THE λ -CALCULUS IS ω -INCOMPLETE

G. D. PLOTKIN

§1. Introduction. The ω -rule in the λ -calculus (or, more exactly, the λK - β , η calculus) is

$$\frac{MZ = NZ \quad \text{(all closed terms } Z)}{M = N}.$$

In [1] it was shown that this rule is consistent with the other rules of the λ -calculus. We will show the rule cannot be derived from the other rules; that is, we will give closed terms M and N such that MZ = NZ can be proved without using the ω -rule, for each closed term Z, but M = N cannot be so proved. This strengthens a result in [4] and answers a question of Barendregt.

§2. Definitions. The language of the λ -calculus has an *alphabet* containing denumerably many variables a, b, c, \ldots (which have a standard listing e_1, e_2, \ldots), *improper symbols* λ , (,) and a single *predicate* symbol = for equality.

Terms are defined inductively by the following:

(1) A variable is a term.

(2) If M and N are terms, so is (MN); it is called a *combination*.

(3) If M is a term and x is a variable, $(\lambda x M)$ is a term; it is called an *abstraction*.

We use \equiv for syntactic identity of terms.

If M and N are terms, M = N is a formula.

BV(M), the set of bound variables in M, and FV(M), its free variables, are defined inductively by

$$BV(x) = \emptyset; \quad BV((MN)) = BV(M) \cup BV(N);$$

$$BV((\lambda xM)) = BV(M) \cup \{x\};$$

$$FV(x) = \{x\}; \quad FV((MN)) = FV(M) \cup FV(N);$$

$$FV((\lambda xM)) = FV(M) \setminus \{x\}.$$

A term M is closed iff $FV(M) = \emptyset$. [M/x]N, the result of substituting M for x throughout N, is defined inductively by

$$[M/x]x \equiv M, \qquad [M/x]y \equiv y \quad (x \neq y),$$
$$[M/x](NN') \equiv ([M/x]N[M/x]N'), \qquad [M/x](\lambda xN) \equiv (\lambda xN),$$
$$[M/x](\lambda yN) \equiv (\lambda z[M/x][z/y]N) \quad (\dot{x} \neq y)$$

where z is the variable defined by

(1) if $x \notin FV(N)$ or $y \notin FV(M)$, $z \equiv y$,

Received April 30, 1973.

© 1974, Association for Symbolic Logic

(2) otherwise z is the first variable in the list e_1, e_2, \ldots such that $z \notin FV(N) \cup FV(M)$.

That this is a good definition is shown in [2] where other properties of the substitution prefix can be found.

Rules.

(I)

1. $(\lambda x M) = (\lambda y[y/x]M)$ $(y \notin FV(M));$ 2. $((\lambda x M)N) = [N/x]M;$ 3. $(\lambda x Mx) = M$ $(x \notin FV(M)).$

(II)

1.
$$M = M$$
.
2. $\frac{M = N}{N = M}$.
3. $\frac{M = NN = L}{M = L}$.

(III)

$$\frac{M = M'}{(NM) = (NM')}, \quad \frac{M = M'}{(MN) = M'N)}, \quad \frac{M = M'}{(\lambda x M) = (\lambda x M')}$$

We will use M = N to mean that M = N can be proved by the above rules. In addition, $M = {}_{\alpha} N$ (α -equivalence) is to mean that M = N can be proved using (I)1, (II) and (III); $M \ge_{\beta} N$ (β -reduction) is to mean that M = N can be proved using (I)1,2, (II)1,3 and (III); $M \ge_{\beta\eta} N$ ($\beta\eta$ -reduction) is to mean that M = N can be proved using (I), (II)1,3 and (III); $M \ge_{\eta} N$ (η -reduction) is to mean that M = N can be proved using (I), (II)1,3 and (III); $M \ge_{\eta} N$ (η -reduction) is to mean that M = N can be proved using (I), (II)1,3 and (III); $M \ge_{\eta} N$ (η -reduction) is to mean that M = N can be proved using (I), (II)1,3 and (III); $M \ge_{\eta} N$ (η -reduction) is to mean that M = N can be proved using (I)3, (II)1,3 and (III).

Clearly, if $M \ge_n N$ or $M =_\alpha N$ then FV(M) = FV(N).

It is shown in [2] that if M = N then there is a Z, such that $M \ge_{\beta n} Z$ and $N \ge_{\beta n} Z$ (Church-Rosser theorem). Further if $M \ge_{\beta n} N$ then, for some Z, $M \ge_{\beta} Z \ge_{n} N$.

By $M \to N$ we mean that there are terms M_1, \ldots, M_m and a variable $x \ (m \ge 2)$ such that $M \equiv (\lambda x M_1) M_2 \cdots M_m$ and $N \equiv ([M_2/x]M_1) M_3 \cdots M_m$.

The transitive closure, \rightarrow^+ , of \rightarrow is called *head reduction*.

Standard reduction sequences (s.r. sequences) are defined inductively by the following:

(1) x is a s.r. sequence for any variable x.

(2) If M_1, \ldots, M_m and N_1, \ldots, N_n are s.r. sequences, so is $(M_1N_1), \ldots, (M_mN_1), \ldots, (M_mN_n)$.

(3) If M_1, \ldots, M_m is a s.r. sequence, so is $\lambda x M_1, \ldots, \lambda x M_m$ for any variable x.

(4) If M_1, \ldots, M_m and N_1, \ldots, N_n are s.r. sequences, M_m is the first abstraction in M_1, \ldots, M_m and $(M_m N) \to N_1$ then $(M_1 N), \ldots, (M_m N), N_1, \ldots, N_n$ is a s.r. sequence.

This is a reformulation of the definition given in [2] where it is shown that if $M \ge_{\beta} N$ then for some $N' =_{\alpha} N$ there is a s.r. sequence from M to N' (standardisation theorem). If M_m is the first abstraction in a s.r. sequence M_1, \ldots, M_m then $M_1 \rightarrow M_2 \rightarrow \cdots \rightarrow M_m$ and M_m is uniquely determined by M_1 . A term M is of

order 0 iff there is no abstraction N such that $M \ge_{\beta} N$ or, equivalently, if there is no abstraction N such that $M \rightarrow^+ N$, or $M \equiv N$.

If n is an integer, by n is meant the term

$$\lambda f \lambda x \underbrace{f(\cdots f(x) \cdots)}_{n \text{ times}}$$
 (where n, f are distinct variables)

For any term M let Y_M be $(\lambda x M(xx))(\lambda x M(xx))$ where $x \notin FV(M)$; then $Y_M = M(Y_M)$ and, indeed, $Y_M \to M(Y_M)$.

Let Succ $\equiv \lambda n \lambda f \lambda x (nf(fx))$ (with *n*, *f* and *x* distinct). Then Succ n = n + 1. From [3] we see that there is a closed term Gd^{-1} such that, for any closed term *Z*, $Gd^{-1}n = Z$ for some *n*.

Finally, we define the terms M and N which provide a counterexample to ω completeness via intermediate definitions of terms H_1 , H, G_1 , G and F:

$$\begin{split} H_1 &\equiv \lambda h \lambda g \lambda n \lambda x \lambda y((hg)n((hg)(\operatorname{Succ} n)(g(\operatorname{Succ} n))yx)(Gd^{-1}n)) \\ H &\equiv (Y_{H_1}), \\ G_1 &\equiv \lambda g \lambda n((Hg)(\operatorname{Succ} n)(g(\operatorname{Succ} n))(Gd^{-1}(\operatorname{Succ} n))(gn)), \\ G &\equiv (Y_{G_1}), \\ F &\equiv (HG), \\ M &\equiv (F0(G0)), \\ N &\equiv \lambda x(M(\lambda xx)) \quad (\text{with } h, g, n, x, y \text{ distinct variables}). \end{split}$$

- §3. LEMMA 1. For all terms U, V, W,
- (1) $FUVW \rightarrow^+ FU(F(\text{Succ } U)(G(\text{Succ } U))WV)(Gd^{-1}U),$
- (2) $GU = F(\operatorname{Succ} U)(G(\operatorname{Succ} U))(Gd^{-1}(\operatorname{Succ} U))(GU).$

Proof.

(1)

$$FUVW \equiv Y_{H_1}GUVW \rightarrow^+ H_1HGUVW$$

$$\rightarrow^+ (HG)U((HG)(\operatorname{Succ} U)(G(\operatorname{Succ} U))WV)(Gd^{-1}U)$$

$$\equiv FU(F(\operatorname{Succ} U)(G(\operatorname{Succ} U))WV)(Gd^{-1}U).$$

(2) $GU \equiv Y_{G_1}U = G_1GU$ $= (HG)(\operatorname{Succ} U)(G(\operatorname{Succ} U))(Gd^{-1}(\operatorname{Succ} U))(GU)$ $\equiv F(\operatorname{Succ} U)(G(\operatorname{Succ} U))(Gd^{-1}(\operatorname{Succ} U))(GU).$

It follows immediately that FUVW has order 0 for all terms U, V and W. The terms F and G were actually found as solutions to the double recursion equations given in Lemma 1. We could not simplify this to two single recursions.

LEMMA 2. For all $m, n \ge 0$, $Fn(Gn)(Gd^{-1}n) = Fn(Gn)(Gd^{-1}(m + n))$. PROOF. By induction on m. For m = 0, the result is obvious. Otherwise,

$$Fn(Gn)(Gd^{-1}n) = Fn(F(Succ n))(G(Succ n))(Gd^{-1}(Succ n))(Gn))(Gd^{-1}n)$$
(by Lemma 1.2)
= $Fn(Fn + 1(Gn + 1)(Gd^{-1}n + 1)(Gn))(Gd^{-1}n)$
= $Fn(Fn + 1(Gn + 1)(Gd^{-1}m + n)(Gn))(Gd^{-1}n)$
(by the induction hypothesis)
= $Fn(Gn)(Gd^{-1}m + n)$ (by Lemma 1.1).

LEMMA 3. For all closed terms Z, Z', MZ = MZ'.

PROOF. Choose *n*, *n'* such that $Z = Gd^{-1}n$ and $Z' = Gd^{-1}n'$. Then

$$MZ = F0(G0)(Gd^{-1}n) = F0(G0)(Gd^{-1}0)$$
 (by Lemma 2)
= F0(G0)(Gd^{-1}n') (by Lemma 2)
= MZ'.

LEMMA 4. If $FUVW, \ldots, Z$ is a s.r. sequence of length l where $y \in FV(V)$ but $y \notin FV(Z)$ then there is a s.r. sequence of length $\leq l$ from V to a term V' such that $y \notin FV(V')$.

PROOF. Suppose otherwise. Let $FUVW, \ldots, Z$ be a s.r. sequence of minimal length l among those s.r. sequences from a term of the form FUVW, where $y \in FV(V)$, to a term Z, where $y \notin FV(Z)$; and, for all V', if V, \ldots, V' is a s.r. sequence of length $\leq l$ then $y \in FV(V')$.

Case (a). The s.r. sequence is of the type given in clause 4 of the definition of a s.r. sequence. In this case it must have the form $FUVW, \ldots, (\lambda wN_1)W, N_2, \ldots, Z$ where $FUVW \rightarrow^+ N_2$ and N_2, \ldots, Z is a s.r. sequence of length l' < l. This determines N_2 and we find that $N_2 \equiv FU(F(\text{Succ } U)(G(\text{Succ } U))WV)(Gd^{-1}U)$ from the proof of Lemma 1. By the minimality of l, there is a s.r. sequence of length $\leq l'$ from F(Succ U)(G(Succ U))WV to a term Z' where $y \notin FV(Z')$. But F(Succ U)(G(Succ U))W is of order 0. Therefore this s.r. sequence must be of the type given in clause 2 of the definition of a s.r. sequence. So there is a s.r. sequence of length $\leq l'$ from V to a term V' such that $y \notin FV(V')$, a contradiction.

Case (b). The s.r. sequence is of the type given in clause 2 of the definition of a s.r. sequence. Then there is a s.r. sequence of length $l' \leq l$ from FUV to a term Z' such that $y \notin FV(Z')$, which must have the form (as $y \in FV(V)$) FUV, \ldots , $(\lambda vN_1)V, N_2, \ldots, Z'$ where $FUV \rightarrow^+ N_2$ and N_2, \ldots, Z' is a s.r. sequence of length l'' < l'. This determines N_2 and $N_2 \equiv \lambda wFU(F(\operatorname{Succ} U)(G(\operatorname{Succ} U)wV)(Gd^{-1}U)$ for some $w \notin FV(U) \cup FV(V)$. This must be of the type given in clause 3 of the definition of a s.r. sequence and there is a s.r. sequence of length l'' from $FU(F(\operatorname{Succ} U)(G(\operatorname{Succ} U))wV)(Gd^{-1}U)$ to a term Z'' such that $y \notin FV(Z'')$. This leads to a contradiction as in Case (a).

LEMMA 5. If FUVW,..., Z is a s.r. sequence such that $y \in FV(W)$ but $y \notin FV(Z)$ then, for some $W', W \ge_{\beta} W'$ and $y \notin FV(W')$.

PROOF. Suppose otherwise and let $FUVW, \ldots, Z$ be a s.r. sequence having minimal length *l* among those s.r. sequences from a term of the form FUVW to a term Z where $y \in FV(W)$, $y \notin FV(Z)$ and, for all W', if $W \ge_{\beta} W'$ then $y \in FV(W')$.

This s.r. sequence must have the form $FUVW, \ldots, (\lambda wN_1)W, N_2, \ldots, Z$ where $FUVW \rightarrow^+ N_2$ and N_2, \ldots, Z is a s.r. sequence of length l' < l. We find that $N_2 \equiv FU(F(\text{Succ } U)(G(\text{Succ } U))WV)(Gd^{-1}U)$. By Lemma 4 there is a s.r. sequence of length $\leq l'$ from F(Succ U)(G(Succ U))WV to a term Z' such that $y \notin FV(Z')$. Now F(Succ U)(G(Succ U))W is of order 0. Therefore this last s.r. sequence must be of the type described in clause 2 of the definition of a s.r. sequence and so there is a s.r. sequence of length $\leq l'$ from F(Succ U)(G(Succ U))W to a term Z'' such that $y \notin FV(Z')$. Hence, by the minimality of $l, W \geq_{\beta} W'$ for some term W' such that $y \notin FV(W')$, a contradiction.

LEMMA 6. If $x \neq y$ then $Mx \neq My$.

Suppose that $x \neq y$ and Mx = My. Then, by the Church-Rosser theorem there is a Z" such that $Mx \ge_{\beta\eta} Z$ " and $My \ge_{\beta\eta} Z$ ". Next, for some Z', $My \ge_{\beta} Z' \ge_{\eta} Z$ " and finally, for some $Z =_{\alpha} Z'$, there is a s.r. sequence from My to Z. But $y \notin FV(Mx) \supseteq FV(Z'') = FV(Z') = FV(Z)$. As $My \equiv FO(GO)y$, it follows from Lemma 5 that, for some term W', $y \ge_{\beta} W'$ and $y \notin FV(W')$, which contradicts the hypothesis.

THEOREM. The ω -rule is not derivable. PROOF. If Z is any closed term,

$$MZ = M(\lambda xx) \quad (\text{Lemma 2}) \\ = NZ.$$

However, if M = N then $Mx = Nx = M(\lambda xx) = Ny = My$, for any variables x and y, contradicting Lemma 6.

This result is not peculiar to the $\lambda K - \beta \eta$ calculus. It can be obtained for any $\lambda K - \beta \eta \delta$ calculus if there is a term Con⁻¹ such that for every constant *a* there is an *n* such that Con⁻¹ n = a; the result can also be obtained for the $\lambda I - \beta \eta$ calculus in an analogous way.

A term *M* is a *universal generator* iff every closed term is a subterm of some term to which $M \beta \eta$ -reduces. It is shown in [1] that if MZ = NZ for all closed *Z* and neither *M* nor *N* are universal generators then M = N. Is it the case that if M = Ncan be proved using the ω -rule and *M* is not a universal generator then M = Ncan be proved without the ω -rule? Notice that in the counterexample given above both *M* and *N* are universal generators.

Acknowledgements. This research was supported by an S.R.C. grant to Dr. R. M. Burstall. Thanks are due to H. Barendregt and L. Stephenson for their useful criticism.

REFERENCES

[1] H. P. BARENDREGT, Combinatory logic and ω -rule, Fundamenta Mathematicae (to appear).

[2] H. B. CURRY and R. FEYS, Combinatory logic. Vol. 1, North-Holland, Amsterdam, 1958.

[3] H. B. CURRY, J. R. HINDLEY and J. P. SELDIN, *Combinatory logic. Vol.* 2, North-Holland, Amsterdam, 1972.

[4] G. JACOPINI, Il principio di estensionalita nell'assiomatica del λ -calcolo (unpublished).

university of edinburgh edinburgh eh8 9nn, great britain