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Lecturer: Heng Guo

1 Hamiltonian cycles - Dirac’s theorem

Recall that in extremal graph theory, we would like to answer questions of the following sort:
‘What is the maximum/minimum possible parameter C among graphs satisfying a certain
property P?’ In the last lecture, we see Mantel’s theorem, which answers the above question
with the parameter being the number of edges and the property being triangle-free. In this
lecture, we will be looking at other interesting parameters and properties.

Definition 1. Let G be a graph. A path P (or cycle C) in G is said to be simple if and only
if all vertices of P (or C) are distinct.

Question: What is the minimal number of edges in a graph to guarantee the existence of a
cycle? In other words, what is maximal number of edges without a cycle?

Notice that a tree T of order n contains no cycle and it has n − 1 many edges. On the
other hand, a graph G of order n and e(G) ≥ n must contain a cycle.

Theorem 1. A graph G of order n ≥ 3 contains a cycle if e(G) ≥ n.

One key observation is that if the minimum degree of G is at least 2, then it must contain
a cycle.

Definition 2. Let G be a graph. Define δ(G) to be the minimum degree of all vertices in G:

δ(G) := min{d(v) : v ∈ V (G)}.

Suppose δ(G) ≥ 2. We may start from an arbitrary vertex, and go to one of its neighbours.
Since δ(G) ≥ 2 and G is finite, we can always continue this process, until we come back to
a vertex that has been visited. This forms a cycle.

With the observation in hand, we can show Theorem 1 by induction. The base case is
trivial. For the induction step, if G has no cycle, then it must have a vertex v of degree
1. Consider G\v, which has n − 1 vertices and at least n − 1 edges. Hence by induction
hypothesis G\v contains a cycle.

Next let us turn our attention to cycles that visit every vertex. Contradiction.

Definition 3. Let G be a graph of order n. A Hamiltonian cycle is a simple cycle of order
n. Also, G is said to be Hamiltonian if it has a Hamiltonian cycle.
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In other words, a Hamiltonian cycle visits every vertex exactly once.

Question: What is the minimal number of edges to guarantee the existence of a Hamiltonian
cycle? In other words, what is maximal number of edges without a Hamiltonian cycle?

However, this question is not very interesting, as the answer if close to the maximum pos-
sible number of edges,

(
n
2

)
. Consider the following family of graphs Gn. Take aKn−1 together

with an isolated vertex v. Add one edge between Kn−1 and v. There is no Hamiltonian cycle
since d(v) = 1 and no cycle can go through v. On the other hand,

e(Gn) =

(
n− 1

2

)
+ 1 =

(
n

2

)
− (n− 2).

Thus, the edge “density” of this family of graphs is

e(Gn)(
n
2

) = 1− 2(n− 2)

n(n− 1)
→ 1

as n → ∞. This means that even if the graph contains almost all the possible edges, it
could still be non-Hamiltonian. In contrast, by Mantel’s Theorem, a triangle-free graph G
has density at most

⌊n2/4⌋(
n
2

) → 1

2
as n → ∞.

Note that the degrees of the example we constructed above are distributed very unevenly.
There are n − 1 vertices with degree at least n − 2 and 1 vertex with degree 1. A more
interesting question is that can we guarantee the existence of Hamiltonian cycles by lower
bounding the minimum degree of the graph.

Theorem 2 (Dirac 1952). Let n ≥ 3. If G is a graph of order n and δ(G) ≥ n/2, then G is
Hamiltonian.

Theorem 2 is actually the best possible. Consider the graph G, which is putting together
two copies ofKn/2. Since G is disconnected, it is not Hamiltonian. Moreover, δ(G) = n/2−1.
Thus Theorem 2 is the best possible for even n. The case of odd n will be left as an exercise.

Proof of Theorem 2. First we claim that G is connected. Suppose otherwise. Then pick one
of the smallest components of G. It must contain at most n/2 many vertices. Hence any
vertex in this component has degree at most n/2− 1. Contradiction.

Now suppose G is not Hamiltonian. Consider the simple path P of maximum possible
length ℓ ≤ n− 1. That is, P = {x0, x1, · · · , xℓ} where xixi+1 ∈ E for all 0 ≤ i ≤ ℓ− 1. Since
P is a maximal path, the neighbours of x0 and xℓ must be all inside P . Let

A = Γ(x1), B = {xi+1 : xi ∈ Γ(xℓ)}.

Since δ(G) ≥ n/2, |A| , |B| ≥ n/2. On the other hand, it is easy to see that x0 ̸∈ A and
x0 ̸∈ B. Hence A ∪B ⊆ {x1, · · · , xℓ}. Thus |A ∪B| ≤ ℓ ≤ n− 1. It implies that A ∩B ̸= ∅
(as otherwise |A ∪B| ≥ n/2 + n/2 = n).
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Suppose xt ∈ A ∩B for some t. Then consider the following cycle C

x1 − xt − xt+1 − xt+2 − · · · − xℓ−1 − xℓ − xt−1 − xt−2 − · · · − x2 − x1.

A picture can be found in Figure 1. Clearly, C has length ℓ.

x0 x1 xt−1 xt xt+1 xℓ−1 xℓ

Figure 1: The path P and cycle C

If ℓ = n, then C is a Hamiltonian cycle. Contradiction.
If ℓ < n, we then construct a simple path P ′ of length ≥ ℓ + 1. As ℓ < n, there exists

at least one vertex v ̸∈ C. However, G is connected. Hence there exists a simple path from
v to some vertex xr in C. Construct the path P ′ as follows: start from v, to xr, and then
traverse C to xr−1. The length of P ′ is at least ℓ + 1. It contradicts to the maximality of
P .

1.1 Forbidding a path of length k

The way we prove Dirac’s theorem is useful to answer the following question.

Question: What is the maximal number of edges in a graph of order n without a simple
path of length k?

Let try to guess the answer first. An easy way to avoid paths of length k is when
every component has size at most k. Then to maximize the number of edges, we put all
possible edges in each component. Thus our construction G is n/k many copies of cliques
Kk (assuming k | n). In this case,

e(G) =
n

k

(
k

2

)
=

n

k
· k(k − 1)

2
=

(k − 1)n

2
.

We will show that this is indeed the best possible.

Theorem 3. Let G be a graph of order n and there is no path of length k in n. Then

e(G) ≤ (k − 1)n

2
.

The proof of Theorem 3 relies on the following lemma, which is a similar result to Dirac’s
theorem.
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Lemma 4. Let G be a connected graph of order n and δ(G) ≥ k/2 for some integer k < n.
Then G contains a simple path of length k.

Proof. Suppose that G contains no path of length k. Let P = {x0, x1, · · · , xℓ} be a path of
maximum length ℓ < k.

Since P is a maximal path, the neighbours of x0 and xℓ must be all inside P . Let

A = Γ(x1), B = {xi+1 : xi ∈ Γ(xℓ)}.

Since δ(G) ≥ k/2, |A| , |B| ≥ k/2. On the other hand, it is easy to see that x0 ̸∈ A and
x0 ̸∈ B. Hence A ∪ B ⊆ {x1, · · · , xℓ}. Thus |A ∪ B| ≤ ℓ < k. It implies that |A| ∩ |B| ̸= ∅
(as otherwise |A ∪B| ≥ k/2 + k/2 = k).

Suppose xt ∈ A ∩B for some t. Then consider the following cycle C

x1 − xt − xt+1 − xt+2 − · · · − xℓ−1 − xℓ − xt−1 − xt−2 − · · · − x2 − x1.

(Recall Figure 1.) Clearly, C has length ℓ.
Since ℓ < k < n, we then construct a simple path P ′ of length ≥ ℓ + 1. As ℓ < n, there

exists at least one vertex v ̸∈ C. However, G is connected. Hence there exists a simple path
from v to some vertex xr in C. Construct the path P ′ as follows: start from v, to xr, and
then traverse C to xr−1. The length of P ′ is at least ℓ+ 1. It contradicts to the maximality
of P .

With Lemma 4 in hand, we are now ready to prove Theorem 2.

Proof of Theorem 2. If k = 1, then there is no possible edge in G and e(G) = 0.
Otherwise k ≥ 2, we do an induction on n (for each fixed integer k ≥ 2). The base case

is when n ≤ k and is trivial. This is because

e(G) ≤
(
n

2

)
=

(n− 1)n

2
≤ (k − 1)n

2
.

For the induction step, we want to show the theorem for a graph G of order n > k
assuming it holds for any graph of order < n. If G is disconnected, then let G0 be a
component of order n0 > 0 and G1 be the rest of the graph. Clearly

e(G) ≤ e(G0) + e(G1).

Moreover, G0 is of order n0 < n and G1 has n − n0 < n many vertices. By induction
hypothesis,

e(G0) ≤
k − 1

2
· n0,

e(G1) ≤
k − 1

2
· (n− n0).
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Combine all of the above:

e(G) ≤ k − 1

2
(n0 + n− n0) =

k − 1

2
n.

Otherwise, G is connected. If δ(G) ≥ k/2, then by Lemma 4 there exists a path of length
k. Contradiction

Therefore δ(G) < k/2. It implies that there exists a vertex v ∈ V (G) such that

d(v) ≤ ⌈k/2⌉ − 1 ≤ k − 1

2
.

Now consider the graph G′ = G\v. G′ has n− 1 many vertices and hence we can apply the
induction hypothesis:

e(G′) ≤ k − 1

2
(n− 1).

Thus,

e(G) = e(G′) + d(v) ≤ k − 1

2
(n− 1) +

k − 1

2
=

k − 1

2
n.

We note that the edge density of graphs without a path of length k is at most

(k−1)n
2(
n
2

) =
k − 1

n− 1
→ 0 as n → ∞.

2 Turán numbers and Turán densities

Let us fit the examples we have seen so far into a general theory.

Definition 4. Let F be an unlabelled graph. We say that a graph G is F -free if G does not
contain any isomorphic copy of F as a subgraph.

Notice that here we do mean subgraph rather than induced subgraph. For example, K5

is not C4-free because it contains a lot of cycles of length 4. However, the induced graph of
K5 on any 4 vertices is a K4 ̸= C4.

Definition 5. Let F be an unlabelled graph, and let n ≥ 2 be an integer. Define the Turán
number of F to be

ex(n, F ) := max{e(G) : G is an F -free graph of order n}.

Determining ex(n, F ) is one of the basic problems of extremal graph theory. Mantel’s

theorem tells us that ex(n,K3) =
⌊
n2

4

⌋
, and Theorem 3 shows that ex(n, Pk) ≤ (k−1)n

2
.

We also look at the “edge” density of F -free graphs. In particular, it is natural to consider
the following limit:

lim
n→∞

ex(n, F )(
n
2

) .

Let us first show that the limit above does exist for any graph F .
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Lemma 5. Let F be a graph. Then for any integer n ≥ 3,

ex(n, F )(
n
2

) ≤ ex(n− 1, F )(
n−1
2

) .

Proof. Let G be an F -free graph of order n such that e(G) = ex(n, F ). Let v0 ∈ V (G) of
the minimum degree, i.e. d(v0) = δ(G). Thus by the handshaking lemma,

2e(G) =
∑
v∈V

d(v) ≥ nd(v0).

Let G′ = G− v. Thus G′ is an F -free graph of order n− 1. By Definition 5,

e(G′) ≤ ex(n− 1, F ).

On the other hand,

e(G) = e(G′) + d(v).

Hence

e(G) ≤ ex(n− 1, F ) +
2e(G)

n
.

It implies that

ex(n, F ) = e(G) ≤ n

n− 2
ex(n− 1, F ).

Rearranging the terms yields

ex(n, F )

ex(n− 1, F )
≤ n

n− 2
=

(
n
2

)(
n−1
2

) ,
or equivalently,

ex(n, F )(
n
2

) ≤ ex(n− 1, F )(
n−1
2

) .

Lemma 5 implies that the sequence(
ex(n, F )(

n
2

) )∞

n=2

is monotone non-increasing. It is also a sequence of positive real numbers. Hence its limit
exists. Define

π(F ) := lim
n→∞

ex(n, F )(
n
2

) . (1)
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This limit π(F ) is also called the Turán density of F .
As we have seen, Mantel’s theorem implies that π(K3) = π(C3) =

1
2
. Moreover, Theorem

3 implies that

π(Pk) ≤
ex(n, Pk)(

n
2

) ≤ (k − 1)n/2

(n− 1)n/2
=

k − 1

n− 1
→ 0 as n → ∞.

It implies that 0 ≤ π(Pk) ≤ 0, and thus π(Pk) = 0. Later, we will see the Erdős-Stone
theorem, which gives us precise answer of π(F ) for any F . A consequence of the Erdős-
Stone theorem is that π(F ) = 0 if and only if F is bipartite.
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