
MTH742P: Advanced Combinatorics 12/12/2016

Lecture 11: Lovász Local Lemma

Lecturer: Heng Guo

1 Lovász Local Lemma

Usually, when we use the probabilistic method, the desired event holds with very high prob-
ability. On the other hand, suppose we have n mutually independent events, each of which
holds with probability p, then the conjunction of all of them holds with probability pn. This
is exponentially small but strictly positive.

In most applications, the desired event cannot be decomposed into n mutually indepen-
dent ones. The Lovász Local Lemma provides a way to deal with dependencies. It was first
found by Erdős and Lovász in 1975 and is extremely powerful, especially if the dependencies
are rare.

Let A1, A2, . . . , An be events in an arbitrary probability space. A graph D = (V,E) on
the set of vertices V = [n] is called the dependency graph for the events A1,. . . ,An if for each
i ∈ [n], the event Ai is mutually independent of all events that are not in Γ+(i) := Γ(i)∪{i},
where Γ(i) = {j : (i, j) ∈ E}.

Lemma 1 (The Local Lemma). Suppose D = ([n], E) is a dependency graph for events
A1, · · · , An and there are real numbers x1, · · · , xn such that 0 ≤ xi < 1 and for all i ∈ [n]

Pr(Ai) ≤ xi

∏
j∈Γ(i)

(1− xj). (1)

Then

Pr

(
n∧

i=1

Ai

)
≥

n∏
i=1

(1− xi) > 0.

One should think Ai’s as “bad” events, and what we are after is some “perfect” object
that avoids all undesired events. In particular, when the condition of Lemma 1 holds, with
positive probability, no event Ai holds and thus a perfect object exists.

Proof of Lemma 1. We first claim that for any S ⊆ {1, · · · , n} such that i ̸∈ S,

Pr

(
Ai

∣∣∣∣∣ ∧
j∈S

Aj

)
≤ Pr(Ai)

∏
j∈Γ(i)

(1− xj)
−1. (2)

We prove the inequality by induction on s = |S|. The base case is when S is empty and
the claim holds trivially.
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For the induction step, let S1 = S ∩ Γ(i) and S2 = S \ S1. If S1 = ∅, then the lemma
holds trivially as Ai is independent from S in this case. Otherwise S2 is a proper subset of
S. For the set S, define a new event B(S) :=

∧
i∈S Ai, which is the event that none of S

occurs. We have that

Pr(Ai | B(S)) =
Pr(Ai ∧B(S1) | B(S2))

Pr(B(S1) | B(S2))

≤ Pr(Ai | B(S2))

Pr(B(S1) | B(S2))

=
Pr(Ai)

Pr(B(S1) | B(S2))
, (3)

where the last line is because Ai is independent from B(S2). We then use the induction
hypothesis to bound the denominator. Suppose S1 = {j1, j2, . . . , jr} for some r > 0. Then,

Pr(B(S1) | B(S2)) = Pr

(∧
j∈S1

Aj

∣∣∣∣∣ ∧
j∈S2

Aj

)

=
r∏

t=1

Pr

(
Ajt

∣∣∣∣∣
t−1∧
s=1

Ajs ∧
∧
j∈S2

Aj

)

=
r∏

t=1

(
1− Pr

(
Ajt

∣∣∣∣∣
t−1∧
s=1

Ajs ∧
∧
j∈S2

Aj

))
.

By the induction hypothesis and (1), we have that for any 1 ≤ t ≤ r,

Pr

(
Ajt

∣∣∣∣∣
t−1∧
s=1

Ajs ∧
∧
i∈S2

Aj

)
≤ Pr(Ajt)

∏
j∈Γ(jt)

(1− xj)
−1

≤ xjt

∏
j∈Γ(jt)

(1− xj)
∏

j∈Γ(jt)

(1− xj)
−1

= xjt .

Thus,

Pr(B(S1) | B(S2)) ≥
∏
j∈S1

(1− xj) ≥
∏

j∈Γ(i)

(1− xj) .

This together with (3) proves the claim (2).
The lemma follows easily. First, by (2) and (1),

Pr

(
Ai

∣∣∣∣∣ ∧
j∈S

Aj

)
≤ Pr(Ai)

∏
j∈Γ(i)

(1− xj)
−1 ≤ xi.

2



Therefore,

Pr

(
n∧

i=1

Ai

)
= (1− Pr(A1))

(
1− Pr

(
A1 | A2

))
· · ·

(
1− Pr

(
An

∣∣∣∣∣
n−1∧
i=1

Ai

))

≥
n∏

i=1

(1− xi).

The inequality (2) actually holds for any event E (not necessarily one of Ai) if we define
the “neighbourhood” of E appropriately. This observation is useful in some applications,
but we will not use it.

The symmetric case of Lemma 1 is often useful.

Corollary 2. Suppose D is the dependency graph and |Γ(i)| ≤ d for any i ∈ [n]. If

ep(d+ 1) ≤ 1,

then

Pr

(
n∧

i=1

Ai

)
> 0.

Proof. If d = 0 then the corollary is trivial. Otherwise, take xi =
1

d+1
< 1. The corollary

follows trivially since for any d ≥ 1,
(
1− 1

d+1

)d
> 1

e
.

As shown by Shearer in 1985, the constant e in Corollary 2 is the best possible. Indeed,
Shearer 1985 gives the optimal condition for the Local Lemma with a fixed dependency graph
and the probability vector of the events. Using more complicated arguments about zeros of
the independence polynomial, Scott and Sokal 2005 improved the condition of Corollary 2

into p ≤ (d−1)d−1

dd
= 1

d−1
·
(
1− 1

d

)d ≤ 1
e(d−1)

.

2 Hypergraph 2-colourability

As the first example, let us see a straightforward application of Corollary 2. Recall that
a hypergraph H = (V,E) is 2-colourable if there is a 2-vertex-colouring such that no edge
e ∈ E is monochromatic.

Theorem 3. Let H = (V,E) be a k-uniform hypergraph with maximum degree d. (k ≥ 2)
If edk ≤ 2k−1, then H is 2-colourable.

Proof. We still colour every vertex uniformly at random. The bad events are Ae, which
denotes that an edge e ∈ E is monochromatic. Thus,

Pr(Ae) =
2

2k
= 21−k.
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This is p in Corollary 2.
To apply Corollary 2, we need to upper bound the number of events Af that are correlated

with Ae. If e and f do not share any vertex, then Ae and Af are independent. Thus, the
maximum degree ∆ of the dependency graph is the maximum number of edges that e intersect
with for any e. Every vertex has maximum degree d, which implies that there are at most
k(d− 1) many edges intersecting with e. Hence, ∆ ≤ k(d− 1) and ∆+ 1 ≤ kd. The lemma
follows from Corollary 2 as ep(∆ + 1) ≤ e21−kdk ≤ 1.

3 Ramsey numbers: re-re-visited

We can use the Local Lemma to obtain yet another lower bound for Ramsey numbers R(k, k).
Consider a uniformly at random 2-colouring of the edges of Kn. For each subset S ⊂ [n] of
vertices of size k, let AS be the “bad” events where S is monochromatic. Then we see that

Pr(AS) = 21−(
k
2).

On the other hand, AS and AT are dependent if and only if |S ∩ T | ≥ 2, as this is the only
case when S and T share at least one edge. For a fixed S, there are at most

(
k
2

)(
n−2
k−2

)
T such

that |S ∩ T | ≥ 2.1 Thus, to apply Corollary 2, we have that p = 21−(
k
2) and ∆ ≤

(
k
2

)(
n−2
k−2

)
.

Theorem 4. If e
(
k
2

)(
n−2
k−2

)
21−(

k
2) ≤ 1, then R(k, k) > n.

Calculation yields that R(k, k) >
√
2
e
(1 + o(1))k2k/2. This is yet another factor

√
2

improvement upon the alteration method, and a factor 2 improvement of the basic method.
Why the improvement is small? The reason is that the local lemma works best when the
dependency is rare. On the other hand, in this application, the dependency is rather high.

Following this intuition, we should expect much better improvement for off diagonal
Ramsey numbers R(ℓ, k) when ℓ is small. Let us do ℓ = 3 (the rest of this section follows
from Spencer 1977). Of course, we will have to apply the asymmetric version Lemma 1. In
particular, there are two types of “bad” events and we need to find a real number xi for each
type.

Colour every edge blue with probability p and red 1−p. Let AS (or BT ) be the event that

S is blue (or T is red). If |S| = 3, then Pr(AS) = p3. If |T | = k, then Pr(BT ) = (1− p)(
k
2).

Construct the dependency graph for events AS and BT by joining two vertices if the two
subset of vertices share more than 2 vertices (AS with AS′ , AS with BT , or BT with BT ′).

Each AS vertex is adjacent to 3(n − 3) < 3n AS′ vertices, and at most
(
n
k

)
BT vertices.

Similarly, each BT vertex is adjacent to at most
(
k
2

)
(n − 2) < k2n

2
AS vertices and at most(

n
k

)
BT ′ vertices. To apply Lemma 1, we need to find the probability 0 < p < 1 and two real

numbers 0 < x < 1 and 0 < y < 1 such that

p3 ≤ x(1− x)3n(1− y)(
n
k),

1This is an over counting! If |S ∩ T | ≥ 3, then T is counted more than once.
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and

(1− p)(
k
2) ≤ y(1− x)k

2n/2(1− y)(
n
k).

If so, R(3, k) ≥ n.
The calculation is elementary but tedious (for details, see Spencer 1977). The best

choices are p = Θ(n−1/2), k = Θ(n1/2 log n), x = Θ(n−3/2), and y = Θ(1/
(
n
k

)
). It yields that

R(3, k) ≥ Ω

((
k

log k

)2)
. A similar argument yields that R(4, k) ≥ k5/2+o(1), improving the

bound of k2−o(1) by the alteration method. In fact, the bound on R(4, k) is the best we know
and is better than any other bound without using the Local Lemma.

The bound R(3, k) ≥ Ω

((
k

log k

)2)
matches a result by Erdős 1961 using a highly compli-

cated probabilistic method. It is also close to the correct answer, which is R(3, k) = Θ( k2

log k
).

The upper bound is due to Ajtai, Komlós, Szemerédi 1980, and the lower bound is due to
Kim 1995.

To get some intuition of the upper bound, one can show, using induction, that

R(ℓ, k) ≤
(
k + ℓ− 2

ℓ− 1

)
.

In particular, R(3, k) ≤ k(k+1)
2

.

4 Lopsided Lovász Local Lemma

In the proof of Lemma 1, we can replace the condition

Pr(Ai) ≤ xi

∏
(i,j)∈E

(1− xj),

by the weaker assumption that for each i and S ⊆ [n] \ Γ+(i),

Pr

(
Ai

∣∣∣∣∣ ∧
j∈S

Aj

)
≤ xi

∏
(i,j)∈E

(1− xj).

Notice that here S does not intersect the neighbourhoods of i, but we do not require S to
be be independent from Ai. Indeed, it is fine if S is positively correlated with Ai.

Formally, we define the negative dependency graph.

Definition 1. D is a negative dependency graph if for every event Ai and every subset
J ⊆ [n] \ Γ+(i), we have that

Pr

(
Ai ∧

∨
j∈J

AJ

)
≥ Pr(Ai) Pr

(∨
j∈J

AJ

)
. (4)
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Using the negative dependency graph, we have the Lopsided version of Lemma 1.

Lemma 5 (Lopsided Lovász Local Lemma (LLLL)). Suppose D = ([n], E) is a negative
dependency graph for events A1, · · · , An and there are real numbers x1, · · · , xn such that
0 ≤ xi < 1 and for all i ∈ [n]

Pr(Ai) ≤ xi

∏
j∈Γ(i)

(1− xj).

Then

Pr

(
n∧

i=1

Ai

)
≥

n∏
i=1

(1− xi) > 0.

The proof of Lemma 5 is exactly the same as Lemma 1.
When the overall dependency is high but negative dependency is rare, Lemma 5 is much

more powerful than the vanilla version Lemma 1. It is shown in the next example.

4.1 Latin Transversal

Definition 2. Let M ∈ Zn×n be a matrix. We call a permutation π a Latin transversal of
M if Mi,π(i) ̸= Mj,π(j) if i ̸= j.

For example, the identity permutation is a Latin transversal of the following matrix.

1

2

3

3

1

2

2

3

1

The next theorem shows that if no integer appears too often in M , then there is a Latin
transversal. It is due to Erdős and Spencer 1991.

Theorem 6. If no integer appears in more than n
4e

entries of M , then M has a Latin
transversal.

Proof. Let π be a uniform permutation. The “bad” events correspond to pairs that Mi,i′ =
Mj,j′ where i ̸= j and i′ ̸= j′. For each such pair, define the event

Aii′jj′ := {π | π(i) = i′ ∧ π(j) = j′}.

Then

Pr(Aii′jj′) =
1

n(n− 1)
.
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The negative dependency graph D is defined on these 4-tuples. Two vertices ii′jj′ and kk′ℓℓ′

are adjacent if and only if

{i, i′} ∩ {k, k′} ≠ ∅ or {j, j′} ∩ {ℓ, ℓ′} ≠ ∅.

We claim D is a negative dependency graph. Use a, b, · · · to denote the tuples of the
form (i, i′, j, j′). We need to verify (4); namely, for any subset J ⊆ V \ Γ+(a).

Pr

(
Aa

∣∣∣∣∣ ∨
b∈J

Ab

)
≥ Pr(Aa) =

1

n(n− 1)
. (5)

We will show that for a = (1, 1, 2, 2) and a fixed J ⊆ V \Γ+(a). Due to symmetry, the proof
for any other tuple is exactly the same. Let PJ be the set of permutations such that

∨
b∈J Ab

holds, and for any i ̸= j,

Si,j := {π | π ∈ PJ s.t. π(1) = i, π(2) = j}.

Since

Pr

(
Aa

∣∣∣∣∣ ∨
b∈J

Ab

)
=

Pr
(
Aa ∧

∨
b∈J Ab

)
Pr
(∨

b∈J Ab

) =
|S1,2|∑
i̸=j |Si,j|

,

what we desire, (5), will follow if we show that |S1,2| ≥ |Si,j|.
To show |S1,2| ≥ |Si,j|, consider the following mapping T : Si,j → S1,2:

T (π) = (1, i)(2, j)π.

In other words, T (π) is a permutation that first apply π, and then swap 1 with i and 2 with
j. We claim that T (π) ∈ S1,2 if π ∈ Si,j. This is because:

1. As π ∈ Si,j, π(1) = i (or π(2) = j) and T (π)(1) = 1 (or T (π)(2) = 2).

2. The image T (π) ∈ PJ . Note that π ∈ PJ implies that π satisfies Ab for some tuple b =
(k, k′, ℓ, ℓ′) ∈ J , which indicates π(k) = k′ and π(ℓ) = ℓ′. Moreover, 1, 2 ̸∈ {k, k′, ℓ, ℓ′}
by the definition of J . It implies k′ ̸= i, j and ℓ′ ̸= i, j since π−1(i) = 1 and π−1(j) = 2.
Thus, T (π)(k) = π(k) = k′ and T (π)(ℓ) = π(ℓ) = ℓ′. In other words, T (π) satisfies Ab

as well and T (π) ∈ PJ .

Next we claim that T is injective. Suppose otherwise, then there are two different per-
mutations π, π′ ∈ Si,j, whose images T (π) = T (π′). Since π and π′ are distinct, there is some
k ̸= 1, 2 such that π(k) ̸= π′(k). It is easy to see that T (π)(k) ̸= T (π′)(k), a contradiction.

We still need to verify the condition of LLLL. This is a symmetric case. For any event
Aii′jj′ , its correlated events Akk′ℓℓ′ can be determined by the following:

1. First choose a pair kk′ or ℓℓ′ such that it lies in the same row/column as either ii′ or
jj′. There are n+ n+ (n− 2) + (n− 2) = 4(n− 1) choices.
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2. Suppose we chose kk′. Since every integer appears at most n
4e

times in the matrix,
there are at most n

4e
− 1 entries ℓℓ′ such that Mkk′ = Mℓℓ′ .

In summary, the number of neighbours ofAii′jj′ is at most 4(n−1)·
(

n
4e

− 1
)
= n(n−1)

e
−4(n−1).

Thus, we see that

ep(∆ + 1) ≤ e · 1

n(n− 1)
· n(n− 1)

e
= 1.

The theorem follows from Lemma 5.
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