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Lecture 1: Basics of Graph Theory

Lecturer: Heng Guo

1 Graph Theory

Graphs are the central objects to study during our course. The concept of graphs is simple
but it has found very wide application. It can be used to model many real-world networks,
such as the internet.

This is a “pure mathematics” module, and hence we will focus on the mathematical
theory of graphs, rather than on the applications.

Informally, a graph is a collection of points (called “vertices”), together with a collection
of lines (called “edges”) which join some pairs of points.

Definition 1. A (labelled) graph is an ordered pair (V,E), where V is a set, and E is a set
of (unordered) pairs of elements of V .

If G = (V,E) is a graph, then V is called the set of vertices of G, and E is the set of
edges of G.

We also write V (G) and E(G) in place of V and E, if we want to emphasize the underlying
graph.

Example: Let V = {1, 2, 3, 4, 5} and E = {(1, 2), (2, 3), (4, 5)}.

1 2

3

4

5

Figure 1: Graph G

Figure 1 is a picture of the graph. ⊠
For the most of the course, we will study simple and finite graphs. Here “finite” means

that the vertex set V is finite, and “simple” means that there is no ‘loops’ and ‘multiple
edges’ in G. A ‘loop’ is an edge joining a vertex to itself, such as (1, 1). ‘Multiple edges’
are more than one edges joining the same pair of vertices, such as (1, 2) and (1, 2). When a
graph contains loops or multiple edges, it is called a multigraph. In this course, all graphs
are simple unless we explicitly mention multigraphs.

If we relabel all vertices, then we view it as the same graph.
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Figure 2: Graph H

For example, let H be a graph where V (H) = {1, 2, 3, 4, 5} and E(H) = {12, 34, 45}.
Note that here we write 12 instead of (1, 2) for brevity. The graph H in Figure 2 and G in
Figure 1 are the same graph. The relabelling is 1 7→ 3, 2 7→ 4, 3 7→ 5, 4 7→ 1, 5 7→ 2.

To make it formal, we have the following definition.

Definition 2. Let G and H be two labelled graphs. We say G and H are isomorphic if there
exists a bijection f : V (G) → V (H) such that (u, v) ∈ E(G) if and only if (f(u), f(v)) ∈
E(H). The bijection f is called an isomorphism from G to H.

Informally, an unlabelled graph is one where we omit the labelling of vertices. Thus G
and H represent the same graph in Figure 3.

Figure 3: Unlabelled graph

To define unlabelled graph formally, define an equivalence relation ∼ by G ∼ H if and
only if G and H are isomorphic. Thus an unlabelled graph is an equivalence class of ∼.

Real world examples:

• London tube map: vertices are stations, and two vertices are joined if and only if the
two corresponding stations are adjacent stops on some line.

• The internet: webpages are vertices, and two webpages are joined if and only if one
page links to the other. This is a very important application of graph theory. For
example, the ranking algorithm of Google is based on this graph.

• The “Facebook” graph: vertices are people, and two vertices are joined if and only if
they are friends.

There is a famous “six degrees of separation” rule stating that for an arbitrary pairs
of vertices (like 99%), there is a path of length at most 6 in this graph between them.

2



1.1 Basic definitions

We now give some basic definitions of graph theory.

Definition 3. Let G and H be two graphs. We say H is a subgraph of G if V (H) ⊆ V (G)
and E(H) ⊆ E(G).

Let G be a graph and S ⊆ V is a subset of vertices. The induced subgraph of G on S is
a graph H where V (H) = S and uv ∈ E(H) if and only if uv ∈ E(G) and u, v ∈ S.

Definition 4. If G is a graph and u, v ∈ V (G), a path of length k in G from u to v is a
subgraph P of G with k edges, where E(P ) = {uv1, v1v2, · · · , vk−1v}.

Pictorially, a path (of length 4) has the form:

u v1 v2 v3 v

Definition 5. A finite graph G is said to be connected if for any two vertices u, v ∈ V (G),
there is a path in G from u to v. If G is not connected it is said to be disconnected.

For example, G in Figure 1 is disconnected.

Definition 6. If G is a graph, a component of G is a maximal connected subgraph of G.

In other words, a component of G is a subgraph H of G such that H is connected, and
we cannot add any edges of G to H, nor any vertices of G into H, without H becoming
disconnected. The components of G form a partition of V (G).

Definition 7. Let G be a graph and u, v ∈ V (G). We say u is adjacent to v if (u, v) ∈ E(G).
The neighbourhood Γ(v) of v is the set of all vertices of G that are adjacent to v; namely,

Γ(v) = {u | u ∈ V (G), (u, v) ∈ E(G)}.

The degree of v is the number of adjacent vertices of v, denoted by d(v). In other words,
d(v) = |Γ(v)|.

Definition 8. A graph G is said to be k-regular if d(v) = k for all v ∈ V (G).

We write A := B if we define A to be equal to B.

Definition 9. Let G = (V,E) be a graph. Define |G| := |V (G)|, the number of vertices of
G. It is sometimes called the order of G.

Define e(G) := |E(G)|, the number of edges of G.

Definition 10. Let G = (V,E) be a graph. We say G is bipartite if there is a partition
V1 ∪ V2 = V , V1 ∩ V2 = ∅, and if u, v ∈ Vi, then (u, v) ̸∈ E for i = 1, 2.

In other words, we can partition all vertices of a bipartite graph into two sides, where no
edge joins two vertices of the same side.
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Special Class of Graphs

• Pk = the path of length k. Note Pk has k + 1 vertices and k edges.

• Ck = the path of length k. Note Ck has k vertices and k edges. For example, Figure
4a is C5.

• Kk = the complete graph of order k. Here “complete” means that all possible edges are
present. There is an edge between any pair of vertices. Hence |Kk| = k, e(Kk) =

(
k
2

)
,

and Kk is (k − 1)-regular.

The complete graph is also called a “clique”. For example, K3 is simply a triangle.
Another example can be found in Figure 4b, which is K5.

• Ks,t = the bipartite complete graph where the two sides have size s and t, respectively.
Again, “complete” means that we add all possible edges to the graph. If two vertices
u, v are on different sides of the graph, then (u, v) is an edge. Hence |Ks,t| = s+ t and
e(Kk) = st.

An example can be found in Figure 4c, which is K4,3.

(a) C5 (b) K5 (c) K4,3

Figure 4: Some special graphs

2 Extremal Graph Theory

Extremal graph theory is a branch of combinatorics to study questions like ‘What is the
maximum possible number of edges a graph can have, if it has a certain property P?’ In
general, we are interested in maximising or minimising (‘extremizing’) some parameter, over
the collection of all graphs having some given property.

The first naive question is: What is the maximum possible number of edges in a graph
with n vertices? It is easy to see that the answer is

(
n
2

)
, which is the number of edges of Kn.

One of the earliest questions in extremal graph theory was asked by Mantel:
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Question (Mantel’s Question): What is the maximum possible number of edges in a graph
with n vertices that does not contain a triangle as a subgraph?

We call G triangle-free if G does not contain a triangle as a subgraph. Thus, we want to
maximize a parameter (the number of edges) over all possible triangle-free graphs of order
n.

How to construct a triangle-free graph with a lot of edges? First notice that a bipartite
graph is triangle-free. Thus intuitively the bipartite complete graph Kn/2,n/2 is a candidate
(assume n is even). If n is odd, we have to put ⌊n/2⌋ on one side and ⌈n/2⌉ on the other.
Hence the candidate answer is K⌊n/2⌋,⌈n/2⌉ if n is odd. Mantel showed that these two cases
are indeed the right answers.

Note that e(K⌊n/2⌋,⌈n/2⌉) = ⌊n/2⌋ ⌈n/2⌉ = ⌊n2/4⌋.

Theorem 1 (Mantel 1907). Let G = (V,E) be a triangle-free graph on n vertices. Then

e(G) ≤ e(K⌊n/2⌋,⌈n/2⌉) =
⌊
n2/4

⌋
,

where the equality holds if and only if G = K⌊n/2⌋,⌈n/2⌉.

We will first show Theorem 1 using Mantel’s original method. An important ingredient
is the Cauchy-Schwarz inequality.

Lemma 2 (The Cauchy-Schwarz inequality). If x1, · · · , xn ∈ R and y1, · · · , yn ∈ R, then(
n∑

i=1

xiyi

)2

≤

(
n∑

i=1

x2
i

)(
n∑

i=1

y2i

)
.

Proof. Consider the quadratic polynomial:

(x1z + y1)
2 + (x2z + y2)

2 + · · · (xnz + yn)
2 ≥ 0.

Note that

(x1z + y1)
2 + (x2z + y2)

2 + · · · (xnz + yn)
2 =

(
n∑

i=1

x2
i

)
z2 + 2

(
n∑

i=1

xiyi

)
z +

(
n∑

i=1

y2i

)
.

Since it is non-negative, it has at most one real root for z. Thus, its discriminant is less than
or equal to 0. Hence (

2

(
n∑

i=1

xiyi

))2

− 4

(
n∑

i=1

x2
i

)(
n∑

i=1

y2i

)
≤ 0.

Dividing the above equation by 4 yields the lemma.

Corollary 3. Let x1, · · · , xn be n real numbers such that
∑n

i=1 xi = N . Then

n∑
i=1

x2
i ≥

N2

n
.
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Proof. Take yi = 1 in Lemma 2:

n

(
n∑

i=1

x2
i

)
≥

(
n∑

i=1

xi

)2

= N2

Another ingredient is the famous handshaking lemma. Its proof utilizes an important
trick called “double counting”.

Lemma 4 (The Handshaking lemma). Let G be a graph. Then∑
v∈V (G)

d(v) = 2e(G).

Proof. We count the total number of ordered pairs of vertices that are adjacent. On one
hand, each edge (u, v) is counted twice: (u, v) and (v, u). Hence the answer should be 2e(G).

On the other hand, for each vertex v, it contributes d(v) to this sum. The answer should
be
∑

v∈V (G) d(v).
However these two answers are counting the same quantity. Hence they are equal.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. For any edge uv ∈ E(G), since G is triangle-free, then no vertex can
be in the neighbourhood of both u and v. It implies that

Γ(u) ∩ Γ(v) = ∅.

Thus,

d(u) + d(v) ≤ n.

We sum over all edges (u, v) ∈ E:∑
uv∈E

(d(u) + d(v)) ≤ ne(G).

In the lefthand side of the equation above, each d(v) appears d(v) many times in the sum.
Hence,

ne(G) ≥
∑
uv∈E

(d(u) + d(v))

=
∑
v∈V

d(v)2.

Now we apply the Cauchy-Schwarz inequality:

ne(G) ≥
∑
v∈V

d(v)2 ≥
(∑

v∈V d(v)
)2

n
(By Corollary 3)

=
4e(G)2

n
. (By Lemma 4)
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Collect terms and we get

e(G) ≤ n2

4
.

The theorem follows because e(G) has to be an integer.

In the following we give an alternative proof of Theorem 1 using induction.

Alternative Proof of Theorem 1. We do an induction on n. The base cases of n = 1, 2 are
trivial. Any graph with 1 vertex has no edge, and any graph with 2 vertices has at most 1
edge.

For the induction step, assume that Theorem 1 holds for any triangle-free graph G with
|G| ≤ n− 1, where n ≥ 3. We will show that Theorem 1 holds for any triangle-free graph G
with |G| = n.

Suppose for contradiction that the theorem does not hold, that is e(G) ≥
⌊
n2

4

⌋
+1. Take

uv ∈ E. Let H be the induced subgraph of G on V \{u, v}. Since G is triangle-free, so is H.

Clearly |H| = n− 2 and by the induction hypothesis e(H) ≤
⌊
(n−2)2

4

⌋
.

It implies that in G, the number of edges between H and {u, v} is at least⌊
n2

4

⌋
+ 1−

⌊
(n− 2)2

4

⌋
− 1 =

{
n− 1 if n is even;
n2−1
4

− (n−2)2−1
4

= n− 1 if n is odd.

Hence regardless of n being even or odd, there are at least n− 1 many edges between H and
{u, v}. Recall that |H| = n − 2, there must be one vertex w adjacent to both u and v. It
means that {u, v, w} is a triangle. Contradiction.

Theorem 1 also asserts when the maximum number of edges is achieved. It will be left
as an exercise.
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