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1 Greedy recolouring

Here we are going to revisit the 2-colourability problem of k-uniform hypergraphs. Recall
that m(k) is the minimum number of edges such that a k-uniform hypergraph is not 2-
colourable. We have derived lower and upper using the basic method:

2k−1 ≤ m(k) ≤ (1 + o(1))
e log 2

4
k22k.

We are going to improve the lower bound to

m(k) ≥ C ·
(

k

log k

)1/2

2k,

for some constant C.
We may want to colour every vertex uniformly at random. Then we will get m21−k many

monochromatic edges in expectation. An improvement upon the basic method can be ob-
tained by randomly recolouring all monochromatic edges after the first randomization. In
a 1978 proof, Beck used this argument to show that m(k) ≥ Ω(k1/32k). In 2000, Radhakr-
ishnan and Srinivasan improved it to m(k) ≥ Ω((k/ log k)1/22k). Their main idea is that the
recolouring obeys some random ordering, and when we are about to recolour an edge, it may
not be monochromatic any longer, and thus we do not need to recolour every monochromatic
edge.

Cherkashin and Kozik (2015) found a simpler proof based on a random greedy colouring,
which implicitly used the recolouring idea. We will present that proof here.

Theorem 1. If there exists p ∈ [0, 1] such that t(1 − p)k + t2p < 1, then a k-uniform
hypergraph H = (V,E) with |E| ≤ 2k−1t is always 2-colourable.

Proof. Wemay assumem = |E| = 2k−1t since removing edges does not destroy 2-colourability.
The random colouring process will be the following. We first assign a label xv to every

v ∈ V , where xv ∈ [0, 1] is drawn uniformly at random. This induces a random ordering
which is equivalent to a permutation at this stage. We examine vertices in an increasing
order. We colour every vertex blue, unless it is the last vertex of some edge that is otherwise
all blue. In this case, we colour it red. We are going to show that with positive probability,
the final colouring is proper (no edge is monochromatic).

Due to our construction, no edges can be completely blue. If an edge is red, then every
vertex in it must be the last vertex of some almost blue edge. Call an ordered pair (e, f)
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conflicting if the last vertex of e is the first vertex of f . Thus if there is no conflicting pairs,
the colouring must be proper. Note that if (e, f) is conflicting, then e ∩ f is unique. We
proceed to show that with positive probability there is no such pairs.

To prove it, split the interval [0, 1] into three subintervals, L, M , and R as follows

L =

[
0,

1− p

2

)
, M =

[
1− p

2
,
1 + p

2

)
, R =

[
1 + p

2
, 1

]
.

We say e ⊂ L, M , or R if all labels of vertices of e lie in that interval. We say a conflicting
pair (e, f) is type 1 if e ∈ L or f ∈ R. The probability that there is a type 1 conflicting pair
is at most the probability that some edge in E lies in L or R, either of which happens with

probability
(
1−p
2

)k
. Using the union bound, we have that

Pr(type 1 pair exists) ≤ m · 2
(
1− p

2

)k

= 2kt

(
1− p

2

)k

= t(1− p)k.

We call all other conflicting pairs type 2. For each pair (e, f) with a unique intersection,
we bound the probability that it’s type 2. For a type 2 pair, the unique vertex v ∈ e ∩ f
must have its label xv ∈ M . This is because if xv ∈ L, then e ∈ L and if xv ∈ R, then
f ∈ R. Contradicting to type 2. The event xv ∈ M happens with probability exactly p.
Moreover, all k − 1 vertices in e must lie before xv, which happens with probability xv. All
k − 1 vertices in f must lie after xv, which happens with probability 1− xv. Thus

Pr((e, f) is type 2) = pxk−1
v (1− xv)

k−1 ≤ p41−k,

where we used the fact that xv(1 − xv) ≤ 1/4. The number of ordered pair of edges is at
most m ·m = t24k−1. Thus, by a union bound,

Pr(type 2 pair exists) ≤ t24k−1 · p41−k = t2p.

By assumption, we have that

Pr(conflict pair exists) ≤ Pr(type 1 pair exists) + Pr(type 2 pair exists)

≤ t(1− p)k + t2p < 1.

Thus, with positive probability, there is a random ordering such that no conflict pair exists,
and the resulting colouring is proper.

We are still left to find an explicit expression of the condition of Theorem 1. Once again,
we use the bound 1−p ≤ e−p and thus want to bound te−pk+t2p. The condition in Theorem 1
is typical in that the two terms come from type 1 error and type 2 error, respectively. A
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common strategy is to make sure te−pk < 1/2 and t2p < 1/2. From the second one we have
that p < 1

2t2
. Plugging it back in the first and taking the log, we want to have

log 2t− k

2t2
< 0,

which implies that

2t2 log 2t < k.

Thus t =
(

k
log k

)1/2
satisfies the above for sufficiently large k. In fact, if we do a bit of

analysis, we will arrive at a tighter t =
√
2
(

k
log k

)1/2
, but our rough bound is asymptotically

tight already.

Corollary 2. m(k) ≥ Ω

((
k

log k

)1/2
2k−1

)
.

Note that the procedure in the proof above can also be formulated as a recoloring. Indeed,
after selecting the random labels xv, one can color all vertices v with xv ∈ L ∪M blue and
all vertices u with xu ∈ R red. We can then go over the vertices of M according to the order
of their labels, and recolor any blue vertex which is the last one in a blue edge red.

2 Yet another proof of Turán’s theorem

Recall that Tr(n) is the Turán graph with n vertices and r classes, and denote its number of
edges by tr(n). Let κ(G) denote the size of the maximum clique of G. Then Turán’s theorem
states that ex(n,Kr+1) ≤ tr(n), or equivalently:

Theorem 3 (Turán’s Theorem). Let n ≥ r ≥ 2. Let G = (V,E) be a graph of n vertices
and m edges. If κ(G) ≤ r, then m ≤ tr(n).

Recall that we use α(G) to denote the size of the maximum independent set of G. An
equivalent formulation of Turán’s theorem is the following.

Theorem 4. Let n ≥ r ≥ 2. Let G = (V,E) be a graph of n vertices and m edges. If
m <

(
n
2

)
− tr(n), then α(G) > r.

The reason is that the complement of an independent set is a clique. Let Gc = (V,Ec)
be the graph on the same set of vertices as G, but (u, v) ∈ Ec if and only if (u, v) ̸∈ E. Then
we see that α(G) = κ(Gc) and |E| + |Ec| =

(
n
2

)
. It follows that Theorem 3 and Theorem 4

are equivalent:

If κ(G) ≤ r, then |E| ≤ tr(n).

⇔ If |E| > tr(n), then κ(G) > r.

⇔ If |Ec| <
(
n

2

)
− tr(n), then α(Gc) > r.
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Last time, we have shown that α(G) ≥ n2

4m
if m ≥ n

2
. In order to prove Theorem 4, we

first show a stronger bound on α(G). It is due to Caro (1979) and Wei (1981).

Lemma 5.

α(G) ≥
∑
v∈V

1

d(v) + 1
.

Proof. We choose a uniformly at random permutation of all vertices in V . This gives us a
random ordering <. Choose an independent set I greedily in an increasing order. To be
more specific, we first put the smallest vertex into I and remove all its neighbours. At every
subsequent step, we put the smallest vertex of the current set of vertices into I, and then
remove all its neighbours. Clearly I is an independent set by choice.

For the convenience of analysis later, we will in fact use a subset of the one generated by
the process above. Let

I := {v ∈ V | (u, v) ∈ E ⇒ v < u}.

For a vertex v, it is put into I if and only if it is ordered smallest among all its neighbours.
(For the greedy procedure, there is another possibility, which is difficult to analyze. The
other possibility is that smaller neighbours are eliminated by some earlier vertices.) Let Xv

be the indicator variable of the event that v is chosen. Thus,

EXv = Pr(v ∈ I) ≥ d(v)!

(d(v) + 1)!
=

1

d(v) + 1
.

Hence, by the linearity of expectations

E |I| = E

(∑
v∈V

Xv

)
=
∑
v∈V

EXv =
∑
v∈V

1

d(v) + 1
.

There must exist an ordering such that the greedily chosen independent set has size ≥∑
v∈V

1
d(v)+1

.

Proof of Theorem 4. Note that f(x) = 1
x+1

is a convex function (consider the second deriva-
tive). It implies that ∑

v∈V

1

d(v) + 1
=
∑
v∈V

f(d(v))

is minimized if d(v)’s differ by at most 1. (To see this, one may show that f(x1) + f(x2) >
f(x1 − 1) + f(x2 + 1) if x1 − x2 ≥ 2.)

For a fixed
∑n

i=1 di = 2m, let d1 ≤ d2 ≤ · · · ≤ dn be the unique sequence of degrees (up
to permutations) such that |di − dj| ≤ 1. Thus, by Lemma 5,

α(G) =
∑
v∈V

1

dG(v) + 1
≥

n∑
i=1

1

di + 1
.
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On the other hand, consider the complement of Turán’s graph, Tr(n)
c. Denote it by H

and dH,1 ≤ dH,2 ≤ · · · dH,n be its degree sequence. It is composed by r isolated cliques of size
⌊n/r⌋ and ⌈n/r⌉. The number of edges is

(
n
2

)
− tr(n) > m, and the degrees differ by at most

1. Thus, di ≤ dH,i for any i ∈ [n], and the inequality is strict for at least one i. It implies
that

n∑
i=1

1

di + 1
>

n∑
i=1

1

dH,i + 1
.

Moreover, notice that for each clique of H, it contributes exactly 1 to
∑n

i=1
1

dH,i+1
. Hence,

n∑
i=1

1

dH,i + 1
= r.

Combining everything together, we have that

α(G) =
∑
v∈V

1

dG(v) + 1
≥

n∑
i=1

1

di + 1

>

n∑
i=1

1

dH,i + 1
= r.

This finishes the proof.

3 Lovász Local Lemma

Usually, when we use the probabilistic method, the desired event holds with very high prob-
ability. On the other hand, suppose we have n mutually independent events, each of which
holds with probability p, then the conjunction of all of them holds with probability pn. This
is exponentially small but strictly positive.

In most applications, the desired event cannot be decomposed into n mutually indepen-
dent ones. The Lovász Local Lemma provides a way to deal with dependencies. It was first
found by Erdős and Lovász in 1975 and is extremely powerful, especially if the dependencies
are rare.

Let A1, A2, . . . , An be events in an arbitrary probability space. A directed graph D =
(V,E) on the set of vertices V = [n] is called the dependency digraph for the events A1,. . . ,An

if for each i ∈ [n], the event Ai is mutually independent of all events Γ(i) := {Aj : (i, j) ̸∈ E}.

Lemma 6 (The Local Lemma). Suppose D = (V,E) is a dependency digraph for events
A1, · · · , An and there are real numbers x1, · · · , xn such that 0 ≤ xi < 1 and for all i ∈ [n]

Pr(Ai) ≤ xi

∏
(i,j)∈E

(1− xj). (1)
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Then

Pr

(
n∧

i=1

Ai

)
≥

n∏
i=1

(1− xi) > 0.

One should think Ai’s as “bad” events, and what we are after is some “perfect” object
that avoids all undesired events. In particular, when the condition of Lemma 6 holds, with
positive probability, no event Ai holds and thus a perfect object exists.

The symmetric case of Lemma 6 is often useful.

Corollary 7. Suppose D is the dependency digraph and |Γ(i)| ≤ d for any i ∈ [n]. If

ep(d+ 1) ≤ 1,

then

Pr

(
n∧

i=1

Ai

)
> 0.

Proof. If d = 0 then the corollary is trivial. Otherwise, take xi =
1

d+1
< 1. The corollary

follows trivially since for any d ≥ 1,
(
1− 1

d+1

)d
> 1

e
.

As shown by Shearer in 1985, the constant e in Corollary 7 is the best possible. However,
due to the algorithmic approach of Moser and Tardos (2011), the condition can be slightly
improved to epd ≤ 1.
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