- (1)

The finite elements of Uw play a special role. They are the elements, b, such
that (b)O u (b), is finite. Alternatively, they are the elements which, if dominated by the
lub of a directed subset, are dominated by an element of that subset. The finite elements
are sometimes called compact or isohted. There are denumerably many of them. For any x:
in Uw, x = Ll {b r x 1 b finite) and the set on the right-hand side of the equation is
directed. Thus the finite elements form a basis of Uw, and U" is sepurabZy (= countddy ==
w-) dgebraic. We can even introduce a standard l-l enumeration, b, , b, ,... of the finite
elements of Uw by taking b, to be the unique pair, (u, v), of sets of integers such that:
n = ‘&EU 2 . 3i -+ xUEZ’ 3i. The idea here is to use ternary expansions. Note that if
k E (b,Jl then k < 71 (i = 0, 1). The relations k E (b& , b, T b,, , b, c b,, , and b,, z:-~
b, u b, are primitive recursive in their parameters.

We now turn to the continuous functions and consider arbitrary cpo’s, D and E.
A function f: D 4 E is continuous iff f(U X) = U (f(x) 1 x E X} for all directed subsets,
X, of D. When D and E are cpo’s, D + E will always be the cpo of all continuous func-
tions from D to E with the pointwise ordering where: f f g iff Vx E: D, j(x) c g(x) for
allf, g in D -+ E. Any continuous function is monotonic, A function of several arguments
is continuous iff it is continuous in each of its arguments separately. The collection of
continuous functions is closed under substitution. Now we consider these ideas for U".
The next result is stated for functions of one variable but it is easy to give the analogous
characterizations in the case of several variables.

THEOREM 1 (The Continuous Function Characterization Theorem). (1) A function,
f, from Tw to II*’ is continuous zyfw aZZ x in Uw,

f(x) = U U-(&J I b, f 4.

214 G. PLOTKIN

(2) A fun&m, f, from To to Uw is continuous ;ffor all x in Uw and all b, , b,, c f (x)
zx b, E f (b,) fw some b, such that b, 5 x.

Proof. (1) Suppose f: Uw -+ Tw. Then, as {b, 1 b, E x} is directed with lub x,
f(x) = Ll (f (b,) 1 b, E x} by the definition of continuity.

Suppose the equation holds for all x in Bw and let X be a directed subset of VW. Then:

= u {f (b,) j 3x E X, b, c x} (as X is directed)

= lJx u lfvJn> I bn E 4
= zif(x) (by the equation).

(2) Omitted. 1

For example, we can see that the binary functions, v and A, and the unary one, N,
defined by:

4% v> g$ (a, u>,

(u, v) v (u’, a’) ST! (u v u’, v n v’),

(u, v) A (u’, v’) aTf (u n u’, 0 v v’),

are continuous. As operators on partial predicates, v and A are parallel OR and AND.
The next example is motivated by consideration of P as a Cartesian power. The

continuous functions tt * . and ff * * are defined by:

Note that tt * ((t(O), t(l) ,... >) = (tt, t(O), t(l) ,...) and the corresponding equation holds
forff * a.

The cpo Uw --f Uw is itself consistently complete, coherent, and w-algebraic. For
consistent completeness, suppose f, g are elements of the cpo and f tg, then for all x
in P, f(x) T g(x) and f u g can be given by:

f !-I g(x) = f(x) u g(x).

If F is any set of continuous functions then for any x in Uw:

IJW = U {f(x) If EFl- (2)

T” AS A UNIVERSAL DOMAIN 215

If f and g are continuous functions then f fl g can be given by:

This equation is proved by using the fact that the binary greatest lower bound function,
Il, is continuous. The equation analogous to (2) does not hold. We leave the reader to
extablish coherence. The continuity of ll makes it easy to prove that the paraZleZ conditional
function, COND, is continuous where for X, y, z in Tw:

COND(x, y, x) = y (0 E b%>~
=z (0 E (X)1)?
==YllX (otherwise).

The parallelism resides in the fact that COND(1, y, z) is y Il z rather than the bottom
element. For then we have COND(1, y, y) = COND(tt, y, 1) = COND(ff, I, y) =y
where we are anticipating the identification of tt with ({O), ~5) and ff with (a, (0;)
in Section 3.

Theorem 1 shows that a continuous functionfis determined by the triples of numbers,
m, 71, i such that m E (f(b,)), . Th is suggests the definition of a subbasis of the function
space. We will use a standard enumeration, (n, m) of all pairs of integers: (n, m) -=
$(n + m)(n + m + 1) + m. Note that n < (n, m) and m < (n, m) with equality holding
only in the cases (0,O) and (1 .O). N ow the functions fk are defined by

fh,zmii)(4 = ((4, a> (if i = 0 and x 2 b,),

= <a, Wi (if i = 1 and x 2 b,,),
= I (otherwise).

LEMMA 1. (1) Eeach fk is continuous and finite.

(2) fbLm+i) g ftn,,2T,b,,.i,) $f b, 2 b,, and m = m’ and i == i’.

t3) fbz,Pm+i) #fh’,2m’+i’) z#b, t b,, andm = m’andi #if.

(4) Each fk is join prime, in the sense that if f and g are contniuous functions and
fkLf ugthenf,cforf,cg.

(5) The fk’s form a subbasis in that the class of lubs of finite sets of them is a basis.

Proof. The proofs of (l)-(4) are omitted; for (5) let f be a continuous function. We
have to prove that:

To do this we take a continuous function, g, such that fk c g for all k and show thatf C_ g.
Suppose m E (f (x))i where x is in Uw and i is 0 or 1. Then for some n, b,, E x
and m E (f (b),)$ by Theorem 1. Then fk E f where k == (n, 2m f i) and so .fk z g

216 G. PLOTKIN

and m E (g(b,))i . Th ere ore f m is also in (g(x)), and so f(x) r g(x), which finishes the
proof. 1

It is now possible to explain simply how to embed the function space in Uw. The positive
half is given by the function Graph: (lJW + UW) ---f Pw where for every f: Um + Tw we
have:

Graph(f) = lk I f ?fd.

The other half is the information about the complement of Graph(f) which can be
obtained continuously from f. Define Pred: (Uw -+ Uw) + UW by:

Pred(f) = (Graph(f), {k If #fJ>-

Since one cannot have both f 2 fk and f # fk , Pred is well defined. Continuity is estab-
lished by using the finiteness of the fk and the coherence of the function space in the
form (1).

In order to find an inverse function for Pred, we need to choose characteristic segments,
Seg(k) of each Pred(f,). So for each nonnegative integer K, we put:

Then it turns out that Seg(K) & Pred(f,) and fk tfi iff Seg (k) T Seg(1). The inverse
of Pred is Fun: Uw -+ (Uw + Uw) where for each x in BY

Fun(x) = u (fk / Seg(k) E x}.

The existence of the lub on the right follows from the coherence of the function space
and the above remarks on the Seg(k). The continuity of Fun follows from the finiteness
of the Seg(k).

THEOREM 2 (The Predicate Theorem). Suppose f: Uw -+ Uw. Then Fun(Pred(f)) = f.

Proof. Using the definition of Pred and the fact that Seg(k) E Pred(f,) we see that
Seg(k) E Pred(f) iff fk _C f (k 3 0). Therefore,

FunPreWN = U {fk I Se@4 E PredWl = U {fk I fk L f)
= f (by Lemma 1.5). 1

In general it is not the case that Pred(Fun(x)) 2 X. It will be seen in Section 5 why this
is, expected of any similar embedding. It is left to the reader to discover when
Pred(Fun(x)) = X.

It is interesting that if we had defined Pred by:

or
Pred(f) = <Graph(f), ia>

PreW) = <Mm) I m E (f&&L {(n, 4 I m E (f&M>

71-W AS A UNIVERSAL DOMAIN 217

then it would have had no continuous inverse, Fun. For suppose there was such an in-
verse. In the first case if we choose continuous functions f and g # such that f # g we then
find the contradiction that f = Fun(Pred(f)) t Fun(Pred(g)) = g as Pred(f) t Pred(g).
The second case is less straightforward. Put g = fcO,O) and h, = fcT,l) for T >, 0. Then
g # h, for all r > 0. Now Pred(g) = ({(n, 0) 1 n >, 0}, D). So we can choose a k such
that g = Fun(({(n, 0) 1 0 < it < k}, D)) as g is finite, by Lemma 1, g == Fun(Pred(g))
and Fun is continuous. Put g, = ({(a, 0) (0 < n < K), o ,\. Then g, # Pred(h,)
(ti , {(n, 0) 1 b, 2 b,}) as otherwise we would haveg = Fun(g,) t h, . But we can choose
a number r so that b, 2 b, implies that n > k. For example, let X be a maximal consistent
subset of {bi) 0 < i < R} and choose r so that b, I Ll X but b, +- U X. Now we find
that g, = ({(n, 0) / 0 < n < k}, ,@> 1 (@, ((n, 0) b, I b,}) which is the required
contradiction.

Theorem 2 can be extended to the case of several variables. First define
Abs, : ((UU)“” ---f U”‘) J (U” -+ ((U”)” --t Urn)) for each K > 0, where for each f in
(-ITC”)‘i-tl -+ U*‘, and x, X, ,..., xii in Tw:

Ahif)(x)(x1 ,..., G) = .f(x, ~1 ,... , xk).

Then define Pred, : ((UU)~ -+ Uw) -+ Tw and Fun, : Bw -+ ((Tw)k --+ Tw) for k ., 0
by induction on k:

Pred, = Pred, Fun, = Fun,

Pred,+,(f) = Pred(Pred, 0 (MS,(f))),
Fun,+,(x)(x, ,..., x k+l) = Funk(Fun(x)(xl))(x2 ,. . ., xkil).

(3)

It is straighforward to use induction on k to prove that the functions Pred, and Fun, are
well defined and continuous and to show that when f is a continuous function of k
arguments:

Fun,(Pred,(f)) = f.

Finally we note the well-known fixed-point property of continuous functions (which
is true for any cpo, not just Uw or Pw):

THEOREM 3 (The Fixed-Point Theorem). Suppose f: P --f Uw. Then f has a least
jixed point, Fix(f) -= U (f”(1) ; n 3 O}. Furthermore, as a map, Fix: (au --) Urw) 4 UUJ
is itself continuous.

3. COMPUTABILITY AND DEFINABILITY

We now present a language, LAMBDA, which serves the same functions as the
language of the same name given by Scott in [12]. Although apparently a little weak,
it serves to define all the computable elements of T w. Its syntax and semantics are given

218 G. PLOTKIN

in Table I. The syntax is on the left and the semantics is on the right. There would,
of course, be no difficulty in giving a formal definition along the usual lines. Note that there
are three unary functions, tt * *, ff * *, and TL(.), a conditional expression, if x then y else z,
one binary function, j.), for application, and one variable-binding operator, hx ’ 7, for
functional abstraction.

TABLE I

The Language LAMBDA

a *x = ((0) u {n + 1 I * E (x),), {n + 1 I ?I E (x)1))

ff * x = <b + 1 I n E (dJ, Ku u in + 1 I n 6 (x>d>

T-w) = an I n + 1 6 (x)0), {n I n + 1 E (x)1)>

(if x then y else z) = COND(x, y, z)

X(Y) = Fun(x)(~)

Ax . 7 = <(a, 2771 + i) I m E ([t~~/x]7)~ and i = 0 or I},
{(n, 2m + i) I 32’ * b,’ f b, A m E ([bn’/x]r)l-c and i = 0 or 1))

DEFINITIONS. An element, x, of Tw is (LAMBDA) definable iff there is a closed
LAMBDA term 7 such that x is the value of r. (Closed terms are those possessing no
free variables.) A function, f: (UW)lc -+ Uw (k > 0) is (LAMBDA) dejkable iff there is
a LAMBDA term 7 with free variables x1 ,..., xk (say) such that, for all x1 ,..., xk in T”,
f (Xl ,.*.> xk) = r. In other words, r defines f if f = Ax, ,..., xk : UW . 7, using the logical
typed &calculus notation.

THEOREM 4 (The Continuity Theorem). All LAMBDA terms define continuous
functim.s.

Proof. By structural induction on terms. 1

The definition of functional abstraction was chosen in accordance with the ideasin
Section 2 and it is straightforward to show that for all terms T:

AXI ... Ax, * 7 = Pred,(Xx, ,..., xlc : Uw * T). (4)

THEOREM 5 (The h-Calculus Theorem). The laws (4, (B), (I), (4*), ad (r-~) di#ayed
in Table II all hold.

Proof. The proof uses the case k = 1 of (4). fl

On the other hand (7) fails. For by the case k = 1 of (4), Ay . x(y) = Pred 0 Fun(x)
which, in general, is not x. In fact for a suitable choice of x, x # hy . x(y).

Continuous functions of several variables can be reduced to functions of one variable
and LAMBDA can be reduced to application and a few primitives.

T"' AS A UNIVERSAL DOMAIN 219

TABLE II

Some h-Calculus Laws

(4 xx . 7 = Ay [y/x]7 (y not free in 7)

(8) (h . T)(Y) = [Y/xlT

(5) h.7==Ax.a iff 7 = 0 for all x in Uw

([*) xx. 7E Ax . 0 iff 7 & (J for all x in P

(1)) Y = A.x . Y(X)

(PL) x C_ x’ and y E y’ implies x(y) E x’(y’)

THEOREM 6 (The Reduction Theorem). suppose f: (Uw)k ---f -rQJ (k > 0) and u is
in P. Then f(xl ,..., xk) = u(xI) ... (xJJ holds for all x1)...) Xk in -0-m iff hx, ... Ax, ’
I ... (xJ = Pred,(f).

Proof. Sufficiency is proved by induction on K, using (fl), Theorem 2, and (3).
Necessity follows from (4) by taking T to be the term u(q) ... (xJ. u

From now on we will identify continuous functions over Tw of iz arguments, f, with
their image, Pred,(f) in UW. Theorem 6 shows that this identification respects application
and using Lemma 1, one can prove that Pred, commutes with the lub operation. The
identification respects composition and we have, for example, Pred(fo g) = Pred(f) o
Pred(g) where the composition operator on the right is hf . hg . Ax .f(g(x)). This is
proved using Theorem 6. However, in general Predg(f ll g) is not Pred,(J) ll Pred,(g),
although we do have for all sets, F, of continuous functions over Tw of k arguments and
X, ,..., xk in 7T”’ that:

(f?f Pred,Cf 1) (4 ... (4 = (n F) (XI)...) ~1.

Finally, the identification respects definability for if T defines f then, by (4),)tx, ... bx, . 7
defines Pred,(f). Since functions are being identified with predicates we call our model
thepartialpredicate model to contrast with the graph model [12].

THEOREM 7 (The Combinator Theorem). The LAMBDA-dejkble elements (func-
tions) can be generated by iterated application from the six constants CONST, CONSF,
TL, COND, K, and S (and variables) where CONST =def hx . tt * x, CONSF =der
Xx . ff * x, TL =,jef Xx . TL(x), COND = def Ax . hy . AZ if x then y else z, K --de*
Xx . hy . x and S =def Xx . hy . hz . x(.z)(y(z)).

It is even possible to show that TL and COND are definable from CONST, CONSF,
K, and S, but we find it more convenient to use the broader base. Another well-known
combinator is the paradoxical combinator Y =der /\x . (hy . x(y(y)))(Ay . x(y(y))), which
turns out to give least fixed points.

220 G. PLOTKIN

THEOREM 8 (The First Recursion Theorem). For any continuousfunction,f: 77~ ---t B~J,
Y(f) = Fix(f), the least fixed point off.

Proof. Let a = Fix(f) and d = Ay . f(y(y)).
Then Y(f) = d(d) = f(d(d)) = f(Y(f)). Th ere ore f Y(f) is a fixed point off and

so as a is the least one, a c Y(f).
For the converse we show by induction on 1 that if b, E d then b,(b,) G a. The case

where I = 0 is trivial. For I > 0 suppose K E (br(ZrJ), .
Then for some b, E b, , k E (S,(b,))i and (n, 2K + i) E (b,), . Therefore I > z and as

b, 5 d, k E (d(b,))i . Now we have:

d(b,) = f(b,(b,)) (by the definition of d),

rf(4 (by induction hypothesis),
=a (as a is a fixed point off).

So k E (u)~ and we see that b,(b,) c a, as desired. 1

Theorem 8 concerns the pure h-calculus aspects of LAMBDA as the term Y does not
contain any occurrences of tt * ., ff * ., 2X(.), or the conditional. More information
can be obtained by following the ideas of Hyland and Wadsworth [3, 171. As is now
customary, we work with the U&calculus which is obtained from the h-calculus by
adding a constant, Q, which is to denote I.

DEFINITIONS. A m-term, u, is in j3&wrmal form iff it contains no subterms of any
of the forms (& . U)(T), hx . Sz, or Q(U). We use =s for p-equivalence and, following [3],
we put, for any K&term, 0:

W(U) =del {a’ 1 U' is a /IQ-normal form obtained from some N, where
N =B JI, by replacing subterms of N by Q}.

THEOREM 9 (The Approximant Theorem). For all values assigned to the free variables
of a M&term, a, the set of values of members of w(u) is directed and has as lub the value of U.

Proof. The proof uses indexed terms, following exactly the lines of Theorem 2.5
of [3] or Theorem 5.2 of [17]. [

This strengthens Theorem 8 as w(Y) = {Af * f “(9) (n > 01. We further conjec-
ture that for two m-terms a and 7, u E T for all values of their free variables iff W(U) C W(T).
The proof would involve further investigation of the way the v-rule fails in the model.
There should also be a similar characterization of when u t 7 for all values of their free
variables.

Next we shall see how to use LAMBDA to give simple explicit definitions for some
interesting functions and elements of lJw. The bottom element is the least fixed point
of the identity and so:

I = Y(hx . x) = (1,1,...).

‘IT” AS A UNIVERSAL DOMAIN 221

The truthvalues are:

and
tt = tt * 1 = (tt, 1, _L,...)

ff =ff* I = (ff, L I,...>.

So we are identifying T with the first component of U W, in harmony with the definition
of the conditional in Section 2. Arbitrary elements can be turned into truthvalues by
the function BOOL, where for any x in T”:

BOOL(x) = ;f x then tt else fJ

Note that Boo1 just projects T” onto its first component. Sometimes we need the strict
(= sequential) conditional, SCOND where for x, y, .z in Tw:

SCOND(x, y, z) = if x then (if x then y else 1) else z.

This function differs from COND in that SCOND(1, y, z) is 1 rather than y ll z.
It is also useful to have a function, . * ., which generalizes tt * . and ff x . where for
x,y in 8”:

x * y dyf (if x then tt * y else ff * y) = (x(O), y(O), y(l),...).

Note that we are using infix notation for *. Any missing brackets should be associated
to the right. Whenever they help the eye, we will prefer infix and other notational devices
to the standard form for function application. The function, *, helps to define finite
vectors of truthvalues. For example,

<ff,ff,ff, to Cfff *ff *ff * tt.

This idea allows one to represent integers by:

Q CONSF”(tt) = (ff,..., ff, tt)

where there are n ff ‘s. The test for zero and successor and predecessor functions is easily
defined:

ZERO ezr BOOL,

and

x - 1 e7r TL(x),

x + 1 dyf SCOND(x)(ffc x)(ff* x).

Note that we only care that they give the right results when applied to numbers and send
1 to 1. Actually every partial recursive function f (m, a,...) is definable in the sense that
there is a term 7 such that if f (rrz, n ,...) = 1 then T(M, % ,...) = l and if f (m, n ,...) is not
defined then T(H, ti ,...) = 1, and T(. . . . I,...) = 1. First of all the successor function,

222 G. PLOTKIN

the constantly zero function, and the projections are all definable and the class of functions
definable in this sense is closed under composition. Next primitive recursion is handled
using the least fixed-point operator Y as in [12]. Finally we treat minimalization by
example: Suppose f is a binary primitive recursive function and we want to define
g(m) = pn *f(m, n) = 0. Iff’definesf, then2 definesg where:

2 d~r Y(Ah . Am . hn . SCOND(ZERO(f (m, n))) n(h(m, n + l)))(O).

This is almost all we will need to show that LAMBDA definability and computability
coincide.

We can now make the infinite vector notation, (x(O), x(l),...), official in LAMBDA.
First for x, n in 8” we define,

a+) = (if Zero(n) then BOOL(x) else (TL(x))(“;l)). (5)

Notice the recursive style of the definition. It is intended that hx . hn * ~(~1 is the least
function satisfying (5). In other words, it is the fuction f where:

f = Y(hf . Ax . An . if Zero(n) then BOOL(x) else f(7X(x), n A 1))).

This method of definition will also be used below. Now if we recursively define (x) by:

(x> = x(0) * (An * x(n + I)),

we see that x = (An . x(~)) as expected. Also, (x)(‘) = BOOL(x(%)) for x in Tw and
n > 0. The vector notation makes it easy to give definitions coordinate by coordinate.
For example, if we put BOR(x, y) = (;f~ then tt else y), we have:

x v y = (An . BOR(x(“‘, y’“‘)),

and A and N can be defined similarly.
Pairs of arbitrary elements of Tw are dealt with rather differently from pairs of truth-

values. For x,y in UU we put:

cx, YI = x *Y * Fw~ WY)L

and also,

Note that [x, y] = <x(O), y(O), x(l), y(i) ,...). The point of the definition is that [*, *]
is an isomorphism of Uw x Urn and Um as is demonstrated by the equations ro([x, y]) = X,
7r1([x, y]) = y, and [no(x), nl(x)] = x for x, y in U W. Similar methods can be used to show
that (Uw)n r U” where n is any nonnegative integer, or even w.

Tw AS A UNIVERSAL DOMAIN 223

Having seen something of the scope of LAMBDA definability, it is now time to connect
up definability and computability.

DEFINITIONS. An element, x, of Tw is computabb iff {n 1 b, E x} is recursively
enumerable. A function,f, of K arguments, is computabze iff the relation m E (f(b n1 >...Y b”,Ji
is recursively enumerable in m, n, ,..., n, , i.

Note that an element x is computable iff (x),, and (x)i are a disjoint pair of re sets
iff x corresponds to a partial recursive predicate. The computable functions are closed
under composition and the operation of fixing an argument to be a computable value,
Also the computable elements are closed under the application of computable functions
to computable elements. Our definitions of computability agree with those in [l, 141,
for example, and we claim it is also intuitively reasonable.

THEOREM 10 (The Definability Theorem). (1) An eZement of To’ is computable ifl
it is LAMBDA dejinable.

(2) -4 function (of K arguments) is computable zy it is LAMBDA de&able.

Proof. In one direction, it follows from Theorem 7 that every LAMBDA-definable
function and element is computable. For one can check that the six constants are com-
putable and that Fun is computable, and so every element (function) generated by iterated
application from the constants (and variables) is computable.

Conversely, suppose an element x of TW is computable. Then it corresponds to a
partial recursive predicate which can be defined, in the sense stated above, by a term 7.
But then x is LAMBDA definable, as x = (T}.

In the case of computable functions of one variable, f, the definition of Pred shows
that Pred(f) is computable. Then it is defined by some term, r, say and f itself is defined
by T(X). In the case of several variables it is easier to proceed indirectly and we indicate
the idea by taking the case of a computable function, f, of two variables. Since f, no,
and vi are computable, g(x) =def f (n,,(x), We) is a computable function of one variable
which therefore can be defined by a term 7, say. But then f itself is defined by T([x, y]). i

Thus the computable elements of Tw form a model for LAMBDA which obeys (cz),
@I), ([*), and (p). Indeed any class containing the definable elements and closed under
application forms a model obeying these laws. In the model of the computable elements,
the maximal ones correspond to the recursive sets and those elements which are not
dominated by any maximal elements correspond to the recursively inseparable sets.

There seems to be no difficulty in working out the theory analogous to that of Section 3
in [12] on enumeration and degrees. This task is left to the interested reader. He might
note that the reducibility relationship is just that one obtained via the recursive operators
defined in Section 9.8 of [lo] except that one uses partial predicates rather than functions
which makes no difference to the degree structure. However, the degrees are different
to the enumeration degrees, as is shown in [lo].

224 G. PLOTKIN

4. RETRACTIONS

The retractions on Uw are a convenient means whereby complete partial orders other
than T” are considered.

DEFINITION. An element, a, of Tw is a retraction iff u 0 a = a. Its associated cpo
is Dam(a) =def ((x 1 u(x) = x}, E) where c is inherited from U”.

If a is a retraction, the retract Dam(u) is a cpo with least element u(L) and its lub
operation is that of P, when restricted to directed sets. We will write x: a to mean x
is a member of Dam(a) and hx: u * T for hx . [u(x)/x] 7.

Many basic cpo’s are, to within isomorphism, given by retractions. For example,
T is given by:

BOOL = hx . (if x then tt elseff).

The cpo, N, is given by the retraction INT, where:

INT ayr hx . if ZERO(x) then 0 else INT(x L 1) + 1.

Note that Dom(INT) = {I, 0, i,...) and so the inherited order is correct.
The domain of binary sequences with the subsequence ordering is given by:

BINSEQ ayf hx * if NE(x) then 1 else x(O) * BINSEQ(TL(x)).

Here NE is just Xx * SCOND(x)(ff)(ff). Th e 1 ‘d ea is that finite binary sequences are
represented by finite vectors of truthvalues, such as ff * tt * tt t ff. Infinite ones are
represented by maximal elements of Urn.

The domain Pw is given by:

PW,z Ax * (An . ifxcn) then tt else I).

The idea here is that subsets of w are represented by vectors with no ff components.
Since PW is a retract of Tw all the lattices of [12] are retracts of Uw. Of course Urn is not a
retract of Pw as retracts of lattices are lattices.

As mentioned in Section 1 one way of characterizing the retracts is to identify them
as the coherent separably continuous cpo’s. We now give the required definitions.

DEFINITIONS. Let D be a cpo and let d and e be elements of D. Then d < e iff for
every directed subset, X, of D, e G U X implies d c x for some x in X. Read d < e
as “d is way below e.” A subset B of D is a basis for D iff for every element, d, Bd =def
{b E B j b < d) is directed and has lub d. The cpo D is separably (= count&y = w-)
continuow iff it has a denumerable basis.

This definition of the w-continuous cpo’s agrees with those given in [ll, 141. Here are
the elementary properties of <.

8” AS A UNIVERSAL DOMAIN 225

LEMMA 2. Let D be an w-continuous cpo. Let x, y, z be in D.

(1) x<y-+xcy.
(2) xcyttVd~D(d<x+d<y).

(3) xEy”y-gZ-+X<Z.

(4) x<ytt3d~D(x<d~d<y).

(5) x < z A y < z A x u y exists + x u y < 2.

In the case of U”, x Q y iff x = b, c y for some n. So Tw is separably continuous with
basis {b, / n 3 0). Thus Uw is a coherent separably continuous cpo. For the purposes
of this paper such cpo’s will be called domains.

THEOREM 11 (Characterization Theorem for Domains). A cpo is a domain ;sf it is,
to within isomorphism, a retract of T*.

Proof. Let a be a retraction. Suppose X is a pairwise consistent subset of Dam(a).
Then it is also pairwise consistent in Uw and so its lub, U X, in To’, exists. But then its
lub in Dam(a) is a(Ll X) and so Dam(a) is coherent.

Now set B ==+r {a(b,) 1 n > 0). If x is in Dam(a) then x = a(x) = U (a(b,) j 6, 5 AT:.
The set on the right is directed and is a subset of B, = {d E B I d < x holds in Dam(a)].
For suppose Y C Dam(a) is directed and x E tl Y. Then if b, & x, b, E y for some y
in Y and so a(b,) c a(y) = y. So {a(b,) / b 12 f x} is a directed subset of B, with lub .y.
This implies that B, is directed with lub x. As B is countable, we have shown Dam(a)

to be a domain.
Conversely suppose D is a domain and let e,, , e, ,... be an enumeration of a countable

basis of D. Define p: D ---t Uw by:

It is straightforward to check continuity. The proof uses consistent completeness.
For each t in Uw, let X, =der {ei / i E (t). A Vj < i, ej # e, -.j E (t)l}. First X, is

pairwise consistent. For suppose e, and e,’ are in X, . We can suppose that i E (t),, and
if j < i and ej # ei then j E (t)l and similarly for i’. If i’ < i then e,, t ei as otherwise
i’ E (t)l which contradicts i’ E (t& . Similarly if i < i’, ei’ T e, and so X is pairwise con-
sistent. One can therefore define 4: Uw --+ D by:

?w = u xt .
D

This is a good definition as D is coherent. The function # is continuous, the important
point being that the universal quantifier in the definition of X, is restricted to a finite set.

Suppose x E D. We show that ei < x iff e, E Xqld) . Now, if ei < x then i E (v(d)), and
if j < i and ei # ei then ej # x and so j E (v(d)), . Th us ei E Xmcd) . Conversely, if e, E Xqtd)
then for some i’, e, = ei’ and i’ E (v(d))O and so e, = ei’ < x. Therefore, # o v(x) =
Ll {ei 1 ei < z} = x. It follows that D is isomorphic to p(D), the image of D under v
and so that y 0 CI, is a retraction with domain q(D). 1

226 G. PLOTKIN

Next we consider operations on retracts which correspond to domain constructions
in the style of [12].

DEFINITION. For retractions a and b we write a o< b for a = a o b = b o a.
Although we have not defined retractions on arbitrary cpo’s, it should be clear that

a 0~ b implies that Dam(a) is a retract of Dam(b). Now o< is a partial order and if a
and 6 are commuting retractions, a 0 b is their glb wrt o<. If a sequence of retractions is
increasing with respect to o< and E, its lub with respect to c is a retraction which is
also its lub with respect to o&The element, 1, is the least strict retraction. (A function a,
is strict iff u(1) = I.) The element (hx . X) is the largest retraction. For any retraction
a there is a strict retraction, a’, representing the same domain to within isomorphism:

44 = ((4x))cl - (4 I))0 , (@))l - (a(1))1>.

Note that forming a’ is not even a monotonic function of a.
The three main operators on retractions are o-+, 0, and 0:

uo+b = Af-bofou,

a @ b = Ax * [u 0 7&x), b 0 q(x)],
a @ b = hx . SCOND(x)(CONST o a 0 TL(x))(CONSF o b o E(X)).

One calculates that if a, a’, b, b’ are any elements of Uw:

(u o--+ b) 0 (a’ o+ b’) = (a’ 0 a) o--J (b 0 b’),

(a @ b) 0 (a’ @ b’) = (a 0 a’) @ (b 0 b’),

(a @ b) 0 (a’ @ b’) = (a 0 a’) @ (b 0 b’).

THEOREM 12 (The Function Space Theorem). Let a, 6, a’, b’, c be retractions. Then:

(1) a a-+ b is a retraction and is strict if b is,

(2) f: a o--+ b i#f = Ax: a - f(x) and Vx: a * f(x): b,

(3) if a 09 a’ and b O< b’ then a o+ b o< a’ o-+ b’,

(4) iff: a O+ b undf ‘: a’ a+ b’ thmf o---f f ‘: (b o-+ a’) o---t (u o+ b’),

(5) iff:uo+b undf’:bo-+c thmf’of:uo-+c.

Part 2 tells us that Dom(u o--+ b) g D om a + Dam(b) and also indicates the iso- ()
morphism. Indeed one has a category with objects the strict retractions and morphisms
the functions fi a o+ b. As can be seen from Theorems 11 and 12 this category is equiv-
alent to the category of domains and continuous functions. The operator o--+ on the former
category is a functor which induces the exponentiation functor on the second category.

THEOREM 13 (The Product Theorem). Let u, b, a’, b’ be retractions. Then:

uw AS A UNIVERSAL DOMAIPU‘ 227

(1) a @ b is a retraction which is strict if a and b are,

(2) d: a @ b @n,,(d): a and z-,(d): b,

(3) ifao<a’andbo<b’thena@bo<a’@b’,

(4) iff:a-+bandf’:a’~+b’therzf @f’:a @a’o+b @b’.

We see from part 2 that Dom(a @ b) E Dam(a) x Dam(b), and, as in Section 4
of [12], one sees that @ is the product functor and the category of strict retractions is
Cartesian closed. The same holds for the category of domains.

THEOREM 14 (The Sum Theorem). Suppose a, b, a’, b’ are retractions. Then:

(1) a @ b is a strict retraction,

(2) d: a @ b #d = 1 or d = CONST 0 TL(d) and TL(d): a or d = CONSF 0 TL(d)
and TL(d): b,

(3) if a O< a’ and b a< b’ then a @ b O< a’ @ b’,

(4) iff:ao+bandf’:a’o-+b’thenf@f’:a@a’o+b@b’.

Thus Dom(a @ b) s Dam(a) + Dam(b) the separated sum of Dam(a) and Dam(b).
There are various injection and projection functions such as in Section 4 of [12]. There
is no difficulty in extending @ and @ to more factors, even denumerably many. In
particular, we see that NW is a computable retract of UW which is why there was no loss
of generality in our considering partial predicates (U”) rather than partial functions
(UU). If one used strict retractions one also has amalgamated sums and products [2, 61.

THEOREM 15 (The Limit Theorem). Suppose F is a function in Uw which maps retrac-
tions to retractions and set c = Y(F). Then c is a retraction. Suppose too that F preserves
strictness and is monotonic with respect to a<. Then c is strict and if d is a strict retraction
such that Fd o< d then c Q< d. Finally 9 =def (D, , p,,,> is a directed w-sequence in
the category of domains and embeddings with colimit, lim 9 = Dam(c). Here
D, = Dom(Fm(I)) andfor m < n, vWn = Ad: D, . d.

Proof. First, suppose F sends retractions to retractions. Then each F”(1) is a retrac-
tion and so too, therefore, is c as c 0 c = Ll F”(1) 0 F”(1) = Ll, Fr”(1) 0 F”(1) = c.
Next, suppose F preserves strictness and is monotonic with respect to o<. Then each
F”(1) is strict and so too, therefore, is c. Also (Fm(~))~=,, is an increasing sequence with
respect to both the orderings, E and a<. Therefore, by a remark made above, c is the lub
of this sequence with respect to both orderings. Now if d is a strict retraction such that
Fd a< d then by induction on m, one sees that F”(1) o< d for all m. Therefore c Q< d.

We only sketch the proof of the last part. Let D and E be cpo’s. A continuous map,
f: D -+ E is an embedding iff there is a, necessarily unique, continuous map, f R: E -+ D
such that f R 0 f = ID , the identity on D and f 0 f R E IE . The map f R is called the
right adjoint off. The category, DomE, of domains and embeddings is a subcategory of
the category of domains and continuous functions. To say that 9 is a directed sequence
in DomE means each ymn is an embedding, vmn = I,,, , and pmn 0 yLrn = vrn when

228 G. PLOTKIN

0 < 1 < m < n. These facts are easily checked and it turns out that && =
hd: D, .F”(I)(d).

Now Dome is a full subcategory of the category CPOE considered in [16] where it was
shown that in that category, lim 9 exists and is D, =def {(x,),,, 1 x, E Dm~~(m+l)
(++i) = x,} with the componentwise ordering. But we can define a map 0: Dam(c) + D
by, B(d) = (F”(l)(d)) and check that 19 is an isomorphism. Therefore D, is an object
in Dome and so it is also lim 9 in DomE which concludes the proof, as Dam(c) s D. 1

Thus certain colimits can be defined, using Y, and then analyzed using categorical
notions. It should be remarked that DomE is actually closed under colimits of directed
w-sequences. With the aid of these last few theorems and the basic retractions such as
BOOL, INT, and so on one can solve many recursive domain equations just as in [12].
The domains obtained in this way are effectively given in the sense that they are given
by computable retractions. The computable elements of such domains are those elements
which are computable as elements of Tw itself, according to the definition given
in Section 3. The effective maps between such domains are then the computable elements
of the appropriate function spaces found by Theorem 12. Following the ideas of Smyth
[14] one can give an independent definition of the effectively given domains by using his
idea of an effectively given basis. Then one obtains an effective version of Theorem 11.

In his paper on Pw, Scott recommended dealing with cpo’s by using a suitable top-
cutting operator. It does not seem too convenient to use arbitrary pairs (a, t) of retractions
and top-cutting operators to represent domains, where (a, t) represents {u: a 1 t(u) = I}.
The difficulty is that it does not seem to be possible to define an exponentiation operator.
However we can use afixed t with the aid of our considerations on Tw. Define (TW, TOP)
by putting for u in Pw:

TOP(u) = {n [3m > 0 . (2m, 2m + l} C u},
TW(u) = u u TOP(u).

Then (TW, TOP) represents Tw and we temporarily identify each element x of Uw
with (2m + i 1 m E (x)~ (; = 0, 1)). Clearly, computable elements are identified with
computable elements.

Define the function Ap: (Pw)~ -+ Pw by:

Ap(u, V) = Fun(u)(v) (u, v E P)
= T (u $ Tw or v 4 Uw).

The function Ap is clearly computable and so as K, S, CONST, and CONSF are com-
putable, using Theorem 7, we can associate to each term 7 of the language LAMBDA
for To a term T* of the language LAMBDA for Pw which has the same free variables,
x, ,..., xlc say, and which has the same value as 7 when x, ,..., xk take values in Urn.

Now if a- is a retraction in Uw then a =der Xu . Ap(a)(u) is a retraction in Pw and,
indeed, (z, TOP) represents Dam(a). If a is defined by 7 then a is clearly defined by
hu . AP(7*)(u) where AP defines Ap. So we can conveniently use the results of this section

uw As A UNIVERSAL DOMAIN 229

to define the retractions we want in Pw. It is also possible to find suitable operators
G and so on First, one defines a computable function Ret: POJ -+ Pw such that if a
is a retraction in Uw then Ret(a) = a. Then G is defined by:

--
which ensures that Z= b = a O+ b. In this way one can work rather directly in Pw.

5. PARTIAL CLOSURES

Most domains which arise in mathematical semantics are, in fact, algebraic. These
domains are given by a special kind of retraction-the partial closures.

DEFINITIONS. Let D be a cpo. An element, d, of the cpo is$nite (= isolated = compact)
iff d << d; D is separably (= countably = w-) algebraic iff it has a countable basis of
finite elements.

The lub of any two finite elements is finite. Any basis of an w-algebraic cpo contains
all the finite elements. So an w-algebraic cpo has essentially one basis, the set of its
finite elements. We have seen above that Uw and its function space are w-algebraic.

In the case of Pw, w-algebraic lattices arose from closures, which are just retractions
dominating the identity. In the case of T” the identity is the only closure. (For suppose a
is a closure but a(x) # X. As a(x) 2 x there is an element y 1 x such that y # a(x).
But a(y) 1 y and a(y) 2 a(x). So y t a(x), w ic is a contradiction.) We ask instead h’ h
that a is increasing on enough elements to ensure that Dam(a) is algebraic.

DEFINITION. Let a be a retraction and put F(a) =der (b, / b, E a(b,)). Then a is
a partial closure iff a(x) = U {a(b,) / b, E a(x) A b, EF(a)}, for all x in Uw.

Note that if b, and b, are inF(a) then so is b, u b, , if it exists. A projection is a retrac-
tion which is less than the identity. Every projection, p, is a partial closure, as p(b,)
is in F(p) for all R. In particular the functions BOOL, INT, BINSEQ, and PW are all
projections. Note that the corresponding domains are all w-algebraic. This is explained
by the next theorem, which also gives some justification for the rather ugly definition of
a partial closure.

THEOREM 16 (The Partial Closure Theorem). Let a be a retraction. The following
are equivalent:

(1) The retraction a is a partial closure.

(2) There is a retraction c and a projection p such that Dam(a) = Dam(c), and
cop = czp.

(3) The domain, Dam(a), is w-algebraic.

Proof. (3) G- (1) Suppose Dam(a) ‘s 1 w-algebraic and let F be the set of its finite

230 G. PLOTKIN

elements. We show that a is partial closure. If d EF then d = Ll (a(b,) 1 6, c d}. As d
is finite and the set on the right is directed, d = a(&) for some b, such that b, E d. So
b, EF(~). It follows that as Dam(a) is w-algebraic, for any x in Uw, a(x) = Ll {d E u(x) 1
d E F} = U {u(b,) j b, E a(x) A b, E F(u)}. That is, a is a partial closure.

(1) => (2) Now suppose that a is a partical closure. Definep byp(d) = U {b, c d 1
b, E F(u)}. Then p is a projection and p E a, as if b, r d and b, E F(u) then b, E u(b,) E
u(d). Let c=uop. Then cot =u~p~u~p~u~p~p~p =c and also coc =
uopouop~uouop =c. Thus c is a retraction. Also cop =aopop =c and
c = a op 2 p 0 p = p. It remains to show that Dam(u) = Dam(c). As c = a o p,
Dam(c) C Dam(u). Suppose d: a. Then d = u(d) = U {u(b,) 1 b, E u(d) A b, EF(u)) =
u(U {b, 1 b, 5 d A b, EF(u)}) = a op(d). So Dam(u) C Dam(c), as required.

(2) +- (3) Let B = {c(b,) 1 n > O}. We show that B is a basis of finite elements for
Dam(c). First suppose X is a directed subset of Dam(c) and c(b,) c U X. Then
p(b,) E U X, asp E c and so for some x in X, p(b,) 5 x as p(b,) is finite in Uw. Therefore
c(b,) = c o p(b,) E C(X) = x. S o each c(b,) in B is finite in Dam(c). But if x: c then
x = c(x) = U {c(b,) I b, c x}. So {c(b,) I b, - } c x is a directed subset of B, = {c(b,) 1
c(b,) Q x holds in Dam(u)} and also has lub x. Thus B is a basis for Dam(u) = Dam(c). 1

As the function space, Tw -+ Tw is w-algebraic, Fun is a partial closure. The retraction,
c, and the projection, p, mentioned in part (2) of Theorem 16, can be taken to be Fun
and Funpart, respectively, where Funpart is given by Funpart = U {Seg(K) j
Seg(h) E x>.

COROLLARY 1 (Characterization Theorem for Algebraic Domains). A cpo D is an
w-algebraic domain a$ it is given by a partial closure.

Proof, If D is w-algebraic then it is an w-continuous domain. Therefore by
Theorem 11 it is given by a retraction. As it is w-algebraic, Theorem 16 implies that the
retraction is a partial closure. The converse is immediate from Theorem 16. 1

THEOREM 17 (Exponentiation, Sum, and Product Theorems for Partial Closures). Let
a and b be partial closures. Then so are a o+ 6, a @ b, and a @ b.

Proof. It is known (see any of [4, 8, 14]), that if D and C are consistently complete
w-algebraic cpo’s then so is D -+ C. So if a and b are partial closures, Dam(a) and Dam(b)
are consistently complete w-algebraic domains and so too, therefore, is Dom(u o-+ b) s
Dam(a) + Dam(b), as coherence follows from the fact that a o-+ b is a retraction and
Theorem 11. Therefore by Theorem 16, a o---f b is a partial closure. A similar proof works
for @ and 0. Alternatively one can obtain a short proof by using condition (2) of
Theorem 16. 1

The section concludes with the description of a universe function, V, for the partial
closures. First we need some notation. Put

h n] d% u @eg((m, 2r + i)) I r E (b,)< , i = 0 or l} for all m > 0 and n > 0.

-i-“’ AS A UNIVERSAL DOMAIN 231

Then [m; n] behaves as a step function in that [m; n](x) = b, if x 2 b,, but otherwise
is 1. Also we have [m; n] E fiff b, E f&J, for any functionf. Now we can put:

Note that Pcpart is a computable projection dominated by Fnpart. Also:

Pcpart(a) 0 Pcpart(u)(x) 2 Pcpart(a)(x). (6)

For suppose [I; m] E a, [m; n] c a, b, & b, and b, E x. Then b, c Pcpart(a)(x) and
[m; m] E Pcpart(u) as [m; nr] E [m; n]. Therefore b, E Pcpart(a) 0 Pcpart(u)(x). Now
define Q by putting for a in Tw:

Q(u) def Xx . Pcpart(u)(x).

BY (6)j &(a> 0 Q(u) 2 C?(a) and so (Q(4)” . 1s increasing with n and we may define the
computable function V by putting for any a in TW:

THEOREM 18 (Universe Theorem for w-Algebraic Domains). The function V is a
partial closure operation and its Jixed points comprise the set of all partial closure operations.

Proof. First we show that V(u) = u iff a is a partial closure operation. Suppose a
is a partial closure operation. Then for any x in TY

= U {u(b,) 1 b, E x A b, G u(b,) A b, EF(u)}

(by the definition of a partial closure)

= u {b, I b, c x A b, E u(b,) A b, EF(b,) A b, c b, E u(bm)j

= Pcpart(u)(x) (by the definition of Pcpart).

So, as a is a function, Pcpart(a) = a; thus Q(u) = a and as u is a retraction, V(a) = a.
Conversely, suppose V(u) = a. Then a2 = V(a) 0 V(a) = Ll,>, (Q(a))21a = V(u) = a.

So a is a retraction. As Q(a) 0 V(u) = V(u), a = V(u) = Q(u) o V(u) = Q(u) 0 a.
Therefore, if x is in Uw:

= u (b, 1 31, 3n, b, E u(x) A [l; m] L a A [m; n] E a A b, E b,}

(by the definition of Pcpart)

= u {b, I b, E a(x) A b, SF(U)} (as a is a retraction)

= u {u(b,) 1 b, E u(x) A b, EF(u)).

232 G. PLOTKIN

The last line follows because if 6, E a(&), b, E a(x), and b, EF(u) then (6, u b,) E F(a)
and (b, LI b,) E u(x). So we see that a is indeed a partial closure.

Finally, we must show that V itself is a partial closure operation. We have already
seen that Pcpart is a projection. Also V 2 Pcpart as Q 2 Pcpart. Now, (Q 0 Pcpart)(u) =
hx . Pcpar@(u)(x) = Q(u), as Pcpart is a retraction. Therefore, V 0 Pcpart = V. It
follows that V 0 V 1 V and it only remains to show that V 0 V c V. If K 2 1 we have:

QKQ(4”) = A+X . P~P~~((Q@N”)W
c Xx . Funpart((Q(a))“)(x) (as Pcpart c Funpart)

= QW” (as this is a function).

Therefore V(a) 5 Ll , k ,+i Q(u)~+~ = V(u), concluding the proof. u

In the light of this theorem, we can rewrite Theorem 17 as: (ha: V * hb: V * sop b):
V ++ (V O-J V), where op is o-+, 0, or 0. We also have: (hf: Vo+ V * Y(f)):
(V o-+ V) o+ V, as V is a retraction. This shows that the direct limits considered in
Theorem 15 are w-algebraic if their components are. As it happens, one can show that
if 9 is any directed w-sequence of w-algebraic domains in Domx then &IJ .C3 is
w-algebraic.

6. TOPOLOGICAL CONSIDERATIONS

The domain U has a very natural T,, topology which is closely associated with the partial
order on T. As basis one takes the empty set together with {ff}, {tt>, and T. Then 8”
inherits the product topology which has a basis consisting of the empty set together with
the sets B, where for rz > 0:

It can be shown without difficulty that the continuous functions from Uw to lP are just
those functions which are continuous with respect to this TO topology. One can then go
on to consider the various kinds of equational sets as in Section 6 of [12]. It is straight-
forward to formulate and prove analogs of the theorems there. We just quote one.

THEOREM 19 (The G%‘* Theorem). The sets that are countable intersections of Boolean
compbinutions of open sets of 8" are precisely those of the form: {x j f(x) = g(x)} where f
and g are continuous functions from U” to U*.

This theorem indicates the possible scope of equational theories for LAMBDA. In
the rest of the section we give a topological equivalent of the concept of a domain and
show that the resulting category is isomorphic to the category of domains and continuous
maps. Along the way, we present analogs of the extension and embedding theorems in
Section 1 of [12], and an analog of the notion of injective space of [ll]. The development

?T” AS A UNIVERSAL DOMAIK 233

of the material largely follows that of the latter paper. The main difference is that
we use a stronger notion than that of a topological subspace.

DEFINITION. Suppose X is a subspace of a topological space Y. It is an isochor&Z
subspace iff whenever U, , U, are disjoint open subsets of X then there are disjoint open
subsets V, , V,of Ysuchthat lJi = VinX((i= 1,2).

For example, Cantor Space is, to within isomorphism, an isochardal subspace of U,j.
Under the evident embedding Tw is not an isochordal subspace of Pw. It should be
remarked that the definition of an isochordal subspace was chosen just so that the crucial
Lemma 3 (see below) would hold. Indeed Lemma 3 can be taken as an alternative
definition.

THEOREM 20 (Embedding Theorem). S pp u ose X is a separable T, space. Then there
is an embedding of X into Tw as an isochordal subspace of Uw.

Proof. Let U, , U, .‘* be an enumeration of the countable basis of X. Define
E: .\- ---)r UW by putting, for x in X:

‘(x)=({~I~EU,},{~I~~.~EU,AU,~U,,= a}).

The function E is certainly well defined and continuous. The TO hypothesis ensures
that E is l-l.

If U is an open set of X then:

e(U) = {E(X) / x E U}

= E(X) n {t E To / 3, Vi C U A i E (t),}.

Therefore c(U) is an open subset of c(X).
Finally let U1, U2 be disjoint open sets of X. If x E U1 and Uj C U2 then j E (c(x))t . So:

l (ul)=~(X)n(tElr~/!li, UicU1~iE(t),h(Vj’j~i,UjCU”-fjE(t)l)}

= c(X) n V, say.

The definition of V1 shows it is open as the universal quantifier is restricted to a finite
set. Define V2 similarly but with U2 and u1 interchanged. To see that V, and V, are
disjoint suppose, for the sake of contradiction, that t is an element of VI n V2. Let i
be the smallest number such that Ui, C u1 and il E (t),, and (Vj < i1 , Uj C U2 ---f j E (t)J.
Define i2 similarly. If iz < i then iz E (t)l , which contradicts iz E (t). . Similarly we have
a contradiction if il < i2 , which concludes the proof. 1

DEFINITION. Let D be a topological space. It is injective over isochordal s&paces
iff whenever X is an isochordal subspace of a space Y and f: X --+ D is topologically
continuous then f can be extended to a topologically continuous map fi Y --f D.

234 G. PLOTKIN

THEOREM 21 (Extension Theorem). UW is injectiwe over isochordal subspaces.

This is an immediate corollary of two lemmas,

LEMMA 3. T is injective over isochmdal subspaces.

Proof. Let X be an isochordal subspace of Y and supposef: X --+ U is topologically
continuous. Set U, = f-l(tt) and Ua = f-‘(ff). By hypothesis there are disjoint open
sets Vr , Va of Y such that Ui = X n Vi . DefineJ: I’ -+ B by:

J(Y) = tt (Y 6 Vlh

=.ff (YE VA
= J- (otherwise).

Then 3 is the required extension. m

LEMMA 4. Any Cartesian product of spaces which are injective over isochordal subspaces
is itself injective over isochordal subspaces.

Proof. Obvious. 1

Now we consider topological retractions of T”. They are clearly just the retractions
defined in Section 4 since the two notions of continuity coincide. If a is a retraction
its associated topological retract, Inj(a), is {a(x) 1 x E Uo} equipped with the subspace
topology. The retract inherits the Ts-property from Tw. If U is an open set of Inj(a)
then U = f-l(U) n Inj(a). So if U, , U, are disjoint open subsets of Inj(a) then f -l(U,),
f -l(U,) are disjoint open subsets of Y” containing U, and Ua , respectively. Thus Inj(a)
is always an isochordal subspace of Uw.

THEOREM 22 (Characterization Theorem for Injective Spaces). A topological space D
is separable and injective over isochordal subspaces isf it is a retract of ‘Uw to within iso-
morphism.

Proof. One half is like the proof of Proposition 1.4 of [ll] and the other half is like
that of Corollary 1.6 of that paper. 1

COROLLARY 2 (The Isomorphism Theorem). The category with objects those separable
spaces which are injective over isochordal subspaces and with rrwrphims the topologically
continuous maps is isomorphic to the category of domains and (order-) continuous maps.

Proof. Theorem 22 shows that the first category is equivalent to the full subcategory
whose objects are the spaces, Inj(a). The work in Section 4 shows that the second category
is equivalent to the full subcategory whose objects are the domains, Dam(a). We describe
an isomorphism, F, of the latter two categories. The equivalences then show how to build
an isomorphism of the former two.

For objects we put F(Inj(a)) = Dam(a). As the retraction a only determines the carrier
of the structures this is a well-defined bijection of the structures. For a morphism

Tw AS A UNIVERSAL DOMAIK 235

f: Inj(a) ---, Inj(b) we put F(f) = f. T o see that this is well-defined let L, and L* be the
inclusion maps from u(Uw) and b(Uw), respectively, to Uw. Then f = b 0 (lb of o a) 0 L& .
As a and Lo are topologically continuous so is Q 0 f 0 a which is therefore order continuous,
as the two notions of continuity coincide for Tw. As b and L~ are order continuous, the
equation shows that f is. Thus F sends topologically continuous maps to order
continuous maps. Similarly if f: Dam(a) + Dam(b) then f is topologically continuous.
This is enough to show that F is an isomorphism. i

The isomorphism sho\?rs that the domain Dam(a) is determined by the topology
Inj(a) and vice versa. We will now make this dependence explicit. For each retraction,
a, we define a topology by requiring that a set U is open just when:

(i) V’s, y E Dam(a), .2: E 0‘ A x c y ---f y E C:;

(ii) V’s C Dam(a), X directed A U XE LT - 3x E X, x E c.

Then the topology obtained is that of Inj(a). First consider the case when a is the identity.
Each B, obeys (i) and (ii). Suppose U does and y E U. Then by (ii) and the algebraicity
of Tw there is a b, such that b, 5 y and b, E U. Thus by (i), B, C U and so
li = U {B,l) B,, c U} which shows the topologies are identical.

In the general case suppose U is open in Inj(a). Then U = Inj(a) n a-l(U) and a-r(U)
is open. This equation makes it easy to check conditions (i) and (ii). Conversely suppose
0’ obeys conditions (i) and (ii) and consider a-‘(U). If x, y E Tw and x E y and x E a-r(U)
then U(X) c a(y) and u(x) E Ii. By (i), a(y) E U and so y E a-l(U). Similarly we can check
condition (ii) for u-l(U) using the continuity of a. Thus a-l(U) is open in Tw, by the first
case examined, and so U = Inj(a) n a-‘(U) is open in Inj(a). Thus the two topologies
are always the same.

Conversely the order can be derived from the topology. Consider a space Inj(u).
Define E’ by:

X C’ y dzf VU open in Inj(n), x E G + y E t,-.

The same style of proof shows that G’ is just C.
We conclude this section with a word on the countability hypothesis which is used

throughout this paper in what seems to be a more essential way than in [121. For example,
in the proof of Theorem 20 the openness of V depended on the restriction of the uni-
versal quantifier to a finite set. For that reason there is no obvious generalization of the
theorem to the case of a space with basis of cardinality K > w and T”. Again in the proof
of Theorem 11 the continuity of + depended on the restriction of the universal quanitfier
in the definition of X, to a finite range. Again in Section 2 our ability to define finite charac-
teristic segments, Seg(K) depended on the countability of the subbasis of the function
space. We therefore conjecture that if K > w then (UK + UK) is not a retract of UK. This
would give a counterexample to the natural generalization of Theorem 11 and, as Lemma 4
says each UK is injective over isochordal subspaces, it would also give a counterexample
to the natural generalization of Theorem 22.

236 G. PLOTKIN

ACKNOWLEDGMENT

I would like to thank Professor D. Scott for his many helpful suggestions.

REFERENCES

1. R. CONSTABLE AND H. EGLI, Computability concepts for programming language semantics, in
“7th Annual ACM Symposium on Theory of Computing (1975),” pp. 98-106.

2. M. J. C. Gordon, “Evaluation and Denotation of Pure LISP Programs: A worked Example
in Semantics,” Ph.D. Thesis, Univ. of Edinburgh, 1973.

3. M. HI-LAND, A syntactic characterization of the equality in some models for the lambda calculus,
J. London Muth..Soc. 12 (1976), 361-370.

4. G. MARKOWSKY AND B. ROSEN, Bases for chain-complete posets, IBM J. Res. Develop. 20 (1976),
138-147.

5. J. MCCARTHY, A basis for a mathematical theory of computation, in “Computer Programming
and Formal Systems” (P. Braffort and D. Hirschberg, Eds.), pp. 33-70, North-Holland,
Amsterdam, 1963.

6. R. E. MILNE, “The Formal Semantics of Computer Languages and Their Implementations,”
Technical Monograph PRG- 13, Programming Research Group, Oxford Univ. Computing
Laboratory, 1974.

7. R. MILNJB, Implementation and application of Scott’s logic for computable functions, in
“Proceedings of ACM Conference, ACM, New York, 1972,” pp. l-6.

8. G. D. PLOTKIN, LCF considered as a programming language, J. Theoret. Comput. Sci. 5 (1977),
223-255.

9. G. D. PLOTKIN, A powerdomain construction, SIAM J. Computing 5 (1976), 452-487.
10. H. ROGERS, JR., “Theory of Recursive Functions and Effective Computability,” McGraw-Hill,

New York, 1967.
11. D. SCOTT, Continuous lattices, in “Toposes, Algebraic Geometry and Logic” (F. W. Lawvere,

Ed.), pp. 97-136, Lecture Notes in Mathematics, Vol. 274, Springer-Verlag, Berlin, 1970.
12. D. SCOTT, Data types as lattices, SIAM J. Computing 5 (1976), 522-587.
13. D. SCOTT, Some philosophical issues concerning theories of combinators, in “h-Calculus and

Computer Science Theory” (C. BZihm, Ed.), pp. 246-366, Lecture Notes in Computer Science,
Vol. 37, Springer-Verlag, Berlin, 1975.

14. M. SMYTH, Effectively Given Domains, J. Theoret. Comput. Sci. 5 (1977), 257-274.
15. M. SMYTH, “Powerdomains,” /. Comp. Sys. Sci. 16 (1978) 23-36.
16. M. SMYTH, “Category-Theoretical Solution of Recursive Domain Equations,” Theory of

Computation Report No. 14, Univ. of Warwick, 1976.
17. C. P. WADSWORTH, The relation between lambda-expressions and their denotations, SIAM J.

Computing 5 (1976), 488-521.

