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Lecture 2: Forbidden Paths and Cycles
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1 Hamiltonian cycles - Dirac’s theorem

Recall that in extremal graph theory, we would like to answer questions of the following sort:
‘What is the maximum/minimum possible parameter C' among graphs satisfying a certain
property P?’ In the last lecture, we see Mantel’s theorem, which answers the above question
with the parameter being the number of edges and the property being triangle-free. In this
lecture, we will be looking at other interesting parameters and properties.

Definition 1. Let G be a graph. A path P (or cycle C) in G is said to be simple if and only
if all vertices of P (or C) are distinct.

Question: What is the minimal number of edges in a graph to guarantee the existence of a
cycle? In other words, what is maximal number of edges without a cycle?

Notice that a tree T' of order n contains no cycle and it has n — 1 many edges. On the
other hand, a graph G of order n and e(G) > n must contain a cycle.

Theorem 1. A graph G of order n > 3 contains a cycle if e(G) > n.

One key observation is that if the minimum degree of G is at least 2, then it must contain
a cycle.

Definition 2. Let G be a graph. Define §(G) to be the minimum degree of all vertices in G:
)(G) :== min{d(v) : v € V(G)}.

Suppose 0(G) > 2. We may start from an arbitrary vertex, and go to one of its neighbours.
Since 0(G) > 2 and G is finite, we can always continue this process, until we come back to
a vertex that has been visited. This forms a cycle.

With the observation in hand, we can show Theorem 1 by induction. The base case is
trivial. For the induction step, if G has no cycle, then it must have a vertex v of degree
1. Consider G'\v, which has n — 1 vertices and at least n — 1 edges. Hence by induction
hypothesis G'\v contains a cycle.

Next let us turn our attention to cycles that visit every vertex. Contradiction.

Definition 3. Let G be a graph of order n. A Hamiltonian cycle is a simple cycle of order
n. Also, G is said to be Hamiltonian if it has a Hamiltonian cycle.



In other words, a Hamiltonian cycle visits every vertex exactly once.

Question: What is the minimal number of edges to guarantee the existence of a Hamiltonian
cycle? In other words, what is maximal number of edges without a Hamiltonian cycle?

However, this question is not very interesting, as the answer if close to the maximum pos-
sible number of edges, (g) Consider the following family of graphs G,,. Take a K,,_; together
with an isolated vertex v. Add one edge between K, 1 and v. There is no Hamiltonian cycle
since d(v) = 1 and no cycle can go through v. On the other hand,

o(G) = (”;1)+1: (Z)—(n—?).

Thus, the edge “density” of this family of graphs is
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as n — o00. This means that even if the graph contains almost all the possible edges, it

could still be non-Hamiltonian. In contrast, by Mantel’s Theorem, a triangle-free graph G
has density at most
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Note that the degrees of the example we constructed above are distributed very unevenly.
There are n — 1 vertices with degree at least n — 2 and 1 vertex with degree 1. A more
interesting question is that can we guarantee the existence of Hamiltonian cycles by lower
bounding the minimum degree of the graph.

Theorem 2 (Dirac 1952). Let n > 3. If G is a graph of order n and 6(G) > n/2, then G is
Hamiltonian.

Theorem 2 is actually the best possible. Consider the graph GG, which is putting together
two copies of K, /». Since G is disconnected, it is not Hamiltonian. Moreover, §(G) = n/2—1.
Thus Theorem 2 is the best possible for even n. The case of odd n will be left as an exercise.

Proof of Theorem 2. First we claim that G is connected. Suppose otherwise. Then pick one
of the smallest components of G. It must contain at most n/2 many vertices. Hence any
vertex in this component has degree at most n/2 — 1. Contradiction.

Now suppose G is not Hamiltonian. Consider the simple path P of maximum possible
length ¢ <n—1. That is, P = {xo,z1, -+ ,x¢} where x;x;,1 € E for all 0 <i < ¢—1. Since
P is a maximal path, the neighbours of £y and x, must be all inside P. Let

A=T(xy), B={zjy:x; €T(z0)}.

Since §(G) > n/2, |A|,|B| > n/2. On the other hand, it is easy to see that o ¢ A and
zo ¢ B. Hence AUB C {xy,--- ,x¢}. Thus |[AUB| < ¢ <n— 1. It implies that AN B # ()
(as otherwise |[AU B| > n/2+n/2 =n).



Suppose z; € AN B for some t. Then consider the following cycle C'
L1 — Tt — T4l — T2 — 70— Lp—1 — Lp — Lp—1 — Lg—2 — *** — L2 — L1.

A picture can be found in Figure 1. Clearly, C' has length /.

Figure 1: The path P and cycle C

If £ = n, then C' is a Hamiltonian cycle. Contradiction.

If ¢ < n, we then construct a simple path P’ of length > ¢+ 1. As ¢ < n, there exists
at least one vertex v € C. However, GG is connected. Hence there exists a simple path from
v to some vertex x, in C'. Construct the path P’ as follows: start from v, to z,, and then
traverse C' to z,_1. The length of P’ is at least ¢ + 1. It contradicts to the maximality of
P. m

1.1 Forbidding a path of length &

The way we prove Dirac’s theorem is useful to answer the following question.

Question: What is the maximal number of edges in a graph of order n without a simple
path of length k?

Let try to guess the answer first. An easy way to avoid paths of length k is when
every component has size at most k. Then to maximize the number of edges, we put all
possible edges in each component. Thus our construction G is n/k many copies of cliques
K}, (assuming k | n). In this case,

n(k n k(k—1) (k—1)n
6<G):E<2):E' 2~ 2

We will show that this is indeed the best possible.

Theorem 3. Let G be a graph of order n and there is no path of length k in n. Then

(k—1)n

e(G) < 5

The proof of Theorem 3 relies on the following lemma, which is a similar result to Dirac’s
theorem.



Lemma 4. Let G be a connected graph of order n and §(G) > k/2 for some integer k < n.
Then G contains a simple path of length k.

Proof. Suppose that G contains no path of length k. Let P = {xg, 1, ,x,} be a path of
maximum length ¢ < k.
Since P is a maximal path, the neighbours of g and x, must be all inside P. Let

A=T(xy), B={zjy1:x; € T(zp)}

Since §(G) > k/2, |A|,|B| > k/2. On the other hand, it is easy to see that o ¢ A and
xo € B. Hence AUB C {xy, - ,x,}. Thus |AU B| < /¢ < k. It implies that |A| N |B| # 0
(as otherwise |[AUB| > k/2 + k/2 = k).

Suppose z; € AN B for some t. Then consider the following cycle C'

L1 — Tt — T4l — T2 — 70— Lp—1 — Lp — Tp—1 — Lg—2 — *** — L2 — L1

(Recall Figure 1.) Clearly, C' has length /.

Since ¢ < k < n, we then construct a simple path P’ of length > ¢+ 1. As ¢ < n, there
exists at least one vertex v € C. However, GG is connected. Hence there exists a simple path
from v to some vertex x, in C'. Construct the path P as follows: start from v, to z,, and
then traverse C to x,_1. The length of P’ is at least £+ 1. It contradicts to the maximality
of P. O

With Lemma 4 in hand, we are now ready to prove Theorem 2.

Proof of Theorem 2. 1f k = 1, then there is no possible edge in G and ¢(G) = 0.
Otherwise k& > 2, we do an induction on n (for each fixed integer £ > 2). The base case
is when n < k and is trivial. This is because

(@) < (n) _(n—=1)n < (k—Dn
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For the induction step, we want to show the theorem for a graph G of order n > k
assuming it holds for any graph of order < n. If G is disconnected, then let Gy be a
component of order ny > 0 and G be the rest of the graph. Clearly

e(G) < e(Go) + e(Gh).

Moreover, Gy is of order ng < n and G; has n — ny < n many vertices. By induction
hypothesis,

k—1

€(G0> S



Combine all of the above:

e(G) < h 5 (no+n—mng) = k2 !
Otherwise, G is connected. If §(G) > k/2, then by Lemma 4 there exists a path of length
k. Contradiction
Therefore §(G) < k/2. It implies that there exists a vertex v € V(G) such that

d(v) < Th/2] —1 < %

n.

Now consider the graph G’ = G\v. G’ has n — 1 many vertices and hence we can apply the
induction hypothesis:

e(G) < h ; 1(n —1).
Thus,
e(G):e(G’)er(v)gk_l(n—l)—l—k;l:k;ln. 0
We note that the edge density of graphs without a path of length k is at most
e

2 — —0 asn— oo.
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2 Turan numbers and Turan densities

Let us fit the examples we have seen so far into a general theory.

Definition 4. Let F' be an unlabelled graph. We say that a graph G is F-free if G does not
contain any isomorphic copy of F as a subgraph.

Notice that here we do mean subgraph rather than induced subgraph. For example, K5
is not Cy-free because it contains a lot of cycles of length 4. However, the induced graph of
K5 on any 4 vertices is a Ky # Cy.

Definition 5. Let ' be an unlabelled graph, and let n > 2 be an integer. Define the Turan
number of F' to be
ex(n, F) := max{e(G) : G is an F-free graph of order n}.
Determining ez(n, F) is one of the basic problems of extremal graph theory. Mantel’s
theorem tells us that ex(n, K3) = {"—QJ, and Theorem 3 shows that ex(n, P) < @
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We also look at the “edge” density of F-free graphs. In particular, it is natural to consider

the following limit:
iy 20 0)
n—00 (2)

Let us first show that the limit above does exist for any graph F'.
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Lemma 5. Let F' be a graph. Then for any integer n > 3,
ex(n,F) _ex(n—1,F)
n S n—1
(3) (")
Proof. Let G be an F-free graph of order n such that e(G) = ex(n, F). Let vy € V(G) of
the minimum degree, i.e. d(vy) = 6(G). Thus by the handshaking lemma,

2¢(G) = d(v) > nd(v).

veV

Let G' = G —v. Thus G’ is an F-free graph of order n — 1. By Definition 5,

e(G) <ex(n—1,F).
On the other hand,
e(G) = e(G') + d(v).

Hence
e(G) <ex(n—1,F)+ 267(1G).
It implies that
ex(n, F) =¢e(G) < nﬁ ex(n—1,F).
Rearranging the terms yields
ex(n, F) cn (5)

ex(n—1,F) — n—2 (”_1)’
or equivalently,
ex(n, F) < ex(n—1,F)
= ()

Lemma 5 implies that the sequence

(ex(n, F)) -
() ).

is monotone non-increasing. It is also a sequence of positive real numbers. Hence its limit
exists. Define

. ex(n, F)
m(F) = lim ————=. 1



This limit 7(F) is also called the Turdn density of F.
As we have seen, Mantel’s theorem implies that 7(K3) = 7(Cs) = 3. Moreover, Theorem
3 implies that

ex(n, Py)
()
It implies that 0 < w(P;) < 0, and thus 7(P;) = 0. Later, we will see the Erdés-Stone

theorem, which gives us precise answer of 7(F) for any F. A consequence of the Erdds-
Stone theorem is that 7(F') = 0 if and only if F is bipartite.

(k—1n/2 k-1

m(F) < (n— D2 n—1

— 0 as n — oo.
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