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Lecture 3: Turán’s theorem
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1 Turán Graphs

Recall that Mantel’s theorem says that ex(n,K3) = ex(n,C3) = ⌊n2/4⌋. It is natural to
generalize it either to Kr or Cr for integers r ≥ 4. Turán gave a satisfactory answer in the
first direction. However, the second direction turns out to be a lot more complicated. We
will see later about ex(n,C4).

For ex(n,Kr+1), a natural guess is to take a complete r-partite graph. Clearly it is Kr+1-
free. This is because that in a clique of size r + 1, at least two vertices are from the same
class. However there can be no edges between them. Indeed, it also maximizes the number
of edges if the class-sizes are as close as possible.

Definition 1. Let r be a positive integer. A graph G is said to be r-partite if there is a
partition of V (G) into r “classes”

V (G) = V1 ∪ V2 ∪ · · · ∪ Vr,

and

Vi ∩ Vj = ∅,

for any i, j ≤ r, such that no edges of G has both its endpoints in the same class.

As usual, a complete r-partite graph is to add all possible edges. Namely, the edge set
contains all edges between Vi and Vj for any i ̸= j.

Suppose n1, n2, · · · , nr are the sizes of different partitions in a r-partite graph G, where∑d
i=1 ni = n. The number of edges is

e(G) =
∑
i̸=j

ninj.

Our goal is to maximize the number of edges. Note that if there exists i, j such that ni−nj >
1, then we can increase ni, nj by replacing ni by ni − 1 and nj by nj + 1. This is because

(ni − 1)(nj + 1)− ninj = ni − nj − 1 > 0.

On the other hand, edges between partition i, j and other classes are

ni

∑
k ̸=i,j

nk + nj

∑
k ̸=i,j

nk = (ni + nj)
∑
k ̸=i,j

nk.
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So it does not change since we did not change ni+nj. In summary, whenever ni−nj > 1, we
can do this operation and increase the number of edges. Thus in the graph with maximized
number of edges, there is no i, j such that ni − nj > 1. Graphs of this kind are called Turán
graphs, denoted by Tr(n). Let tr(n) = e(Tr(n)).

Definition 2. Let n, r be two integers such that n ≥ r ≥ 2. Let n = kr + s where k ≥ 1
and 0 ≤ s < r. Then the Turán graph Tr(n) is the complete r-partite graph where s many
classes have size k + 1 and r − s many classes have size k.

Theorem 1 (Turán 1941). Let n, r be two integers such that n ≥ r ≥ 2. If G is Kr+1-free
of order n, then e(G) ≤ tr(n). In other words, ex(n,Kr+1) ≤ tr(n).

Before proving Theorem 1, let us calculate π(Kr+1) using it. First,

tr(n) ≥
(
r

2

)
⌊n/r⌋2 ≥

(
r

2

)
(n/r − 1)2,

and

lim
n→n

(
r
2

)
(n/r − 1)2(

n
2

) = lim
n→n

(n− r)2

n(n− 1)
· r − 1

r
= 1− 1

r
.

Thus, π(Kr+1) ≥ 1− 1
r
. Similarly,

tr(n) ≤
(
r

2

)
⌈n/r⌉2 ≤

(
r

2

)
(n/r + 1)2,

and

lim
n→n

(
r
2

)
(n/r + 1)2(

n
2

) = lim
n→n

(n+ r)2

n(n− 1)
· r − 1

r
= 1− 1

r
.

Hence 1− 1
r
≤ π(Kr+1) ≤ 1− 1

r
. That is, π(Kr+1) = 1− 1

r
.

Turán’s Theorem is a classical result and there have been many beautiful proofs for it.
The nice structure is ideal for all kinds of induction proofs. We will give several different
ones, each of which entertains a different trick. First let us show it in Turán’s original way.

1st proof of Theorem 1. We do an induction on n. The base case is when n = r. In this case
any graph G of order n cannot have subgraph Kr+1. So e(G) is maximized at Kn = Kr,
which is the same as Tr(r).

For the induction step, let G be a Kr+1-free graph of order n and G maximizes the
number of edges. First we argue that G has a Kr. For each non-edge (v0, v1) ̸∈ E, there
must exist r + 1 many vertices S = {v0, v1, · · · , vr} such that the induced subgraph by S
is Kr+1 minus the edge (v0, v1), since otherwise we can add this edge to G and contradict
the maximality. Then take one vertex of this non-edge, say v1, together with all of the rest
v2, · · · , vr. This set v1, · · · , vr is a r-clique. Call this r-clique A.
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Let B = G\A. Then B is Kr+1-free and of order n− r. Apply the induction hypothesis,

e(B) ≤ tr(n− r).

We also know that e(A) =
(
r
2

)
. Thus the only piece missing is a good bound on e(A,B). As

usual, let us consider how many neighbours in A can a vertex v in B have. This number
cannot be r, since if so then A and v together form a Kr+1. Hence it is at most r − 1. It
implies that

e(A,B) ≤ (r − 1) |B| = (r − 1)(n− r).

Put everything together,

e(G) = e(A) + e(B) + e(A,B)

≤
(
r

2

)
+ tr(n− r) + (r − 1)(n− r)

= tr(n).

The last line is because

tr(n)− tr(n− r) =

(
r

2

)
+ (r − 1)(n− r).

(Imagine Tr(n) then remove one vertex from each class.)

Next we present a proof by Erdős. It does not only prove the theorem but also pins down
the extremal graphs.

Theorem 2 (Erdős 1970). Let G be a graph of order n and Kr+1-free. Then there is a
r-partite graph H on the same vertex set such that

dG(v) ≤ dH(v)

for every v ∈ V .

Note that G is not necessarily r-partite even if G is Kr+1-free. Theorem 1 follows from
Theorem 2 because Tr(n) maximizes the number of edges among all r-partite graphs.

Proof of Theorem 2. We do an induction on r. The base case of r = 1 is trivial: K2-free
means the graph is empty.

For the induction step, let r ≥ 2 and assume that the theorem holds for any integer < r.
Let v be the vertex of maximum degree ∆(G). Consider the induced subgraph of Γ(v), the
neighbourhood of v. Call it G1; that is, G1 = G[Γ(v)]. Then G1 is Kr-free, as otherwise
Γ(v) ∪ v is a Kr+1. By the induction hypothesis on G1, there exists a (r − 1)-partite graph
H1 such that V (G1) = V (H1), and dG1(v) ≤ dH1(v) for every v ∈ V (G1).
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Then we construct the graph H as follows. Take H1 and the rest of vertices as the vertex
set. That is, V (H) = V (H1) ∪ (V (G)\V (H1)) = V (G). Keep all edges in H1. Moreover, for
every u ∈ V (G)\V (H1), add all edges between u and every vertex in V (H1). Thus we have
that dH(u) = |V (H1)| = |V (G1)| for every u ∈ V (G)\V (H1).

On the other hand, we know that |V (G1)| = dG(v) = ∆(G) ≥ dG(u) for any u ∈ V (G).
Hence dH(u) = ∆(G) ≥ dG(u). This holds for all u ∈ V (G)\V (H1).

For any u ∈ V (H1), due to the construction of H,

dH(u) = dH1(u) + |V (G)\V (H1)|
≥ dG1(u) + |V (G)\V (G1)|
≥ dG(u).

The last step holds because in the original graph G, u has dG1(u) many neighbours in V (G1),
and at most |V (G)\V (G1)| many neighbours outside of V (G1).

We still have to verify that H is r-partite. It is because H1 is (r− 1)-partite. Keep these
r − 1 classes of H1, and define a new class comprising of V (G)\V (H1). By construction,
there is no edge between any two vertices of V (G)\V (H1).

The next proof has a similar flavor as Erdős’s proof, but it uses an interesting trick of
“vertex duplication”.

3rd proof of Theorem 1. Let G be a Kr+1-free graph with maximum number of edges. We
prove the following claim, which implies the theorem.

Claim 3. If uv ∈ E, then for any vertex w, either uw ∈ E or vw ∈ E.

Proof of Claim 3. Suppose the contrary; that is uw ̸∈ E and vw ̸∈ E. There are two cases.

1. d(w) < d(u) or d(w) < d(v). Without loss of generality, assume that d(w) < d(u).
Duplicate u to create a new vertex u′ such that Γ(u′) = Γ(u). If there is Kr+1 in the
new graph, then it must contain u′. Thus it is still an clique if we replace u′ by u. This
contradicts to G being Kr+1-free. Hence the new graph is still Kr+1-free.

Then we remove w. Call this graph G′. Clearly G′ is Kr+1-free. However, the number
of edges is

e(G′) = e(G) + d(u′)− d(w)

= e(G) + d(u)− d(w) > e(G).

This contradicts to G having maximum number of edges.

2. d(w) ≥ d(u) and d(w) ≥ d(v). Duplicate w twice and remove u and v. By exactly the
same reasoning as above, the new graph is Kr+1-free, while the number of edges is

e(G) + d(w) + d(w)− (d(u) + d(v)− 1) > e(G).

Again it contradicts to G having maximum number of edges.
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Due to Claim 3, we know that if uw ̸∈ E, vw ̸∈ E, then uv ̸∈ E. For an arbitrary vertex
v ∈ V , there is no edge between vertices in Γ+(v) := {v}∪Γ(v). Moreover, any other vertex
u ̸∈ Γ+(v) is adjacent to every vertex in Γ+(v). Thus, G has to be a complete k-partite
graph with k ≤ r. If k < r, then we can view it as a complete r-partite graph with the
last r − k many classes empty. As we have discussed prior to the first proof, Turán’s graph
Tr(n) maximizes the number of edges among all complete r-partite graphs. Thus G has to
be Tr(n).
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