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Abstract. Continuous time Markov Chains (CTMCs) are a convenient
mathematical model for a broad range of natural and computer systems.
As a result, they have received considerable attention in the theoreti-
cal computer science community, with many important techniques such
as model checking being now mainstream. However, most methodolo-
gies start with an assumption of complete specification of the CTMC,
in terms of both initial conditions and parameters. While this may be
plausible in some cases (e.g. small scale engineered systems) it is cer-
tainly not valid nor desirable in many cases (e.g. biological systems),
and it does not lead to a constructive approach to rational design of
systems based on specific requirements. Here we consider the problems
of learning and designing CTMCs from observations/ requirements for-
mulated in terms of satisfaction of temporal logic formulae. We recast
the problem in terms of learning and maximising an unknown function
(the likelihood of the parameters) which can be numerically estimated
at any value of the parameter space (at a non-negligible computational
cost). We adapt a recently proposed, provably convergent global opti-
misation algorithm developed in the machine learning community, and
demonstrate its efficacy on a number of non-trivial test cases.

1 Introduction

Stochastic processes are convenient mathematical models of a number of real
world problems, ranging from computer systems to biochemical reactions within
single cells. Typically, such models are formulated intensionally by specifying the
transition kernel of a continuous time Markov chain (CTMC, [10]). A classical
question in formal modelling is to calculate the probability that a certain tem-
poral logic formula is true, given a certain process (with specified parameters);
this is the question addressed by stochastic model checking, one of the major
success stories of formal modelling in the last thirty years [4, 15].

While probabilistic model checking is indubitably a success story, it is not
an unqualified one. Computationally, model checking suffers from limitations,
either due to state space explosion or to the difficulty (impossibility) in check-
ing analytically formulae in specific logics [4, 8]. Simulation-based approaches,



such as statistical model checking, can be used to circumvent these problems:
these methods are usually asymptotically exact, in the limit when the number
of simulations used is large; nevertheless, establishing what is a sufficiently large
number of simulations to achieve a certain accuracy is a nontrivial problem.
Conceptually, both model checking and statistical model checking start from
the premise that a CTMC model of the system is entirely specified, i.e. the un-
derlying parameters of the CTMC are known exactly. This is generally not true:
it is certainly never true when employing CTMCs as models of physical sys-
tems (such as systems biology models, where parameters are at best known with
considerable uncertainty), but it is often not appropriate even when modelling
large-scale computer systems, when a coarse grained abstraction may be useful.
In these cases, one would wish to use observations of the system or of its proper-
ties to determine (approximately) its parameters: this is the system identification
problem. Moreover, the assumption of complete specification is not productive
in an engineering context: rather than checking properties of systems with spe-
cific parameters, one is often interested in specifying a priori the properties of
the system (requirements), and then adjust (few) control parameters in order to
best match the requirements (the system design problem).

The identification of parameters of CTMCs from observations has recently
received considerable interest in both the statistical machine learning and formal
modelling communities, where a number of approximate methods have been pro-
posed [3, 17]. All of these methods assume that the state of the system, e.g. the
counts of particles of each molecular species, is observed at discrete time points.
Here we consider the more general case where the observations are represented
by truth values of linear time temporal logic formulae representing qualitative
properties of the system. This may be more appropriate in a computer systems
scenario, as it may represent an easier type of data to store/ observe, or in a
systems biology scenario, when one observes a qualitative phenotype in multiple
cells as opposed to directly measuring protein counts. It is also a more natural
framework in which to address the design problem, as it is easier to formulate
requirements in terms of logical constraints than in terms of particle counts. The
restriction to linear time properties is justified because we can only observe sin-
gle realisations (trajectories) of a system. Naturally, the amount of information
contained in these qualitative observations is lower, making the problem more
challenging.

For both the design and identification problems the outstanding difficulty is
the lack of an objective function that can be used in an optimisation routine:
the fit of a CTMC with specific parameters to observations (or the match to
requirements) cannot in general be estimated analytically. We therefore need
to optimise an unknown function with the smallest number of function evalua-
tions. The key observation in this paper is that a similar problem also occurs in
the classical AI problem of reinforcement learning: there, the goal is to devise a
strategy (i.e. an update rule) which will lead to the optimisation of an unknown
reward function with the smallest number of trials (function evaluations). This
observation allows us to leverage powerful, provably convergent algorithms from



the statistical machine learning community: in particular, we adapt to our situ-
ation the Gaussian Process Upper Confidence Bound (GP-UCB) algorithm [20],
and show on a number of examples that this provides a practical and reliable
approach to both the identification and design problem. We further extend the
algorithm in order to provide confidence estimates for the obtained parameters,
and to detect possible non-identifiability issues. The paper is organised as fol-
lows: the problems we tackle and the formal methods tools we use are introduced
in Section 2. We then present the machine learning tools we use in Section 3,
while in Section 4 we present some computational experiments that give a proof
of concept demonstration of our approach. We then briefly discuss our results,
highlighting how the coupling of advanced machine learning and formal mod-
elling can open innovative directions in both fields.

2 Problem definition

Let the probability distribution on trajectories of stochastic process of interest
be denoted as P (x0:T |θ), where x0:T denotes a trajectory of the system up to
time T , θ is a set of parameters, and P (·) denotes the probability distribution/
density. Let ϕ1, . . . , ϕd be d (temporal) logic formulae whose truth depends on
the specific trajectory of the process which is observed. We are interested in the
following two problems:

Identification Problem: Given evaluations of each of the d formulae over N
independent runs of the process, arranged into a d×N binary design matrix
D, determine the value(s) of the parameters θ that make these observations
most probable.

Design Problem: Given a probability table P for the joint occurrence of a
number of formulae, determine the parameters of the stochastic process
which optimally match these probabilities.

We will see that a very similar approach can be adopted to solve both problems.
We introduce now the main logical and algorithmic ingredients of our approach.

2.1 Metric interval Temporal Logic

We will consider properties of stochastic trajectories specified by Metric interval
Temporal Logic (MiTL), see [1, 16]. This logic belongs to the family of linear tem-
poral logics, whose truth can be assessed over single trajectories of the system.
MiTL, in particular, is used to reason on real time systems, like those speci-
fied by CTMC, and its temporal operators are all time-bounded. We decided
to focus on MiTL because when we observe a system, e.g. a biological one, we
always observe single time-bounded realisations (essentially, time-bounded sam-
ples from its trajectory space). Hence, MiTL is the natural choice to formalise
the qualitative outcome of experiments.

The syntax of MiTL is given by the following grammar:

ϕ ::= tt | µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1U[T1,T2]ϕ2,



where tt is the true formula, conjunction and negation are the standard boolean
connectives, and there is only one temporal modality, the time-bounded until
U[T1,T2]. Atomic propositions µ are defined like in Signal Temporal Logic (STL
[16]) as boolean predicate transformers: they take a real valued function x(t),
x : [0, T ]→ Rn, as input, and produce a boolean signal s(t) = µ(x(t)) as output,
where S : [0, T ]→ {tt, ff}. As customary, boolean predicates µ are (non-linear)
inequalities on vectors of n variables, that are extended point-wise to the time
domain. Temporal modalities like time-bounded eventually and always can be
defined in the usual way from the until operator: F[T1,T2]ϕ ≡ ttU[T1,T2]ϕ and
G[T1,T2]ϕ ≡ ¬F[T1,T2]¬ϕ.

A MiTL formula is interpreted over a real valued function of time x, and its
satisfaction relation is given in a standard way, see e.g. [1, 16]. We report here
only the rules for atomic propositions and the temporal operator, as those for
boolean connectives are standard:

– x, t |= µ if and only if µ(x(t)) = tt;
– x, t |= ϕ1U[T1,T2]ϕ2 if and only if ∃t1 ∈ [t+ T1, t+ T2] such that x, t1 |= ϕ2

and ∀t0 ∈ [t, t1], x, t0 |= ϕ1 (here we follow the treatment of STL [16]).

The temporal logic MiTL can be easily extended to the probabilistic setting,
and interpreted over CTMC [12, 8]. Essentially, one is interested in the path
probability of a formula ϕ, defined as P (ϕ|θ) = P ({x0:T |x0:T , 0 |= ϕ}|θ), i.e. as
the probability of the set of time-bounded CTMC trajectories that satisfy the
formula5.

2.2 Likelihood function

Consider now a CTMC depending on a set of parameters θ, and a set of d MiTL
formulae ϕ1, . . . , ϕd whose truth values have been observed over N independent
runs of the process. Let D be the d × N design matrix, whose column vectors
correspond to joint observations of the properties. Given a specific value of the
parameters θ, the probability of a particular joint truth value for the set of
formulae of interest is uniquely determined. Let P (Di|θ) be the probability of
the joint truth value of formulae of the ith column of the matrix D given the
parameters θ. Under the assumption of independent runs, the likelihood of the
observations D is then simply

L(D, θ) =
N∏

i=1

P (Di|θ). (1)

Alternatively, if prior knowledge over the parameters is available as a prior distri-
bution P (θ), we may want to consider the un-normalised posterior distribution
P (θ,D) = P (θ)

∏N
i=1 P (Di|θ). The identification problem can be carried out by

5 We assume implicitly that T is sufficiently large so that the truth of ϕ at time 0 can
always be established from x. The minimum of such times can be easily deduced
from the formula ϕ, see [12, 16]



maximising the likelihood (1) (maximum likelihood, ML) or the un-normalised
posterior (maximum a posteriori, MAP).

Numerical evaluation of P (Di|θ) is a major challenge: computing the path
probability of a MiTL formula is an extremely difficult problem, with current
algorithms [8] suffering severely from the state space explosion. Furthermore,
numerical methods for stochastic model checking have always been developed
to compute the path probability of a single formula, while computing P (Di|θ)
requires to know the joint probability distribution of the formulae ϕ1, . . . , ϕd.
We therefore resort to statistical model checking to approximately evaluate the
likelihood L(D, θ).

2.3 Statistical model checking

We now briefly review Statistical Model Checking (SMC [12, 22]), a class of
methods that try to estimate the probability of a path formula or the truth
of a state formula relying on simulation and statistical means. In the context
of MiTL, SMC works as follows. Given a CTMC with fixed parameters θ, a
simulation algorithm, like SSA [11], is used to sample trajectories of the process.
For each sampled trajectory, we run a model checking algorithm for MiTL and
establish if ϕ is true or false. The process therefore generates samples from a
Bernoulli random variable Zϕ, equal to 1 if and only if ϕ is true. SMC uses
a statistical treatment of those samples, like Wald sequential testing [22] or
Bayesian alternatives [12], to establish if the query P (ϕ|θ) > q is true, with
a chosen confidence level α, given the evidence seen so far. Bayesian SMC, in
particular, uses a Beta prior distribution Beta(q|a, b) for the probability of q =
P (ϕ = 1); by exploiting the conjugacy of the Beta and Bernoulli distributions
[6], applying Bayes’ theorem we get

P (q|Dϕ) =
1

P (Dϕ)
P (Dϕ|q)P (q) = Beta(q, a+ k1, b+ k0).

The parameters a and b of the Beta prior distribution (usually set to 1) can be
seen as pseudo-counts that regularise the estimate when a truth value is rarely
observed. Given the simulated data Dϕ, our best guess about the true probability
P (Zϕ = tt) is then given by the predictive distribution [6]:

P (Zϕ = tt|Dϕ) =
∫ 1

0

P (Zϕ = tt|q)P (q|Dϕ)dq = E[q|Dϕ] =
k1 + a

k1 + a+ k0 + b

The Bayesian approach to SMC, especially the use of prior distributions
as a form of regularization of sampled truth values of formulae, is particularly
relevant for our setting, since we need to estimate probabilities over the much
larger set of joint truth values of several formulae.

To extend Bayesian SMC to checking the joint truth probabilities of multiple
formulae, we choose a Dirichlet prior distribution with parameters α1, . . . , α2d

equal to 1 (corresponding to adding one pseudo-count to every possible joint



truth value). Given observations Dϕ1,...,ϕd
of the truth values of Zϕ1,...,ϕd

6, anal-
ogous calculations yield the predictive distribution

P (Zϕ1,...,ϕd
= dj |Dϕ1,...,ϕd

) = (αj + kj)/(α0 + k)

where kj is the number of times we observed the jth truth combination, cor-
responding to a point dj ∈ D and α0 =

∑
j αj . This probability is then used

to estimate the likelihood L(D, θ), as L(D, θ) =
∏N

i=1 P (Di|θ). By the law of
large numbers, with probability one, this quantity will converge to the true like-
lihood when the number of samples in the SMC procedure becomes large, and
the deviation from the true likelihood will become approximately Gaussian.

3 Global optimisation

As we have seen, the identification problem entails the maximisation of an un-
known function which can be only estimated (with approximately Gaussian
noise) at isolated points at considerable computational cost. One can approach
this problem also from a Bayesian angle by treating the unknown function as a
random function (arising from a suitable prior stochastic process) and then use
the numerical evaluations as (noisy) observations of the function value, which
in turn enable a posterior prediction of the function values at new input points.
This is the idea underlying statistical emulation [14]. This leads to a very ele-
gant algorithm for optimisation; we now briefly review the main concepts and
the algorithm we use.

3.1 Gaussian Processes

Gaussian Processes (GPs) are a natural extension of the multivariate normal
distribution to infinite dimensional spaces of functions. A GP is a probability
measure over the space of continuous functions (over a suitable input space) such
that the random vector obtained by evaluating a sample function at a finite set
of points x1, . . . , xN follows a multivariate normal distribution. A GP is uniquely
defined by its mean and covariance functions, denoted by µ(x) and k(x, x′). By
definition, we have that for every finite set of points

f ∼ GP(µ, k)↔ f = (f(x1), . . . , f(xN )) ∼ N (µ,K) (2)

where µ is the vector obtained evaluating the mean function µ at every point,
and K is the matrix obtained by evaluating the covariance function k at every
pair of points. In the following, we will assume for simplicity that the prior
mean function is identically zero (a non-zero mean can be added post-hoc to the
predictions w.l.o.g.).

The choice of covariance function is an important modelling decision, as it
essentially determines the type of functions which can be sampled from a GP
6 Note that Dϕ1,...,ϕd is a matrix, similarly the design matrix discussed in Section 2,

but we treat each column/ observation as a single point of D.



(more precisely, it can assign prior probability zero to large subsets of the space
of continuous functions). A popular choice of covariance function is the radial
basis function (RBF) covariance

k(x, x′) = γ exp
[
−‖x− x

′‖2

λ2

]
(3)

which depends on two hyper-parameters, the amplitude γ and the lengthscale
λ. Sample functions from a GP with RBF covariance are with probability one
infinitely differentiable functions. For more details, we refer the interested reader
to the excellent review book of Rasmussen and Williams [18].

3.2 GP regression and prediction

Suppose now that we are given a set of noisy observations y of the function value
at input values x = x1, . . . , xN , distributed around an unknown true value f(x)
with spherical Gaussian noise of variance σ2. We are interested in determining
how these observations influence our belief over the function value at a further
input value x∗ where the function value is unobserved.

By using the basic rules of probability and matrix algebra, we have that the
predictive distribution at x∗ is again Gaussian with mean

µ∗ = (k(x∗, x1), . . . , k(x∗, xN )) K̂−1
N y (4)

and variance

k∗ = k(x∗, x∗)−(k(x∗, x1), . . . , k(x∗, xN )) K̂−1
N (k(x∗, x1), . . . , k(x∗, xN ))T

. (5)

where K̂N is obtained by evaluating the covariance function at each pair of
training points and adding σ2 times the identity. Notice that the first term on
the r.h.s of equation (5) is the prior variance at the new input point; therefore, we
see that the observations lead to a reduction of the uncertainty over the function
value at the new point. The variance however returns to the prior variance when
the new point becomes very far from the observation points.

Equation (4) warrants two important observations: first, as a function of the
new point x∗, µ∗ is a linear combination of a finite number of basis functions
k(x∗, x) centred at the observation points. Secondly, the posterior mean at a
fixed x∗ is a linear combination of the observed values, with weights determined
by the specific covariance function used. For the RBF covariance, input points
further from the new point x∗ are penalised exponentially, hence contribute less
to the predicted value.

3.3 Upper Confidence Bound optimisation

We now return to the problem of finding the maximum of an unknown function
with the minimum possible number of function evaluations. This is related to
the problem of performing sensitivity analysis w.r.t. the parameters of complex



computer models, e.g. climate models, where a quantification of uncertainty on
the model outputs is essential. An elegant approach to solving this problem
has been proposed by Kennedy and O’Hagan [14] by recasting the problem in
a Bayesian formalism: the true function linking the parameters to the model
outputs is assumed unknown and is assigned a GP prior. A (limited) number
of function evaluation are then used as (noiseless) observations to obtain a GP
posterior mean function which emulates the true unknown function, and is used
for subsequent analyses.

In the optimisation case, the situation is slightly different: given an initial
set of function evaluations, we are interested in determining a sequence of input
values that converges to the optimal value of the function. A naive approach
would be to use GP regression to emulate the unknown function, and to explore
the region near the maximum of the posterior mean. It is easy to see, though,
that this approach is vulnerable to remaining trapped in local optima. On the
other hand, one could sample uniformly across the input domain of interest; this
is guaranteed to eventually find the global optimum but is unlikely to do so in a
reasonable time. It is therefore clear that one needs to trade off the exploitation
of promising regions (high posterior mean) with the exploration of new regions
(high posterior variance).

The GP Upper Confidence Bound (GP-UCB) algorithm [20] prescribes an
exploration-exploitation trade-off which provably converges to the global opti-
mum of the function. The idea is intuitively very simple: rather than maximising
the posterior mean function, one maximises an upper quantile of the distribu-
tion, obtained as mean value plus a constant times the standard deviation (e.g.,
the 95% quantile, approximately given as µ+2σ). The GP-UCB rule is therefore
defined as follows: let µt(x) and vart(x) be the GP posterior mean and variance
at x after t iterations of the algorithm. The next input point is then selected as

xt+1 = argmaxx

[
µt(x) + βt

√
vart(x)

]
(6)

where βt is a constant that depends on the iteration of the algorithm.
To specify in which sense the algorithm converges, we need a definition.

Definition 1. Let x∗ be the value at which a function f attains its maximum.
The instantaneous regret of selecting a point xt is defined as rt = f(x∗)− f(xt)
and the cumulative regret at time T is defined as

∑T
t=1 rt. An iterative optimi-

sation algorithm is no-regret if

lim
T→∞

1
T

T∑
t=1

rt = 0.

Srinivas et al [20] then proved the following theorem

Theorem 1. Let βt = k + α log t, where k and α are positive constants. Then
the GP-UCB algorithm in equation (6) is no-regret. More specifically, with high
probability, the cumulative regret is bounded by O(

√
T ).



This theorem indicates that, as the algorithm proceeds, exploration needs to
become gradually more important than exploitation (βt is monotonically in-
creasing), as one would intuitively expect. The algorithm has been successfully
employed in a number of difficult optimisation problems, from determining op-
timal structure of synthetic proteins [19] to computer vision [21].

3.4 Estimating uncertainty

The GP-UCB algorithm enables us to find the maximum of a function (in our
case, the likelihood function or the un-normalised posterior); in many cases,
however, it is very desirable to be able to provide uncertainty estimates over the
parameter values returned. Given the intractable nature of the likelihood, which
requires a computationally expensive statistical model checking procedure at
every parameter value, a fully Bayesian treatment (e.g. based on Markov chain
Monte Carlo simulations [6]) is ruled out.

We therefore resort to a simple deterministic approximation which estimates
the variance/ covariance in the parameter estimates by inverting the Hessian of
the likelihood at its maximum. This approach, known as Laplace approximation
in statistics/ machine learning, is equivalent to approximate the posterior around
the maximum with a Gaussian which locally optimally matches the posterior. In
order to estimate the Hessian, there are at least two strategies available: one can
estimate the likelihood (numerically) on a fine (small) grid around the maximum
and then use standard numerical estimation methods, or one can use the GP
emulation as a surrogate of the function and directly differentiate the GP mean.
This second option has the advantages of handling the noise in the estimation of
the likelihood arising from statistical model checking (which is smoothed out in
GP regression), and of being analytically tractable. Recalling that the GP mean
at a point is a linear combination of basis functions, one can just differentiate
twice equation (4) to obtain the result.

3.5 Model design

The problem of model design is intimately linked to the inference problem: in
fact, one could characterise model design as inference with the data one would like
to have [5]. In our case, we are given a probability table for the joint occurrence
of a number of formulae ϕ1, . . . , ϕN .7 As explained earlier, the probability of a
specific truth configuration of a number of formulae is an intractable function
of the parameters, which in many cases can only be approximately computed
by statistical model checking. However, in the design case, we do not aim to
use this function to estimate the likelihood of observations, rather to match
(or be as near as possible to) some predefined values. We therefore need to
define a different objective function that measures the distance between two
7 This problem formulation is different from a recent approach on parameter synthesis

for CTMC using SMC, [13], in which the authors look for a subset of parameters in
which a single formula ϕ is satisfied with probability greater than q.



probability distributions; we choose to use the Jensen-Shannon divergence due
to its information theoretic properties and computational good behaviour (being
always finite) [9]. This is defined as

JSD(p‖q) =
1
2

∑
i

[
pi log

2pi

pi + qi
+ qi log

2qi
pi + qi

]
where p and q are two probability distributions over a finite set. The Jensen-
Shannon divergence is symmetric and always non negative, being zero if and only
if q = p. The GP-UCB minimisation of the Jensen-Shannon divergence between
an empirical q and the prescribed p can then be carried out as described above.

4 Experiments

We now illustrate our approach on a number of test cases. We benchmark the
approach on a simple example where the calculations can be performed analyt-
ically: a Poisson process where the truth values of a single logical formula are
observed. We then show how our approach can solve both the identification and
the design problems on a non-trivial computer infection model.

4.1 Poisson process

Poisson processes are random processes with values in N ∪ {0}; they play a
fundamental role in physics (e.g. as models of radioactive decay), biology (e.g.
as models of RNA production) and computer science (e.g. as models of arrivals
of packets at servers). They can be defined equivalently in several different ways;
here, we take the operational definition that a Poisson process with rate µ is an
increasing, integer valued process such that

P (k = n|µ, t) =
(µt)n

n!
exp[−µt]. (7)

We consider a very simple scenario where we have observed five times indepen-
dently the truth value of the formula ϕ(k) = F[0,1]{k > 3}, i.e. the formula ex-
pressing the fact that k has become bigger than 3 within 1 time units, evaluated
on individual trajectories sampled from a process with µ = 2. The probability of
ϕ being true for a trajectory given the value of µ can be calculated analytically
as

p = P (ϕ = true) = 1− P (ϕ = false) = 1−
3∑

n=0

(µ)n

n!
exp[−µ]. (8)

and hence we have an analytical expression for the log-likelihood (or un-normalised
posterior given a prior).

Figure 1 left panel shows the log-likelihood for 40 independent observations of
process trajectories, overlayed with the estimation obtained by SMC over a grid
using 12 samples. As we can see, SMC provides a noisy (but overall accurate)
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Fig. 1. Simulation on a Poisson process: left exact log likelihood and SMC estimation
(red crosses) for µ ∈ [1, 3]; right Illustration of the GP-UCB algorithm: GP likelihood
estimation (black line), true likelihood (green dashed-dotted line), and GP-UCB upper
bound (dotted line).

measurement of the log-likelihood function. Figure 1 right panel instead shows
the working of the GP-UCB algorithm (with constant βt ≡ 2): here, we have
observed only 15 SMC evaluations of the log-likelihood (red crosses); the GP
mean is given by the solid black line, and the mean ± 2 standard deviations
by the dashed line. The vertical line represents the next point chosen by the
GP-UCB algorithm. The dashed-dotted line is the analytical log-likelihood.

4.2 Network epidemics

We consider now a more structured example of the spread of a worm epidemics
in a computer network with a fixed number of nodes [7]. We consider a simple
variation of the classical SIR infection model [2], in which an initial population
of susceptible nodes can be infected either from outside the network (e.g. by
receiving an infected email message) or by the active spread of the virus by
infected computers in the network. Infected nodes can be patched, and become
immune to the worm for some time, after which they are susceptible again (for
instance, to a new version of the worm).

This system is modelled as a population CTMC, in which the state space is
described by a vector X of three variables, counting how many nodes are in the
susceptible (XS), infected (XI), and patched state (XR). The dynamics of the
CTMC is described by a list of transitions, or reactions, together with their rate
functions. We represent them in the biochemical notation style (see e.g. [11]).
All rates of this model follow the law of mass action.

External infection: S ke−→ I, with rate function keXS ;
Internal infection: S + I

ki−→ I + I, with rate function kiXSXI ;
Patching: I kr−→ R, with rate function krXI ;
Immunity loss: R ks−→ S, with rate function ksXR;

For this system, we considered three temporal logical properties, expressed as
MiTL formulae, all concerned with the number of infected nodes (total number
of nodes is 100). The properties are:
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Fig. 2. True versus predicted value of epidemics model parameters ki, ke, kr. The black
line represents the identity true=predicted. Left: ML; right: MAP.

1. G[0,100](XI < 40): the fraction of infected nodes never exceeds 40% in the
first 100 time units;

2. F[0,60]G[0,40](5 ≤ XI ≤ 20): within time 60, the fraction of infected nodes is
between 5 and 20 and remains so for 40 time units.

3. G[30,50](XI > 30): the fraction of infected nodes is above 30% between time
30 and time 50.

The first property puts a bound on the peak of infection, while the third con-
strains it to happen around time 40. The second property, instead, is intended
to control the number of infected nodes after the infection peak.

Given the model and the properties, we set up the experiment as follows.
We fixed the rate of immunity loss to 0.01; the remaining parameters are those
we explored. First we fixed these parameters to a value sampled uniformly in
ki ∈ [0.08, 0.12], ke ∈ [0.007, 0.013], kr ∈ [0.03, 0.07], and use the sampled config-
uration to generate 40 observations D of the value of the logical formulae. Then,
we ran the GP-UCB optimisation algorithm with the following search space:
ki ∈ [0.01, 1], ke ∈ [0.001, 0.1], kr ∈ [0.005, 0.5], so that each parameter domain
spans over two orders of magnitude. To treat equally each order of magnitude, as
customary we transformed logarithmically the search space, and rescaled each
coordinate into [−1, 1] (log-normalisation). The algorithm first computes the
likelihood, using statistical model checking, for 60 points sampled randomly and
uniformly from the log-normalized space, and then uses the GP-UCB algorithm
to estimate the position of a potential maximum of the upper bound function in
a grid of 800 points, sampled uniformly at each iteration. If in this grid a point
is found with a larger value than those of the observation points, we compute
the likelihood also for this point, and add it to the observations (thus chang-
ing the GP approximation). Termination happens when no improvement can be
made after three grid resamplings. The algorithm terminated after doing only
12 additional likelihood evaluations on average.

We consider both the maximum likelihood (ML) and maximum a posteriori
(MAP) identification problems; in the MAP case, we use independent, vaguely
informative Gamma priors, with mean 0.1 for ki, 0.01 for ke and 0.05 for kr,
and shape equal to 10. To assess statistically our results, we repeated the ex-
periments (both ML and MAP) on 5 different parameter configurations, doing 6



Max Likelihood
Param true value pred1 sd pred2 sd pred3 sd

ki 0.0811 0.0803 0.0142 0.0670 0.0084 0.1100 0.0132

ke 0.0118 0.0114 0.0029 0.0106 0.0014 0.0065 0.0011

kr 0.0319 0.0304 0.0032 0.0330 0.0020 0.0293 0.0034

MAP
Param true value pred1 sd pred2 sd pred3 sd

ki 0.1034 0.0927 0.0048 0.0946 0.0079 0.0744 0.0062

ke 0.0084 0.0081 0.0005 0.0106 0.0004 0.0076 0.0011

kr 0.0683 0.0719 0.0044 0.0683 0.0039 0.0643 0.0113

Table 1. True parameter and three predictions randomly chosen, both for ML and
MAP, after running a gradient ascent optimisation on the GP mean. We show the
predicted value and the uncertainty estimate, obtained from the estimated hessian of
the likelihood function.

runs per configuration. In the test, we fixed the length-scale hyperparameter of
the Gaussian kernel to 0.1, and the amplitude to 60% of the difference between
the maximum and the mean value of the likelihood for the 60 initial observa-
tions. Results are reported in Figure 2, where we plot the values of the true
parameters that generated the samples against the estimated values. As can be
seen, the predicted values are quite close to the original ones, both in the ML
and in the MAP cases. Indeed, the average observed error (euclidean distance
from the true configuration) is 0.0492 for ML and 0.0346 for MAP. These re-
sults show that the use of prior information can improve the performances of
the algorithm. Furthermore, it tends to reduce the sensitivity of the algorithm
to the hyperparameters, especially the length-scale. We report also the relative
errors, obtained dividing the absolute ones by the diameter of the search space:
4.43% for ML and 3.11% for MAP. In Table 1, we report for a random subset
of runs both the true/ inferred parameter values, and the uncertainty estimates
obtained using the Laplace approximation described in Section 3.4. Empirically,
we observed that in some instances the Hessian became not negative definite:
this may indicate identifiability problems given a specific set of observations. To
circumvent this problem, we ran a gradient ascent optimisation on the GP mean
before computing the Hessian, to ensure that the point is a local maximum. Also
empirically, we observed that the estimation of the uncertainty is affected by the
values of the hyperparameters of the GP; we discuss further this issue in the
conclusions.

4.3 System Design

We consider now an example of system design, in which we try to minimise the
Jensen-Shannon divergence (JSD) between the estimated joint probability distri-
bution and a target one (for numerical stability, we consider atanh(1− 2JSD)).
We consider again the network epidemics model, and look at the following two
properties:



0 8
0.9

0

1

2

−1

−0.5

0

0.5

1

1.5

2

2.5

kr 0.42 0.44 0.46 0.48 0.5 0.52
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

TRUE VALUE

PR
ED

IC
TE

D
 V

AL
U

E

Fig. 3. Left: atanh(1 − 2JSD) GP-estimated landscape for the network epidemics
model and target probability p(1, 1) = 0.5, p(1, 0) = 0.45, p(0, 1) = 0.04, p(0, 0) = 0.01.
Right: true versus predicted value of target probability for the network epidemics design
problem. The black line represents the identity true=predicted.

1. G[0,100](XI < 20): the fraction of infected nodes never exceeds 20% in the
first 100 time units;

2. F[0,60]G[0,40]XI ≤ 5: within time 60, the fraction of infected nodes is less
than or equal to 5 and remains so for 40 time units.

In our experimental setting, we fixed the internal infection rate to ki = 1
and the immunity loss rate to ks = 0.01. Hence, the search space is made of two
parameters, ke, the external infection rate, and kr, the patch rate. Intuitively,
those two parameters are somehow controllable, by filtering suspected messages
from outside the network or by active patching. In the first experiment, we set the
target probability p to the following: p(1, 1) = 0.5, p(1, 0) = 0.45, p(0, 1) = 0.04,
p(0, 0) = 0.01. The idea is that we really want the first property to hold, but
we are somehow less restrictive on the second one (conditional on the first being
true). Having a 2 dimension parameter space to explore, allows us to visualise
the GP estimate of the the JSD function, by sampling a 12x12 grid of equispaced
points in [0.01, 1]× [0.01, 5] (after log-normalisation, we use length-scale 0.5 and
amplitude 1 as hyperparameters). The result can be seen in Figure 3 left. As
we can see, there is a relatively small region in the parameter space that seems
to collect the larger score. Running ten experiments, we obtained an average
JSD of 0.0155, while the probability values estimated for p(1, 1) and p(1, 0) are
visually reported in Figure 3 right.

We also run an experiment varying the target probability distribution, sam-
pling it from a Dirichelet distribution with parameters 10, 0.8, 9, 0.2, thus giving
higher probability to (1, 1) and (0, 1), differently from the previous test. We
sampled 5 different target distributions, and run 5 experiments for each com-
bination, obtaining an average JSD of 0.0168. Probabilities obtained, plotted
against target probabilities, are reported in Figure 4 left, while in Figure 4 right,
we plot kr versus ke for parameter combinations found by the algorithm. While
the overall results are good, there is a strong linear dependency between the two
parameters, raising an issue of identifiability for this input specification of model
design.
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Fig. 4. Left: true versus predicted value of target probability for the network epidemics
design problem. The black line represents the identity true=predicted. Right: kr versus
ke of the predicted parameters for the 5x5 grid.

5 Conclusions

In this paper, we considered the problem of identifying and designing stochastic
processes from logical constraints, given by the (probability of) satisfaction of
specific formulae in MiTL. This complements approaches to learning parameters
of stochastic processes from observations of the state of the system [17, 3], and
can be arguably more appropriate in a number of situations; however, the infor-
mation loss resulting from having only access to qualitative observations makes
the problem considerably more challenging. Another benefit of our approach
is that it provides a conceptually unified framework that can also be used to
address the system design problem, where logical constraints are a much more
natural form of specifying requirements. A significant strength of our approach
is its computational efficiency and scalability: in our experiments, the global
maximum was usually found with few tens of function evaluations, hence the
bottleneck is essentially the SMC step. Moreover, the GP regression approach
naturally allows to incorporate and smooth the inaccuracies resulting from SMC
(modelled as Gaussian observation noise), which means that relatively short runs
of SMC are needed at each function evaluation. While we believe the results we
have shown are a promising first step in addressing these challenging problems,
there is considerable scope for further extension and improvements. Setting the
hyperparameters of the GP covariance (3) is currently done heuristically; they
could also be optimised, but at a non-negligible computational cost [18]. For
the system design problem, one may incur in identifiability problems when the
requirements cannot be satisfied (e.g. because of logical contradictions), when
they are redundant, or when they under-constrain the system. Tools to address
these issues would clearly be beneficial.

Finally, we would want to remark on how these results could only be ob-
tained by the cross-fertilisation of ideas from advanced formal modelling (e.g.
Bayesian SMC) and advanced machine learning (Gaussian processes, the GP-
UCB algorithm). It is our opinion that increased interaction between these two
areas of computer science will be highly beneficial to both, in particular towards
the practical deployment of advanced algorithmic tools.
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