
Algebraic Operations and Generic Effects

Gordon Plotkin and John Power ?

Division of Informatics, University of Edinburgh, King’s Buildings,
Edinburgh EH9 3JZ, Scotland

Abstract. Given a complete and cocomplete symmetric monoidal closed
category V and a symmetric monoidal V-category C with cotensors and
a strong V-monad T on C, we investigate axioms under which an ObC-
indexed family of operations of the form αx : (Tx)v −→ (Tx)w provides
semantics for algebraic operations on the computational λ-calculus. We
recall a definition for which we have elsewhere given adequacy results,
and we show that an enrichment of it is equivalent to a range of other pos-
sible natural definitions of algebraic operation. In particular, we define
the notion of generic effect and show that to give a generic effect is equiv-
alent to giving an algebraic operation. We further show how the usual
monadic semantics of the computational λ-calculus extends uniformly to
incorporate generic effects. We outline examples and non-examples and
we show that our definition also enriches one for call-by-name languages
with effects.

1 Introduction

Eugenio Moggi, in [13, 15], introduced the idea of giving a unified category the-
oretic semantics for computational effects, modelling each of them in the Kleisli
category of an appropriate strong monad T on a base category C with finite
products. Examples of such effects are: nondeterminism, probabilistic nonde-
terminism, exceptions, interactive input/output, side-effects, and continuations
with, in the case of Set, the corresponding monads being given by finite non-
empty subsets, finite distributions, and the monads (− + E) (for a set E of
exceptions), Tx = µy.((O× y) + yI + x) (for sets O of outputs and I of inputs),
(S ×−)S (for a set S of states), and AA− (for a set A of answers), respectively.
Moggi supported his use of the Kleisli construction by developing the computa-
tional λ-calculus or λc-calculus, for which such categories provide a sound and
complete class of models. The computational λ-calculus is essentially the same
as the simply typed λ-calculus except for making a careful systematic distinction
between computations and values. It represents a fragment of a call-by-value pro-
gramming language; in particular, it was designed to model fragments of Milner
et al’s language ML [17]. We describe it in Appendix A.

However, the calculus does not contain operations, the constructs that actu-
ally create the effects. For example, for binary nondeterminism, one has a binary
? This work has been done with the support of EPSRC grant GR/M56333.

nondeterministic choice operation symbol or. Operation symbols are polymor-
phic. For instance, in modelling nondeterminism, one has the rule (suppressing
contexts):

M,N : σ
M or N : σ

for all types σ. So, in order to give a semantics for or, a minimal demand is to
model it by a natural transformation:

∨x : (Tx)2 −→ Tx

Again, for exceptions, for each exception e, one has a nullary operation sym-
bol raisee for raising the exception e and a binary one handlee for handling
e. Similar computationally natural operations exist for all the other examples
except, it seems, for continuations, which are accordingly beyond the scope of
this paper. One should note that in such cases as interactive input/output and
state, these operations may be infinitary (see below).

Moggi’s computational metalanguage does contain operations, and his pa-
per [14] includes semantics for them, but he only demanded naturality of the
operations in C, and he did not develop a body of theory in support of that se-
mantics. Here, by demanding the stronger coherence condition of parametrised
naturality in CT , we provide a notion of algebraic operations, which we support
by equivalence theorems to indicate definitiveness of the axioms, and which are
further supported by our development of a unified operational semantics in [20].
In all cases we can go further, taking the monad T to be generated by the
operations subject to accompanying equations; this idea is explored in [22, 7].

Of the various operations, handle is of a different computational character
and, although natural, it is not algebraic. Andrzej Filinski (personal communi-
cation) describes handle as a deconstructor, whereas the other operations are
constructors (of effects). In this paper, we make the notion of constructor precise
by identifying it with the notion of algebraic operation.

Algebraic operations are, in the sense we shall make precise, a natural gen-
eralisation, from Set to an arbitrary symmetric monoidal V-category C with
cotensors, of the usual operations of universal algebra, taking T to be a strong
V-monad on C. The key point is that the operations:

αx : (Tx)v −→ (Tx)w

(where (−)v denotes cotensor with an object v of V) are parametrically natural
in the Kleisli V-category CT . Enrichment allows us to employ complex arities,
i.e., objects of V , as in the case of local state—see below. (Enrichment by, e.g.,
V = ωCpo allows us to handle recursion, cf [1], but that is a rather different
matter, not involving complex arities; here ωCpo is the category of small
ω-cpos, i.e, the category of posets with sups of ω-chains.) Parametrisation allows
us to model open terms. And naturality in the Kleisli category means that the
operations commute with evaluation contexts. In this paper, we do not make use
of the possibility of V , C, and Set all being different, but it does seem to us to
be the mathematically natural general level at which to formulate our results.

We could equally formulate the notion of algebraic operation in terms of an
enriched version of closed Freyd-categories in the spirit of [1]. A preliminary
version of our definition and results appeared in [21]. In [20], we gave an unen-
riched version of our definition together with a syntactic counterpart in terms
of the computational λ-calculus, and we proved adequacy results: these required
naturality in CT .

Our most interesting result is essentially about the relationship between
V-monads and Lawvere V-theories for suitable V [23, 7]: the result, in a more
general setting than usual, characterises algebraic operations via generic effects.
The general idea of generic effect seems to be new, although particular examples
are known and their mathematical identification in the unenriched context is
well-known. In the case of nondeterministic choice or, the corresponding generic
effect is given by the term arb : Bool, which is, nondeterministically, either true
or false, so that the equivalence:

arb ≡ true or false

holds; for the converse, we have:

M or N ≡ if arb then M else N

In programming languages, sometimes one sees syntax for operations and some-
times one sees it for generic effects; in cases where the operations are infinitary,
one generally finds the generic effects used. We note that in [2], Benton, Hughes
and Moggi essentially remarked on the construction that, to a generic effect,
yields an operation, but they did not identify the notions of algebraic operation
or generic effect or develop a theory.

The paper is organised as follows. In Section 2, we provide background on
enriched monoidal categories, strong monads and cotensors, and we set notation
for the paper. In Section 3, we recall and enrich the definition of algebraic opera-
tion given in [20], discuss corresponding extensions of the λc-calculus (including
the infinitary case), and exhibit some simple reformulations of the definition.
In Section 4, we give direct equivalent versions of these statements under the
assumption that C is V-closed. In Section 5, we give a more substantial refor-
mulation of the notion in terms of operations on homs, some when C is closed
and some when C is not closed. In Section 6, we characterise algebraic opera-
tions as generic effects, and again consider the corresponding extensions of the
λc-calculus. Finally, in Section 7, we characterise algebraic operations in terms
of operations on the V-category T -Alg, as this gives an indication of how to
incorporate call-by-name languages with computational effects into the picture.
We give conclusions and an outline of possible future directions in Section 8.

2 Enriched monoidal categories, strong monads, and
cotensors

We assume that V is a complete and cocomplete symmetric monoidal closed
category: those are the conditions on V required for the preponderance of re-
sults of Kelly’s definitive book [10] on enriched category theory. Implicitly using

a larger universe, the category V-CAT of locally small V-categories has a sym-
metric monoidal structure, with A ∗B having object set ObA×ObB, with:

(A ∗B)((a, b), (a′, b′)) = A(a, a′) ◦B(b, b′)

where ◦ is the monoidal structure of V , with the evident composition.
If V = Set, an object of V-CAT is an ordinary locally small category, and the

tensor product is just the ordinary product of categories. If V = Poset, an object
of V-CAT is a locally small locally ordered category, and again the tensor product
is just the ordinary product of locally ordered categories. A similar statement
holds for V = ωCpo, the category of ω-cpos. More generally, for any cartesian
closed V , the tensor product is simply given by product. But if, for example,
V was the category ωCpo⊥ of ω-cpos with least element, with maps preserving
least upper bounds of ω-chains and the least element, the tensor product of
V-categories is a little more subtle: the objects are still pairs (a, b), but the hom-
object (A ∗B)((a, b), (a′, b′)) is given by the tensor product A(a, a′) ◦B(b, b′) in
ωCpo⊥ rather than by a product.

Using the tensor product on V-CAT , one can routinely define the notion of a
symmetric monoidal V-category. Given V-functors H,K : A −→ B, a V-natural
transformation α : H ⇒ K is just an ordinary natural transformation between
the ordinary underlying functors H0,K0 : A0 −→ B0 subject to the evident
enrichment of the naturality condition, i.e., such that for every pair (a, a′) of
objects of A, the diagram:

A(a, a′)
H - B(Ha, Ha′)

B(Ka,Ka′)

K

?

B(αa,Ka′)
- B(Ha, Ka′)

B(Ha, αa′)

?

commutes. A symmetric monoidal V-category may then be defined to be a
V-category C together with an object I of C, a V-functor:

⊗ : C ∗ C −→ C

and invertible V-natural transformations with components ax,y,z : (x⊗y)⊗z −→
x⊗ (y⊗ z), lx : I ⊗ x −→ x, rx : x⊗ I −→ x, and cx,y : x⊗ y −→ y⊗ x, subject
to the usual axioms for a symmetric monoidal category [10, 12].

A monoidal V-category C is V-closed if for every object x of C, the V-functor
−⊗ x : C −→ C has a right V-adjoint. Note that if C is a monoidal
V-category, the underlying ordinary category C0 of C is a monoidal category,
similarly for symmetry and closedness. This is ultimately because the functor
(−)o : V -CAT −→ CAT is symmetric monoidal, i.e., it comes equipped with
coherent maps

A0 ×B0 −→ (A ∗B)0

and
1 −→ I0

where I is the unit V -category, so respects the symmetric monoidal structure of
V-CAT , which we used to define the notion of symmetric monoidal V-category.

A strength for a monad T on a monoidal category C consists of a natural
transformation with components:

tx,y : x⊗ Ty −→ T (x⊗ y)

subject to coherence conditions with respect to the monoidal structure of C and
the monad structure of T [13–15]. The notion of strong monad, i.e, a monad
together with a strength, is fundamental to Moggi’s analysis. The notion of
strength generalises readily from ordinary monads on monoidal categories to
V-monads on monoidal V-categories by asking for the strength to be V-natural.

A strong monad T on a monoidal category C is said to have Kleisli expo-
nentials if, for every object x of C, the functor J(− ⊗ x) : C −→ CT has a
right adjoint, where CT is the Kleisli category for T and J : C −→ CT is the
canonical functor. Moggi used strong monads with Kleisli exponentials in order
to model the λc-calculus. If C is cartesian closed, it follows that every strong
monad T on C has Kleisli exponentials. For any V-monad T on a V-category C,
there is a Kleisli V-category CT , and its underlying ordinary category is (C0)T0 .
The notion of Kleisli exponential enriches to the assertion that for each object
x of C, the V-functor J(−⊗ x) : C −→ CT has a right V-adjoint.

The notion of cotensor is fundamental for us here. Given an object v of V
and an object x of a V-category C, a cotensor xv is a representing object:

C(y, xv) ∼= [v, C(y, x)]

V-natural in y, where [−,−] denotes the closed structure of V . In the case that
V = Set, a cotensor is a power-object, i.e., xv is just the product of v-many
copies of x. In the case that C = V , cotensors are exactly exponentials in V .
More generally, e.g., when V = Poset and C is an arbitrary locally ordered
category, cotensors include not only products of copies of an object, but also
further constructions. For instance, if v is Sierpinski space, one cannot in general
represent xv as a product of copies of x: to give an arrow from 1 to xv is eqivalent
to giving a pair of arrows from 1 to x, with the first less than or equal to the
second. The mathematical setting of our work therefore provides the opportunity
for considerable generality, although our leading examples in this paper all have
V = Set or V = C, and so we need only power-objects and exponentials here.
By a finite cotensor, we mean a cotensor with a finitely presentable object v. A
tensor in a V-category may be defined to be a cotensor in the V-category Cop.
If C = Set, the tensor is given by the coproduct of v-many copies of x, and if
C = V , tensors are given by the monoidal structure of V .

We henceforth assume C is a symmetric monoidal V-category with cotensors,
and < T, η, µ, st > is a strong V-monad on C with Kleisli V-exponentials. It
is only for simplicity of exposition that we assume that C has all cotensors:

typically, we only need finite cotensors, but occasionally, for instance in modelling
state, we need more (see Section 6). To make such a size condition precise requires
a corresponding size condition on V , the simplest being that V be locally finitely
presentable: we do not want to clutter the paper with details, which may be
found, for example, in [23]. We do not take C to be V-closed in general: we shall
need to assume it for some later results, but not for all of them.

Given V and C as we have assumed them, we define parametrised lifting
(−)† by:

C(y ⊗ x, Tz)
T- C(T (y ⊗ x), T 2z)

C(st, µz)- C(y ⊗ Tx, Tz)

The operation (−)† can be axiomatised by asserting coherence with respect
to the monad structure of T : coherence with respect to the unit of T asserts
that the construction yields an extension, and coherence with respect to the
multiplication means that that extension is a lifting to a parametrised map of
algebras from Tx to Tz.

The operation can be further extended by parametrisation in V . We use the
same notation (−)† for the composite, for any v in V :

C(y ⊗ x, Tz)
(−)†- C(y ⊗ Tx, Tz)

(−)v
- C((y ⊗ Tx)v, (Tz)v) - C(y ⊗ (Tx)v, (Tz)v)

where the unlabelled map is given by composition with the comparison map
y ⊗ (Tx)v −→ (y ⊗ Tx)v in C corresponding, via the definition of cotensor, to
the map v −→ C(y ⊗ (Tx)v, y ⊗ Tx) in V given by the unit for the cotensor
v −→ C((Tx)v, Tx) composed with y ⊗ − : C −→ C. There is no danger of
confusion between our two definitions of (−)† because, putting v = I, we recover
our former definition of (−)† from the latter.

3 Algebraic operations and simple equivalents

In this section, we give the central definition of the paper. Its central feature
is the precise choice of coherence condition. The technical content of the paper
shows it to be the definitive choice and gives an equivalent formulation that also
appears in programming practice. In programming language terms, the condi-
tion of the definition is that evaluation contexts E[−] commute with the com-
putational effects induced by the operations. For example, in a nondeterministic
programming context, e.g. [20], one is asserting the equivalence:

E[M or N] ≡ E[M] or E[N]

for all evaluation contexts E[−].

Definition 1. Given a strong V-monad T , an algebraic operation on T is an
ObC-indexed family of maps:

αx : (Tx)v −→ (Tx)w

such that the diagram:

C(y ⊗ x, Tz)
(−)† - C(y ⊗ (Tx)v, (Tz)v)

C(y ⊗ (Tx)w, (Tz)w)

(−)†

?

C(y ⊗ αx, (Tz)w)
- C(y ⊗ (Tx)v, (Tz)w)

C(y ⊗ (Tx)v, αz)

?

commutes.

If V = Set, the definition of algebraic operation requires v and w to be sets,
typically finite ones n and m. To give the data for an algebraic operation is
equivalent to giving m ObC-indexed families of maps:

αx : (Tx)n −→ Tx

and the condition is the assertion that for each of these ObC-indexed families,
for every map f : y ⊗ x −→ Tz in C, the diagram:

y ⊗ (Tx)n 〈f† · (y ⊗ πi)〉ni=1- (Tz)n

y ⊗ Tx

y ⊗ αx

?

f†
- Tz

αz

?

commutes.
In the following examples we put V = C = Set, except for the case of local

state; we also briefly consider partiality, when we take instead V = Set and
C = ωCpo or Dcpo (dcpos are partial orders with lubs of all directed sets).

Example 1. Nondeterminism The nonempty finite power-set monad T supports
a binary choice operation [18, 1]:

∨x : (Tx)2 −→ Tx

where ∨x(u, v) = u ∪ v. It is routine to verify the coherence condition. This
generalises from Set to ωCpo, where the power-domain can be characterised as
giving the free semilattice together with a least element on an ω-cpo [19], and
it is the usual semantics for or. It follows from its freeness that the operation of
the semilattice is an algebraic operation (see Section 7), but one can also verify
the coherence condition directly.

Example 2. Probabilistic Nondeterminism Similarly to the situation for nonde-
terminism, the monad of finite distributions for probabilistic nondeterminism [20]

on Set supports a binary probabilistic choice operation +r for every real number
r in the interval [0, 1]. And just as for nondeterminism, the semantic operation
+r models a corresponding probabilistic choice operation symbol +r. This also
generalises from Set, here to the probabilistic power-domain on Dcpo [8, 9, 6].

Example 3. Exceptions The monad Tx = x+E for exceptions supports E evident
nullary operations, one for each e in E; these model the nullary operation symbols
raisee for raising exceptions. For each e in E, the natural transformation:

handlee : (Tx)2 −→ Tx

defined by handlee(e, b) = e and handlee(a, b) = b for all a 6= e, is used to
model the exception-handling binary operation handlee. As we have already
remarked, it does not satisfy the coherence condition required of an algebraic
operation; to see this consider the simpler unparametrised case, and take x =
Bool (= 2). Then, for any f : Bool → T (Bool) such that f(true) = e, we have
f†(handlee(true, false)) = f†(true) = e and handlee(f†(true), f†(false))
= handlee(e, f†(false)) = f†(false) (putting true, false for the two elements
of Bool) and the two need not be equal. For the combination with partiality,
one uses the monad (−+E)⊥, where (−)⊥ is the lifting monad that adds a new
least element; the corresponding versions of the operations are immediate.

Example 4. Interactive Input/Output The monad Σ∗ ×− for printing supports
printing operations [19]. Both the monad for printing and the printing operations
extend to the monad Tx = µy.((O × y) + yI + x) for interactive input/output,
where one has read and write operations with semantics the operations:

readx : (Tx)I −→ Tx

and
writex : Tx −→ (Tx)O

(the alphabet Σ has here been renamed to the output set O). The operation
readx is obtained using the isomorphism between Tx and (O× Tx) + (Tx)I + x
and writex is is the transpose of the evident map O×Tx → Tx obtained using the
isomorphism. Observe the non-commutativity of the monad in this example and
the fact that the operation readx is infinitary (assuming that I is infinite). For
the combination with partiality, one uses the monad Tx = µy.((O×y)+yI +x)⊥.

Example 5. Global State Let L be a set of locations and let V al be a set of values.
We denote the exponential [L, V al] by S, representing a set of states. Let T be
the monad (S ×−)S . There are natural infinitary algebraic operations:

lookupx : (Tx)V al −→ (Tx)L

and
updatex : Tx −→ (Tx)L×V al

given by:
lookup(f)(l)(s) = f(s(l))

and
update(a)(l, b) = a(s[b/l])

where s[b/l] is the same as s everywhere, except at l where s[b/l](l) = b. Note
that we have another infinitary operation, namely lookup (assuming that V al is
infinite). For the combination with partiality, one uses the monad (S ×−)S

⊥.

For an idea of the setting of the corresponding algebraic operations in one of
the more complex examples, consider the following.

Example 6. Local State In order to model local state, one might take C to be a
category of the form [W,Set], where W is a category of worlds. Many different
categories W of worlds have appeared in the literature, depending upon the
specific programming languages or their properties being considered [16]. Putting
W = I, the category of finite sets and injections, a monad for local state is given
by:

(Tx)n = (
∫ mε(n/I)

(Sm× x(m)))Sn

where
∫

denotes a coend [10, 12], and where Sn = V aln for a set V al of values.
A detailed exploration of this monad appears in [22]; it is closely related to but
simpler than a monad in Paul Levy’s thesis [11]. As before, one may consider
operations lookupx : (Tx)V al −→ (Tx)L and updatex : Tx −→ (Tx)L×V al but
now V al is treated as a constant functor and L becomes the inclusion of I in
Set. So here, we are taking V = C and are using the cartesian structure for
enrichment. However there is another natural operation:

blockx : [L, Tx] → Tx

for declaring, initialising and then using a new location; here we are using a
second closed structure on C, namely Day’s convolution closed monoidal struc-
ture [3]. Rather than give explicit definitions of these operations here, we take
them as defined in terms of the corresponding generic effects, considered below.
For partiality, we would instead use a category of the form [I, ωCpo] and the
monad (Tp)n = (

∫ mε(n/I)(Sm× p(m)))Sn
⊥ .

One can also consider combinations of these examples, for instance to model
internal and external choice operations or to model state and nondeterminism.
The first three of the above examples are treated in detail in [20], where a unified
operational semantics is given for them.

Having seen several examples of operations, we now consider how they might
appear as semantics for corresponding syntactic term-forming constructs in var-
ious possible extensions of the λc-calculus. We assume the enriched form of the
semantics of the λc-calculus mentioned in the Appendix, since it is as easy to
handle here as the unenriched case. So we assume The V-enriched structure of C
is actually a V-product structure and that C has V-enriched Kleisli exponentials.

For finitary operations (say just V-natural transformations):

opx : (Tx)n → Tx

one considers an n-ary operation symbol op and adds terms of the form:

op(M1, . . . ,Mn)

to the λc-calculus with the type inference rule:

M1, . . . ,Mn : σ
op(M1, . . . ,Mn) : σ

and then:
[[op(M1, . . . ,Mn)]] = op[[σ]]o([[M1]], . . . , [[Mn]])

Again, suppose one has an operation:

opx : (Tx)n → (Tx)P

where P is thought of as a parameter space. For a category such as V = Set, one
possibility is to add an n-ary operation symbol ope for each e in P (as, essentially,
was done in the case of exceptions). Another possibility, in the general enriched
case is to add a new base type symbol Par with a suitable collection of constants
and then add terms of the form:

op(N,M1, . . . ,Mn)

with the type inference rule:

N : Par M1, . . . ,Mn : σ
op(N,M1, . . . ,Mn) : σ

For the semantics, we interpret Par as P, the tensor of P with 1 (which we
assume exists!) and then, noting that the general V-natural isomorphism:

C(x× u, T y) ∼= C(x, (Ty)u)

for the tensor u of a V-object u with 1 allows us to transpose, the semantics of
op(N,M1, . . . ,Mn) is given using the transpose of op[[σ]].

The case of an operation of the form:

opx : (Tx)A → (Tx)P

is trickier. If A is an infinite set, that would suggest the use of infinite terms,
which is not compatible with having a finitary programming language, and so
in the examples of which we are aware, one rather employs syntax for the corre-
sponding generic effects. However there is something one can do, which is even
available in the general enriched case. One adds base type symbols Arg and Par
denoting the relevant tensors, and suitable additional base constants and then
adds terms of the form:

op(N, (x : Arg)M)

with the type inference rule:

Γ ` N : Par Γ,x : Arg ` M : σ
Γ ` op(N, (x : Arg)M) : σ

For the semantics, one composes the transpose of op[[σ]] with the semantics of N
and the transpose of the semantics of M. Using this form of operation construct,
we can give an equivalence expressing the algebraicity of operations at the level of
the λc-calculus, of the kind we have already seen in the case of nondeterminism:

E[op(N, (x : Arg)M)] ≡ op(N, (x : Arg)E[M])

for suitably typed E,M,N. The proof of this equivalence follow from algebraicity
and remarks in the appendix on the semantics of evaluation contexts. There are
evident simpler equivalences for the other forms of operation construct we have
just given.

There are several equivalent formulations of the coherence condition of the
definition of algebraic operation. Decomposing it in a maximal way, we have

Proposition 1. An ObC-indexed family of maps:

αx : (Tx)v −→ (Tx)w

is an algebraic operation if and only if

1. α is natural in C
2. α respects st in the sense that:

y ⊗ (Tx)v - (y ⊗ Tx)v stv- (T (y ⊗ x))v

y ⊗ (Tx)w

y ⊗ αx

?
- (y ⊗ Tx)w

stw
- (T (y ⊗ x))w

αy⊗x

?

commutes, where the unlabelled maps are comparison maps determined by
the universal property of cotensors

3. α respects µ in the sense that:

(T 2x)v µv
x- (Tx)v

(T 2x)w

αTx

?

µw
x

- (Tx)w

αx

?

commutes.

Proof. It is immediately clear from our formulation of the definition and the
proposition that the conditions of the proposition imply the coherence require-
ment of the definition. For the converse, to prove V-naturality in C, put y = I,
the unit of the monoidal structure of C, use composition with ηz applied to
C(x, z), and apply the coherence condition of the definition. For coherence with
respect to st, take f : y ⊗ x −→ Tz to be ηy⊗x. And for coherence with respect
to µ, put y = I and take f to be idTx.

There are other interesting decompositions of the coherence condition of the
definition too. In the above, we have taken T to be an endo-V-functor on C.
But one often also writes T for the right V-adjoint to the canonical V-functor
J : C −→ CT as the behaviour of the right adjoint on objects is given precisely
by the behaviour of T on objects. So with this overloading of notation, we have
V-functors (T−)v : CT −→ C and (T−)w : CT −→ C, we can speak of V-natural
transformations between them, and we have the following proposition, for which
a proof is routine.

Proposition 2. An ObC-indexed family of maps:

αx : (Tx)v −→ (Tx)w

is an algebraic operation if and only if α is V-natural in CT and α respects st.

In another direction, as we shall investigate further below, it is sometimes
convenient to separate the µ part of the coherence condition from the rest of
it. We can do that with the following somewhat technical result, again a with
routine proof.

Proposition 3. An ObC-indexed family:

αx : (Tx)v −→ (Tx)w

forms an algebraic operation if and only if α respects µ and:

C(y ⊗ x, z)
(−)∗ - C(y ⊗ (Tx)v, (Tz)v)

C(y ⊗ (Tx)w, (Tz)w)

(−)∗

?

C(y ⊗ αx, (Tz)w)
- C(y ⊗ (Tx)v, (Tz)w)

C(y ⊗ (Tx)v, αz)

?

commutes, where (−)∗ is defined, parametrically in V , by the composition of
T : C(y ⊗ x, z) −→ C(T (y ⊗ x), T z) with the composite:

C(T (y ⊗ x), T z)
C(st, Tz)- C(y ⊗ Tx, Tz)

(−)v
- C((y ⊗ Tx)v, (Tz)v) - C(y ⊗ (Tx)v, (Tz)v)

4 Equivalent formulations if C is V-closed

For our more interesting results, we first assume C is V-closed, explain the results
in those terms, and later drop the closedness condition and explain corresponding
variants of the results. We give the results using closedness first because they are
more elegant, so perhaps easier to understand. For the results in this section, we
shall assume C is V-closed.

Let the V-closed structure of C be denoted by [−,−]. Given a V-functor
H : C −→ C, an enrichment of H is a C-functor K : C −→ C such that
H is the underlying V-functor of K, i.e., H and K agree on objects and the
monoidal V-functor C(I,−) : C −→ V sends [Kx, Ky] to C(Hx, Hy), respecting
composition. Enrichment of a V-natural transformation does not alter the data
but requires the stronger property of a commutativity in C rather than one in
V . With these definitions, one can speak of the enrichment of a V-monad T to
a C-monad.

Given a V-monad < T, η, µ > on C, to give a V-strength for T is equivalent
to giving an enrichment of T in C: given a strength, one has an enrichment:

Tx,y : [x, y] −→ [Tx, Ty]

given by the transpose of:

[x, y]⊗ Tx
st- T ([x, y]⊗ x)

Tev- Ty

and given an enrichment of T , one has a V-strength given by the transpose of:

x - [y, x⊗ y]
Ty,x⊗y- [Ty, T (x⊗ y)]

It is routine to verify that the axioms for a V-strength for a V-functor are
equivalent to the axioms for an enrichment of the V-functor, and that the co-
herence axioms of a V-strength with respect to η and µ are equivalent to their
enrichment; and so the axioms for a V-strength for a V-monad are equivalent
to the axioms for an enrichment of the V-monad. So, given a V-strong V-monad
< T, η, µ, st > on C, the monad T is enriched in C, and so is the V-functor
(−)v : C −→ C.

The V-category CT also canonically acquires an enrichment in C, i.e, the
homobject CT (x, y) of CT in V lifts to a homobject in C: the object [x, Ty] of
C acts as a homobject, applying the V-functor C(I,−) : C −→ V to it giving
the V-homobject CT (x, y); composition:

CT (y, z) ◦ CT (x, y) −→ CT (x, z)

in V lifts to a map in C:

[y, Tz]⊗ [x, Ty] −→ [x, Tz]

determined by taking a transpose and applying evaluation maps twice and each
of the V-strength and the multiplication once; and identities and the axioms for
a V-category lift too.

The canonical V-functor J : C −→ CT becomes a C-enriched functor with a
C-enriched right adjoint. The main advantage of the closedness condition for us
is that it allows us to dispense with the parametrisation of the V-naturality, or
equivalently with the coherence with respect to the V-strength, as follows.

Proposition 4. If C is V-closed, an ObC-indexed family:

αx : (Tx)v −→ (Tx)w

forms an algebraic operation if and only if:

[x, Tz]
(−)v · [Tx, µz] · Tx,Tz- [(Tx)v, (Tz)v]

[(Tx)w, (Tz)w]

(−)w · [Tx, µz] · Tx,Tz

?

[αx, (Tz)w]
- [(Tx)v, (Tz)w]

[(Tx)v, αz]

?

commutes.

The left-hand vertical map in the diagram here is exactly the behaviour of
the C-enriched functor
(T−)w : CT −→ C on homs, and, correspondingly, the top horizontal map is
exactly the behaviour of the C-enriched functor (T−)v : CT −→ C on homs. As
explained in Section 3, the data for an enriched natural transformation between
enriched functors is identical to the data for an ordinary natural transformation
between the underlying ordinary functors. But the enriched naturality condi-
tion is stronger: rather than saying that, for every map, a square commutes, it
internalises the idea of naturality in terms of the homobject. So, a priori, it is
a stronger condition than that of ordinary naturality. The coherence condition
in the proposition is precisely the statement that α forms a C-enriched natural
transformation from the C-enriched functor (T−)v : CT −→ C to the C-enriched
functor (T−)w : CT −→ C.

Proof. Given an object y of C, applying the V-functor C(y,−) : C −→ V to the
coherence condition here yields the coherence condition of the definition. The
converse holds by the (ordinary) Yoneda lemma.

The same argument can be used to give a further characterisation of the
notion of algebraic operation if C is V-closed by modifying Proposition 3. This
yields

Proposition 5. If C is V-closed, an ObC-indexed family:

αx : (Tx)v −→ (Tx)w

forms an algebraic operation if and only if α respects µ and:

[x, z]
(−)v · Tx,z- [(Tx)v, (Tz)v]

[(Tx)w, (Tz)w]

(−)w · Tx,z

?

[αx, (Tz)w]
- [(Tx)v, (Tz)w]

[(Tx)v, αz]

?

commutes.

This proposition says that if C is V-closed, an algebraic operation is exactly a
C-enriched natural transformation from the C-enriched functor (T−)v : C −→ C
to the C-enriched functor (T−)w : C −→ C that is coherent with respect to µ.

5 Algebraic operations as operations on homs

In our various formulations of the notion of algebraic operation so far, we have
always had an ObC-indexed family:

αx : (Tx)v −→ (Tx)w

and considered equivalent conditions on it under which it might be called an
algebraic operation. In computing, this amounts to considering an operator on
terms. But there is another approach in which homs of the V-category CT may
be seen as primitive, regarding them as sets or ω-cpos or the like of programs.
This was the underlying idea of the reformulation [1] of the semantics for finite
nondeterminism of [18]. So we should like to reformulate the notion of algebraic
operation in these terms. Proposition 4 allows us to do that. In order to explain
the reason for the coherence conditions, we shall start by expressing the result
assuming C is V-closed; after which we shall drop the closedness assumption and
see how the result can be re-expressed using parametrised naturality.

We first need to explain an enriched version of the Yoneda lemma as in [10]. If
D is a C-enriched category, then Dop may also be seen as a C-enriched category:
one requires symmetry of C, which we have consistently assumed, to make Dop a
C-enriched category, but one can adapt the following line of argument if ever non-
symmetric examples of C arise. In general, we do not want to restrict ourselves
to the assumption that C is complete. But if C was complete and D was small,
we would have a C-enriched functor category [Dop, C] and a C-enriched Yoneda
embedding:

YD : D −→ [Dop, C]

The C-enriched Yoneda embedding YD would be a C-enriched functor and it
would be fully faithful in the strong sense that the map:

D(x, y) −→ [Dop, C](D(−, x), D(−, y))

would be an isomorphism in the category C: see [10] for details. By applying
the V-functor C(I,−) : C −→ V , this would induce an isomorphism from the
homobject of V underlying D(x, y) to the object of V underlying the homobject
from the C-enriched functor D(−, x) : Dop −→ C to the C-enriched functor
D(−, y) : Dop −→ C: if V = Set, the former object is the set of maps from x to
y, and the latter is the set of C-enriched natural transformations from D(−, x)
to D(−, y).

This is the result we need, except that, as we wrote, we do not want to
assume that C is complete, and the C-enriched categories of interest to us are
of the form CT , so in general are not small. So we need to generalise the above
argument by dropping its assumptions that C is complete and D is small. This
is not difficult, but it goes a little beyond the standard formulation of enriched
category theory in [10]. Both assumptions can be avoided by embedding C into
a larger universe C ′ just as one can embed Set into a larger universe Set′ when
necessary: the required mathematics for the enriched analysis appears in [10]. We
still have what can reasonably be called a Yoneda embedding of D into [Dop, C],
with both categories regarded as C ′-enriched rather than C-enriched, and it is
still fully faithful as a C ′-enriched functor.

In fact, we can formulate our result even without reference to C ′ by stating
a restricted form of the enriched Yoneda lemma: letting FunC(Dop, C) denote
the V ′-category, for a suitable extension V ′ of V , of C-enriched functors from
Dop to C, the underlying V-functor:

D −→ FunC(Dop, C)

of the Yoneda embedding is fully faithful.
We use this latter statement both here and in the following section. Now for

our main result of this section under the assumption that C is V-closed.

Theorem 1. If C is V-closed, to give an algebraic operation is equivalent to
giving an ObCop ×ObC family of maps:

ay,x : [y, Tx]v −→ [y, Tx]w

that is C-natural in y as an object of Cop and C-natural in x as an object of
CT , i.e., such that:

[y, Tx]v ⊗ [y′, y]
∼=- [y, (Tx)v]⊗ [y′, y]

comp- [y′, Tx]v

[y, Tx]w ⊗ [y′, y]

ay,x ⊗ [y′, y]

?

∼=
- [y, (Tx)w]⊗ [y′, y]

comp
- [y′, Tx]w

ay′,x

?

and

[x, Tz]⊗ [y, Tx]v - ([x, Tz]⊗ [y, Tx])v compv
K- [y, Tz]v

[x, Tz]⊗ [y, Tx]w

[x, Tz]⊗ ay,x

?
- ([x, Tz]⊗ [y, Tx])w

compw
K

- [y, Tz]w

ay,z

?

commute, where comp is the C-enriched composition of C, the unlabelled isomor-
phisms of the first diagram are determined by the fact that [y,−] : C −→ C is a
right adjoint, so preserves cotensors, compK is C-enriched Kleisli composition,
and the unlabelled maps of the second diagram are determined by the universal
property of cotensors.

Proof. It follows from our C-enriched version of the Yoneda lemma that to give
the data together with the first axiom of the theorem is equivalent to giving an
ObC-indexed family:

α : (Tx)v −→ (Tx)w

By a further application of our C-enriched version of the Yoneda lemma, it
follows that the second condition of the theorem is equivalent to the coherence
condition of Proposition 4.

As mentioned earlier, we can still state essentially this result even without
the condition that C be closed. There are two reasons for this. First, for the
paper, we have assumed the existence of Kleisli exponentials, as are essential in
order to model λ-terms. But most of the examples of the closed structure of C
we have used above are of the form [y, Tx], which can equally be expressed as
the Kleisli exponential y ⇒ x. The Kleisli exponential routinely extends to a
V-functor:

− ⇒ − : Cop
T × CT −→ C

Second, in the above, we made one use of a construct of the form [y′, y] with
no T protecting the second object. But we can replace that by employing the
V ′-enriched Yoneda lemma to express the first condition of the theorem in terms
of homobjects of V of the form C(w ⊗ y′, y).

Summarising, we have

Corollary 1. To give an algebraic operation is equivalent to giving an
ObCop ×ObC family of maps:

ay,x : (y ⇒ x)v −→ (y ⇒ x)w

in C, such that for all objects z′ and y′ of C, the diagram:

C(z′ ⊗ y′, y)
(− ⇒ x)v

- C((y ⇒ x)v, ((z′ ⊗ y′) ⇒ x)v)

C((y ⇒ x)w, ((z′ ⊗ y′) ⇒ x)w)

(− ⇒ x)w

?

C(ay,x, ((z′ ⊗ y′) ⇒ x)w)
- C((y ⇒ x)v, ((z′ ⊗ y′) ⇒ x)w)

C((y ⇒ x)v, az′⊗y′,x)

?

commutes, and for every object z of C, the diagram:

(x ⇒ z)⊗ (y ⇒ x)v - ((x ⇒ z)⊗ (y ⇒ x))v compv
K- (y ⇒ z)v

(x ⇒ z)× (y ⇒ x)w

(x ⇒ z)⊗ ay,x

?
- ((x ⇒ z)⊗ (y ⇒ x))w

compw
K

- (y ⇒ z)w

ay,z

?

commutes, where compK is the canonical internalisation of Kleisli composition.

6 Algebraic operations as generic effects

In this section, we apply our formulation of the C-enriched Yoneda lemma to
characterise algebraic operations in entirely different terms again as maps in CT ,
i.e., in terms of generic effects. Observe that if C has a tensor v of v with I, the
V-functor (T−)v : CT −→ C is isomorphic to the V-functor v ⇒ − : CT −→ C.
If C is V-closed, the V-functor v ⇒ − enriches canonically to a C-enriched
functor, namely the representable C-functor CT (v,−) : CT −→ C, where CT
is regarded as a C-enriched category. So by Proposition 4 together with our
C-enriched version of the Yoneda lemma, we have

Theorem 2. If C is V-closed, the C-enriched Yoneda embedding induces a bi-
jection between maps w −→ v in CT and algebraic operations:

αx : (Tx)v −→ (Tx)w

Spelling out the bijection, given a map f : w −→ v in CT , the corresponding
algebraic operation is:

(Tx)v
∼=- [v, Tx]

[f, Tx]- [w, Tx]
∼=- (Tx)w

and given an algebraic operation αx, the corresponding map in CT is:

I - [v, Tv]
∼=- (Tv)v αv- (Tv)w

∼=- [w, Tv]

This result is essentially an enriched version of the identification of maps in
a Lawvere theory with operations of the Lawvere theory [23]. It generalises that
identification in three ways: it uses enrichment, it does not use finitariness, and
it allows V and C to differ. In studying Lawvere theories, where V = Set, one
typically restricts arities to be natural numbers, but we sometimes have infinitary
operations, for instance in modelling global state and interactive input/output,
hence our need for an infinitary statement. Moreover, to model local state, we
need arities that are not sets at all, but are presheaves (see Example 11), hence
our generalisation from Set. For an enriched version of Lawvere’s idea without
the finitariness but with the restriction to C = V , see [4].

The result as we have formulated it above is an elegant instance of the en-
riched Yoneda lemma [10]. But once again, using parametrisation but losing a
little elegance, we can generalise it to avoid the closedness assumption on C.

Theorem 3. Functoriality of − ⇒ − : Cop
T × CT −→ C in its first variable

induces a bijection from the small set of maps w −→ v in CT to the set of
algebraic operations:

αx : (Tx)v −→ (Tx)w

The constructions are a rewriting of those described under the supposition of
closedness of C. The bijection asserted in the statement of the theorem can be
extended to giving an isomorphism between the homobject CT (w,v) of V and
an object of V given by lifting the set of algebraic operations of corresponding
arity on T to V . The correspondence is still essentially an instance of the Yoneda
embedding.

We regard this theorem as the most interesting result of the paper. Given
an algebraic operation αx : (Tx)v −→ (Tx)w, we define the generic effect corre-
sponding to α to be the map αg : w −→ v in CT determined by the theorem.
So αg is a constant of type the arity of α. This correspondence has program-
ming implications, suggesting natural extensions to the λc-calculus, which we
now study (we omit consideration of the straightforward addition of partiality).

Example 7. Nondeterminism To give a binary algebraic operation on a strong
monad T is equivalent to giving a constant of type 2, i.e, a map from 1 to 2 in
CT , or equivalently, a map from 1 to T2 in C. For instance, let T be the non-
empty finite powerset monad. Given the union operation for nondeterminism
∨x : (Tx)2 −→ Tx, the corresponding constant arb is given by true∨2 false. So,
in order to model binary nondeterminism, one could extend the λc-calculus either
by adding a binary nondeterministic choice operation symbol or or equivalently
by adding a constant arb of type Bool. Similar remarks hold for probabilistic
nondeterminism where the constant corresponding to +r is randr, the distribu-
tion on Bool giving true with probability r and false with probability 1− r.

Example 8. Exceptions The generic effect corresponding to a nullary operation
raisee has type T(0). In programming language terms that means using a zero
type, and that is not normally done, although there is, in principle, no reason
why not. Presumably it would seem rather odd as there would be no possibility

of any value being returned of that type, so the only point of having the type
would be for the occurrence of effects.

Example 9. Interactive Input/Output As we have said above, the operations for
interactive input/output for the monad Tx = µy.((O × y) + yI + x) on Set are
readx : (Tx)I −→ Tx and writex : Tx −→ (Tx)O, and so the corresponding
generic effects are:

read : 1 −→ TI

and
write : O −→ T1

In programming terms, it would be natural to extend the λc-calculus to include
input and output basic types In and Out denoting I and O (together with
appropriate basic constants) and to add term constructs:

read : In
M : Out

write M : 1
modelled by read and write respectively. Note how the infinitary operation has
been replaced by a finitary generic effect, albeit involving an infinite type.

Example 10. Global State The operations here are lookupx : (Tx)V al −→ (Tx)L

and updatex : Tx −→ (Tx)L×V al, of which the first is infinitary. The corre-
sponding generic effects are:

deref : L −→ T (V al) assign : L× V al −→ T1

defined by:

deref(l)(s) = (s, s(l)) assign(l, v)(s) = (s[v/l], ∗)

The corresponding extensions of the λc-calculus has basic types Val and Loc
modelled by V al and L, and term constructs for dereferencing and assignment:

M :Loc
!M :Val

M :Loc N :Val
(M := N) :1

modelled by the generic effects. Happily this is exactly how side-effects are ex-
pressed in ML (modulo the fact that there one can have references to values of
any type).

Example 11. Local State Although two separate enrichments are used, in each
case the relation between the operations and the generic effects is as usual. The
generic effects deref : L −→ T (V al) and assign : L × V al −→ T1 routinely
extend those for global state pointwise, and the generic effect corresponding to
the operator block is:

ref : V al −→ TL

where:
(ref)n(v, σ) = ((σ, v), 1)εS(n + 1)× (n + 1)

The computational idea is that ref creates a new location initialised to its
argument value; this generic effect is also how ML treats the creation of new
references.

Our examples suggest a general way to extend the λc-calculus. Given a
generic effect gen : P −→ TA, one adds new basic type symbols Par and Arg
and a new term-forming construct:

M : Par
genM : Arg

For the semantics one models the new basic type symbols by the corresponding
tensors and the new terms by the evident composition in the Kleisli category
with the generic effect. Pleasingly, one can then give the general equivalence
between generic effects and operations at the level of the λc-calculus by the
following equivalences:

genM ≡ op(M, (x :Arg)x)

op(M, (x :Arg)M) ≡ let x = (genM) in N

7 Algebraic operations and the category of algebras

Finally, in this section, we characterise the notion of algebraic operation in terms
of the V-category of algebras T -Alg. The co-Kleisli category of the comonad on
T -Alg induced by the monad T is used to model call-by-name languages with
effects [11], so this formulation gives us an indication of how to generalise our
analysis to call-by-name computation or perhaps to some combination of call-
by-value and call-by-name, cf [11].

If C is V-closed and has equalisers, generalising Lawvere, the results of the
previous section can equally be formulated as equivalences between algebraic
operations and operations:

α(A,a) : U(A, a)v −→ U(A, a)w

natural in (A, a), where U : T -Alg −→ C is the C-enriched forgetful functor:
equalisers are needed in C in order to give an enrichment of T -Alg in C. We prove
the result by use of our C-enriched version of the Yoneda lemma again, together
with the observation that the canonical C-enriched functor I : CT −→ T -Alg is
fully faithful. Formally, the result is

Theorem 4. If C is V-closed and has equalisers, the C-enriched Yoneda em-
bedding induces a bijection between maps w −→ v in CT and C-enriched natural
transformations:

α : (U−)v −→ (U−)w.

Combining this with Theorem 2, we have

Corollary 2. If C is closed and has equalisers, to give an algebraic operation:

αx : (Tx)v −→ (Tx)w

is equivalent to giving a C-enriched natural transformation:

α : (U−)v −→ (U−)w.

One can also give a parametrised version of this result if C is neither closed
nor complete along the lines for CT as in the previous section. It yields

Theorem 5. To give an algebraic operation:

αx : (Tx)v −→ (Tx)w

is equivalent to giving an Ob(T -Alg)-indexed family of maps:

α(A,a) : U(A, a)v −→ U(A, a)w

such that commutativity of:

C(x⊗A, B)
C(x⊗ a,B)- C(x⊗ TA,B)

C(T (x⊗A), TB)

T

?

C(st, B)
- C(x⊗ TA, TB)

C(x⊗ TA, b)

6

implies commutativity of:

C(x⊗A,B)
(−)w

- C((x⊗A)w, Bw) - C(x⊗Aw, Bw)

C((x⊗A)v, Bv)

(−)v

?
- C(x⊗Av, Bv)

C(x⊗Av, α(B,b))
- C(x⊗Av, Bw)

C(x⊗ α(A,a), Bw)

?

8 Conclusions and Further Work

For some final comments, we note that attention has not been paid in the litera-
ture to the parametrised naturality condition on the notion of algebraic operation
that we have used heavily here. And none of the main results of [20] used it,
although they did require naturality in CT . So it is natural to ask why that is
the case.

For the latter point, in [20], we addressed ourselves almost exclusively to
closed terms, and that meant that parametrised naturality of algebraic opera-
tions was not emphasised as we did not need a parameter for our main results.
Regarding why parametrised naturality does not seem to have been addressed
in the past, observe that for C = Set, every monad has a unique strength, so
parametrised naturality of α is equivalent to ordinary naturality of α. More gen-
erally, if the functor C(1,−) : C −→ Set is faithful, i.e., if 1 is a generator in
C, then parametrised naturality is again equivalent to ordinary naturality of α.
That is true for categories such as Poset and that of ω-cpos, which have been

the leading examples of categories studied in this regard. The reason we have a
distinction is because we have not assumed that 1 is a generator, allowing us to
include examples such as the effective topos.

The goal of this paper was to model constructive operations that arise in
describing computational effects. In future, we hope to model relevant decon-
structive operations such as one for handling exceptions. But the approach of
this paper seems unlikely to extend directly. Our impression of continuations is
that they are more naturally seen as a logical construct, following the Curry-
Howard correspondence, than one amenable to our algebraic treatment, cf [5].
They should therefore be treated separately, but the question of their integration
with the algebraic case remains.

We should also like to extend and integrate this work with work addressing
other aspects of giving a unified account of computational effects. We note here
Paul Levy’s work [11], which can be used to give accounts of both call-by-value
and call-by-name in the same setting, and ongoing work on modularity [7].

References

1. S. O. Anderson and A. J. Power, A Representable Approach to Finite Nondeter-
minism, Theoret. Comput. Sci., Vol. 177, No. 1, pp. 3–25, 1997.

2. N. Benton, J. Hughes, and E. Moggi, Monads and Effects, APPSEM ’00 Summer
School, 2000.

3. B. Day, On Closed Categories of Functors, in Reports of the Midwest Category
Seminar IV, LNM, Vol. 137, pp. 1–38, Berlin: Springer-Verlag, 1970.

4. E. Dubuc, Kan Extensions in Enriched Category Theory, LNM, Vol. 145, Berlin:
Springer-Verlag, 1970.

5. C. Fuhrmann and H. Thielecke, On the Call-by-Value CPS Transform and its
Semantics, (submitted).

6. R. Heckmann, Probabilistic Domains, in Proc. CAAP ’94, LNCS, Vol. 136, pp.
21-56, Berlin: Springer-Verlag, 1994.

7. M. Hyland, G. D. Plotkin, and A. J. Power, Combining Computational Effects:
Commutativity and Sum, in Foundations of Information Technology in the Era of
Network and Mobile Computing (eds. Richardo Baeza-Yates, Ugo Montanari, and
Nicola Santoro), IFIP, Vol. 223, Kluwer, 2002.

8. C. Jones, Probabilistic Non-Determinism, Ph.D. Thesis, University of Edinburgh,
Report ECS-LFCS-90-105, 1990.

9. C. Jones and G. D. Plotkin, A Probabilistic Powerdomain of Evaluations, in Proc.
4th LICS, Asilomar, pp. 186–195, Washington: IEEE Press, 1989.

10. G. M. Kelly, Basic Concepts of Enriched Category Theory, Cambridge: Cambridge
University Press, 1982.

11. P. B. Levy, Call-by-Push-Value: A Subsuming Paradigm, in Proc. TLCA ’99 (ed.
J.-Y. Girard), LNCS, Vol. 1581, pp. 228-242, Berlin: Springer-Verlag, 1999.

12. S. Mac Lane, Categories for the Working Mathematician, Berlin: Springer-Verlag,
1971.

13. E. Moggi, Computational Lambda-Calculus and Monads, in Proc. LICS ’89, pp.
14–23, Washington: IEEE Press, 1989.

14. E. Moggi, An Abstract View of Programming Languages, University of Edinburgh,
Report ECS-LFCS-90-113, 1989.

15. E. Moggi, Notions of computation and monads, in Inf. and Comp. Vol. 93, No. 1,
pp. 55–92, 1991.

16. P. W. O’Hearn and R. D. Tennent, Algol-like Languages, Progress in Theoretical
Computer Science, Boston: Birkhauser, 1997.

17. R. Milner, M. Tofte, R. Harper and D. MacQueen The Definition of Standard
ML—Revised, Cambridge: MIT Press, 1997.

18. G. D. Plotkin, A Powerdomain Construction, in SIAM J. Comput. Vol. 5, No. 3,
pp. 452–487, 1976.

19. G. D. Plotkin, Domains, http://www.dcs.ed.ac.uk/home/gdp/, 1983.
20. G. D. Plotkin and A. J. Power, Adequacy for Algebraic Effects, in Proc. FOSSACS

’01 (eds. F. Honsell and M. Miculan), LNCS, Vol. 2030, pp. 1–24, Berlin: Springer-
Verlag, 2001.

21. G. D. Plotkin and A. J. Power, Semantics for Algebraic Operations (extended
abstract), in Proc. MFPS XVII (eds. S. Brookes and M. Mislove), ENTCS, Vol.
45, Amsterdam: Elsevier, 2001.

22. G. D. Plotkin and A. J. Power, Notions of Computation Determine Monads,
in Proc. FOSSACS ’02 (eds. M. Nielsen and U. Engberg), LNCS, Vol. 2303, pp.
342–356, Berlin: Springer-Verlag, 2002.

23. A. J. Power, Enriched Lawvere Theories, in Theory and Applications of Categories,
pp. 83–93, 2000.

24. A. J. Power, Models for the Computational Lambda Calculus, in Proc. MFCSIT
2000 (eds. T. Hurley, M. Mac an Airchinnigh, M. Schellekens, and A. K. Seda),
ENTCS, Vol. 40, Amsterdam: Elsevier, 2001.

A The computational λ-calculus

In this appendix, we describe the computational λ-calculus, or λc-calculus and
recall Moggi’s notion of λc-model [13, 15]. There are several equivalent formula-
tions of the λc-calculus. We shall not use the original formulation but a version
that is equivalent except for the treatment of basic types and constants. This
version of the λc-calculus has types given by:

σ ::= B | σ × σ | 1 | σ ⇒ σ

where B ranges over a given set of base types such as int, and σ ⇒ τ , rather
than σ → τ , denotes the exponential. We do not assert the existence of a type
construction Tσ: this formulation is equivalent to the original one because Tσ
may be defined to be 1 ⇒ σ.

The terms of the λc-calculus are given by:

M ::= x | b | MM | λx : σ.M | ∗ | (M,M) | πi(M)

where x is a variable; b ranges over base terms of arbitrary given types, such as 0
and succ, of respective types int and int ⇒ int; and with πi existing for i = 1 or
2. There are evident typing rules for judgements Γ ` M : σ, that the term M has
type σ in the context Γ (and contexts have the form Γ = x1 : σ1, . . . , xn : σn);
in particular ∗ is of type 1. This differs from the original formulation of the
calculus in that we do not explicitly have a let constructor or constructions [M]

or µ(M). The two formulations are equivalent as we may consider let x = M : σ
in N as syntactic sugar for (λx : σ.N)M (and may then elide the σ), and [M]
as syntactic sugar for λx : 1.M where x is of type 1 and does not occur freely
in M, and µ(M) as syntactic sugar for M∗.

We use this formulation as it has less data, allowing for easier proofs. More-
over, it is more directly a fragment of a typical call-by-value language: the above
type constructors and, with the possible exception of the πi, term constructors
often appear explicitly in call-by-value languages, whereas T-types, µ, and [−]
typically do not.

The λc-calculus has two predicates, existence, denoted by ↓, and equivalence,
denoted by ≡. The ↓ rules may be expressed as saying ∗ ↓, x ↓, λx : σ.M ↓ for
all M, if M ↓ then πi(M) ↓, and similarly for (M,N), typically accompanied
by rules for some of the base terms, e.g., 0 ↓, succ ↓ and succM ↓ when
M ↓. A value is a term M such that M ↓. There are two classes of rules for ≡.
The first class say that ≡ is a congruence, with variables allowed to range over
values. And the second class are rules for the basic types and for unit, product
and functional types. It follows from the rules for both predicates that types
together with equivalence classes of terms form a category, with a subcategory
determined by values.

It is straightforward, using the original formulation of the λc-calculus in [13],
to spell out the inference rules required to make this formulation agree with the
original one: one just bears in mind that the models are the same, and uses
syntactic sugar as detailed above.

Evaluation contexts for the λc-calculus are defined by the following inductive
clauses: [−]σ is an evaluation context; EM, VE, (E,M) and πi(E) are evaluation
contexts for any evaluation context E, term M and value V; and there are also
suitable clauses for the base terms, such as that succE is an evaluation context
if E is. One can type evaluation contexts by adding the rule that [−]σ : σ. The
computational thought behind evaluation contexts is that in a program of the
form E[M] the first computational step arises within M.

For category theoretic models, the key feature is that there are two entities,
terms and values. So the most direct way to model the language as we have
formulated it is in terms of a pair of categories V and T , together with an
identity-on-objects inclusion functor J : V −→ T . This train of thought leads
directly to the notion of closed Freyd-category [24]. But the first sound and
complete class of models for the λc-calculus was given by Moggi in [13, 15].

For Moggi, a λc-model consists of a category C with finite products, together
with a strong monad T on C, such that T has Kleisli exponentials, i.e., for each
object x of C, the functor J(−× x) : C −→ CT has a right adjoint, where CT is
the Kleisli category for C and J : C −→ CT is the canonical functor. A term of
type σ in context Γ is modelled by a map in the Kleisli category for T , i.e., by a
map in C from [[Γ]] to T [[σ]], where [[−]] denotes the semantic construct (and for
Γ = x1 : σ1, . . . ,xn : σn, [[Γ]] = [[σ1]],× . . .× [[σn]]). In terms of Freyd categories,
C and CT evidently correspond to V and T . The extension of these ideas to
the more general situation where C is V-enriched is straightforward. Returning

to evaluation contexts, to each such context Γ ` E : τ where the “hole” in E
is [−]σ one can assign a morphism [[E]] : [[Γ]]× [[σ]] → [[τ]]. One then has that
[[E[M]]] = Eo(id[[Γ]], [[M]]).

