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1 Turán theorem - 4th proof

Theorem 1 (Turán 1941). Let n, r be two integers such that n ≥ r ≥ 2. If G is Kr+1-free
of order n, then e(G) ≤ tr(n). In other words, ex(n,Kr+1) ≤ tr(n).

In this lecture, we present an “analytic” proof of a slightly weaker version of Theorem 1.
It is due to Motzkin and Straus 1965.

We will prove the following theorem, which is slightly weaker than Theorem 1.

Theorem 2. For any n ≥ r ≥ 2,

ex(n,Kr+1) ≤
(
1− 1

r

)
n2

2
.

Theorem 2 is indeed weaker than Theorem 1, because it is not hard to verify that

tr(n) ≤
(
1− 1

r

)
n2

2
.

On the other hand, Theorem 2 is strong enough to determine π(Kr+1). The upper bound
follows because

π(Kr+1) = lim
n→∞

ex(n,Kr+1)(
n
2

)
≤ lim

n→∞

(
1− 1

r

)
n2

2(
n
2

)
= lim

n→∞

(
1− 1

r

)
n

n− 1

= 1− 1

r
.

The lower bound is the same as before, due to the fact that Tr(n) is Kr+1-free.
Define the adjacency matrix A = A(G) = (aij) for a graph G of order n. Let V =

{v1, · · · , vn}. Then A is a n-by-n 0 − 1 matrix such that aij = 1 if and only if vivj ∈ E.
Thus A is symmetric. We will be interested in a quadratic form ⟨Ax,x⟩ where x denotes a
vector of length n. This is often called the Lagrangian of G. Define

fG(x) := ⟨Ax,x⟩ =
n∑

i=1

n∑
j=1

aijxixj =
∑
vi∼vj

xixj.
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Note that every edge vivj ∈ E, it contributes 2xixj to fG(x).
Now consider the set

S = {x | x ∈ Rn,
n∑

i=1

xi = 1, and ∀i, xi ≥ 0}.

S is often called the standard simplex of Rn. One way to think about it is to give each vertex
a weight xi and the total weight is 1. Also give a edge vivj the weight xixj. Then fG(x) is
the total weight of all edges (times 2).

Since S is a closed and bounded set, and fG(·) is continuous, fG(·) restricted to S is
bounded and its maximum is achieved for some x ∈ S. Define

f(G) := max
x∈S

fG(x).

Motzkin and Straus revealed an intimate relationship between f(G) and the maximum
cliques of G. Let us first calculate f(Kn).

f(Kn) = max
x∈S

fKn(x)

= max
x∈S

n∑
i=1

n∑
j=1,j ̸=i

xixj

= max
x∈S

n∑
i=1

xi(1− xi)

= max
x∈S

(
n∑

i=1

xi −
n∑

i=1

x2
i

)

= 1−min
x∈S

n∑
i=1

x2
i

= 1− 1/n,

where we used Cauchy-Schwarz inequality (n
∑n

i=1 x
2
i ≥ (

∑n
i=1 xi)

2 = 1) in the last line.

Theorem 3 (Motzkin and Straus 1965). Let G be a graph of order n. Let k be the maximum
size of cliques in G. Then f(G) = 1− 1

k
.

Proof. Let y ∈ S be the point that achieves the maximum of fG(·), and its support supp(y) :=
{vi | yi > 0} is as small as possible. Let K = supp(y). We claim that the induced subgraph
G[K] is a k-clique.

Suppose otherwise. Then there exists y1, y2 > 0 such that v1 ̸∼ v2. Assume without loss
of generality that

∑
vi∈Γ(v1) yi ≥

∑
vi∈Γ(v2) yi. Then define a new vector y′ ∈ S as

(y1 + y2, 0, y3, y4, · · · , yn).
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Now we have that

fG(y
′)− fG(y) =

∑
vi∼vj

y′iy
′
j −

∑
vi∼vj

yiyj

= 2(y1 + y2)
∑

vi∈Γ(v1)

yi − 2y1
∑

vi∈Γ(v1)

yi − 2y2
∑

vi∈Γ(v2)

yi

= 2y2

 ∑
vi∈Γ(v1)

yi −
∑

vi∈Γ(v2)

yi


≥ 0.

Intuitively, we can always move the weight of v2 to v1 without decreasing fG(·), as long as
v1v2 is not an edge and

∑
vi∈Γ(v1) yi ≥

∑
vi∈Γ(v2) yi.

On the other hand, y achieves the maximum of fG(·). Thus y′ is also the maximum.
However supp(y′) is one element smaller than K = supp(y), contradicting the minimality of
K. Hence G[K] is a k-clique.

As we have calculated before the theorem, since G[K] is a k-clique,

f(G) = fG(y) = 1− 1

k
.

Why does Theorem 3 imply Theorem 2? This is because we can evaluate fG(·) at another
vector z = (1/n, 1/n, · · · , 1/n). Then

fG(z) = 2
∑
e∈E

(
1

n

)2

=
2e(G)

n2
.

Due to the definition of f(G),

f(G) ≥ fG(z).

Now if G is Kr+1-free, the maximum clique of G is at most of size r. A consequence is that
f(G) ≤ 1− 1/r. Thus

e(G) =
n2

2
· fG(z) ≤

n2

2
· f(G) ≤ n2

2
·
(
1− 1

r

)
.

This is Theorem 2.

2 The Erdős-Stone theorem

Now we give a general upper bound of ex(n,H) for an arbitrary H. It will depend on the
chromatic number of H.
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Definition 1. Let G be a graph. The chromatic number χ(G) is the minimum q ∈ N such
that G is q-partite.

The name “chromatic” is because of its relationship to proper colourings of graphs. A
colouring is proper if no two adjacent vertices have the same colour.

Definition 2. Let G be a graph. A q-colouring σ is a mapping from V to [q] such that if
uv ∈ E, then σ(u) ̸= σ(v). If a q-colouring exists, then G is said to be q-colourable.

Another way of defining chromatic number is that χ(G) is the minimum q ∈ N such that
G is q-colourable.

Clearly if H is a subgraph of G, then χ(G) ≥ χ(H). Note that Turán’s graph Tr(n) is
r-colourable but not r − 1-colourable. Thus χ(Tr(n)) = r. Indeed, if χ(H) = r + 1, then H
cannot be a subgraph of Tr(n). Hence, ex(n,H) ≥ tr(n) ≥

(
1− 1

r

) (
n
2

)
.

The Erdős-Stone theorem says that a similar upper bound holds as well! It is also called
the “fundamental theorem of extremal graph theory”.

Theorem 4. Let r ∈ N and ε > 0. Then there exists n1 ∈ N such that the following holds.
For any graph H with χ(H) = r + 1 and n ≥ n1, we have that

ex(n,H) ≤
(
1− 1

r
+ ε

)(
n

2

)
.

An immediate consequence is that we can calculate the Turán density of any graph.

Corollary 5. For any graph H with at least one edge,

π(H) = 1− 1

χ(H)− 1
.

Proof of Corollary 5. Since H has at least one edge, r = χ(H) − 1 ≥ 1. For any ε > 0, by
Theorem 4,

π(H) = lim
n→∞

ex(n,H)(
n
2

) ≤ 1− 1

r
+ ε.

Since this holds for all ε > 0, we must have that π(H) ≤ 1− 1/r.
On the other hand, as we discussed earlier, ex(n,H) ≥ tr(n) for any n ≥ 2. Hence,

π(H) ≥ lim
n→∞

tr(n)(
n
2

) = 1− 1

r
.

Therefore π(H) = 1− 1/r as required.

Note that χ(Kr+1) = r + 1 and by Theorem 1, π(Kr+1) = 1 − 1/r. Hence Corollary 5
says that any graph H with χ(H) = r + 1 has the same Turán density as Kr+1.

Let’s turn to the proof of Theorem 4.
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2.1 Proof of the Erdős-Stone theorem

Let Kp
r be the complete r-partite graph with p vertices in each class. In other words,

Kp
r = Tr(pr), the Turán graph with pr many vertices. It is easy to see that χ(Kp

r ) = r.
For a graph H with χ(H) = r + 1. Let p = |V (H)|. Then H is a subgraph of Kp

r+1.
Hence we only need to prove Theorem 4 for Kp

r+1. (Note that the claim of Theorem 4 does
not depend on the number of vertices in H.)

The key observation will be the following lemma, which roughly states that if G is Kp
r+1-

free, then we can find a vertex of small enough degree.

Lemma 6. Let r, p ∈ N and ε > 0. There exists n0 ∈ N such that if n ≥ n0 and G is a
graph of order n such that

δ(G) ≥
(
1− 1

r
+ ε

)
n,

then G contains a copy of Kp
r+1 as a subgraph.

We will prove Lemma 6 in the next section.
The next lemma enables us to find a subgraph of high minimum degree in any graph

with suitably many edges.

Lemma 7. For all c, η > 0, n > 8/η, if G is a graph on n vertices with e(G) ≥ (c + η)
(
n
2

)
,

then G has a subgraph G′ with n′ ≥ 1
2

√
ηn vertices such that δ(G′) ≥ cn′.

Proof. Suppose otherwise for the sake of a contradiction. Then we can construct a sequence
of graphs

G = Gn, Gn−1, Gn−2, · · · , Gt

with t =
⌈
1
2

√
ηn
⌉
, such that Gi is a graph with i vertices and Gi−1 is obtained from Gi by

removing a vertex of degree less than ci.
Then we have that

e(Gt) > e(G)−
n∑

i=t+1

ci

≥ (c+ η)

(
n

2

)
− c

((
n+ 1

2

)
−
(
t+ 1

2

))
= η

(
n

2

)
− c

((
n+ 1

2

)
−
(
n

2

))
+ c

(⌈
1
2

√
ηn
⌉
+ 1

2

)
As t =

⌈
1

2

√
ηn

⌉
≥ η

(
n

2

)
− cn+ c

ηn2

8

≥ η

(
n

2

)
As n > 8/η

≥
√
η · √η(n− 1)

2
≥
(
t

2

)
.

But this is impossible, since Gt has t vertices, and the maximum number of edges is
(
t
2

)
.
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Theorem 4 follows from Lemma 6 and Lemma 7.

Proof of Theorem 4. Let H be a graph with χ(H) = r + 1 and p = |V (H)|. Then H is a
subgraph of Kp

r+1.
Suppose G is a graph with n ≥ n1 vertices (we will choose n1 later) and e(G) ≥(

1− 1
r
+ ε
) (

n
2

)
. By Lemma 7 with c = 1 − 1

r
+ ε

2
and η = ε

2
, we can find a subgraph

G′ of G with n′ ≥ 1
2
√
2

√
εn vertices such that δ(G′) ≥

(
1− 1

r
+ ε

2

)
n′.

Now we can apply Lemma 6 to G′ by choosing 1
2
√
2

√
εn1 ≥ n0. Therefore G′ contains

Kp
r+1 as a subgraph and so does G.

2.2 Proof of Lemma 6

Finally we prove Lemma 6 to complete the proof. The overall proof strategy is the following:
We do an induction on r. The induction hypothesis allows us to find a copy of Kq

t , where
q is a suitably chosen integer. (q will be much larger than p, and doing this only bumps n0.)
Suppose for contradiction that G does not contain a Kp

r+1. Then we can use the minimum
degree condition to give a lower bound on the number of edges from U to U := V (G)\U ,
where U is the vertex set of Kq

t we found. On the other hand, the fact that G is Kp
r+1-free

bounds from above the total number of such edges. Conflicting lower and upper bounds will
yield the contradiction.

Proof of Lemma 6. We do an induction on r. The base case is r = 1. Then we have
δ(G) ≥ εn and want to show that G contains a copy of Kp

2 , or equivalently a bipartite
complete graph Kp,p.

Assume for contradiction that G contains no Kp,p. Let U ⊆ V (G) be a subset of vertices
such that |U | = q where we will choose q > p later. The lower bound on e(U,U) is easy.
Since δ(G) ≥ εn, we have that

e(U,U) =
∑
v∈U

∣∣Γ(v) ∩ U
∣∣

≥
∑
v∈U

(d(v)− |U |)

≥ (εn− |U |) |U |
= εnq − q2. (1)

For the upper bound, for each v ∈ U , let dU(v) = |Γ(v) ∩ U |, the number of neighbours
of v in U . Our goal is to show that not too many vertices v ∈ U have very large dU(v).

Let S be a subset of U such that |S| = p. Given S, say a vertex v ∈ U is completely
joined to S if every vertex in S is adjacent to v. Note that for any S, there can be at most
p − 1 many vertices that are completely joined to S. (Otherwise they form a Kp,p.) There
are

(
q
p

)
many such sets S. Each vertex v ∈ U with dU(v) ≥ p is completely joined to at least

one such S.
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Let

N :=
∣∣{(v, S) | v ∈ U, S ⊂ U and |S| = p, v is completely joined to S}

∣∣ .
Then we have that

N ≥
∣∣{v ∈ U | dU(v) ≥ p}

∣∣ .
On the other hand, we have that

N ≤
(
q

p

)
(p− 1).

Hence,

∣∣{x ∈ U | dU(v) ≥ p}
∣∣ ≤ (q

p

)
(p− 1).

This gives us the upper bound on e(U,U):

e(U,U) =
∑
v∈U

|Γ(v) ∩ U | =
∑
v∈U

dU(v)

≤
(
q

p

)
(p− 1) |U |+

(∣∣U ∣∣− (q
p

)
(p− 1)

)
p

≤
(
q

p

)
(p− 1)q +

(
n−

(
q

p

)
(p− 1)

)
p

= pn+

(
q

p

)
(p− 1)(q − p). (2)

Combining (1) and (2) gives:

pn+

(
q

p

)
(p− 1)(q − p) ≥ εnq − q2.

However, this cannot hold if we pick εq > p and n sufficiently large. Contradiction. This
finishes the base case.

For the induction step, the overall strategy is exactly the same as the base case, except
that we need tweak a few details. Let r ≥ 2 and the lemma holds with r − 1. Since r ≥ 2,(

1− 1

r
+ ε

)
n >

(
1− 1

r − 1
+ ε

)
n.

Thus by the induction hypothesis, if n is large enough, then G contains a copy of Kq
r where

we set q so that q > p and εrq > p. Let U be the vertex set of this copy of Kq
r . Then

|U | = qr.
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For the lower bound,

e(U,U) =
∑
v∈U

∣∣Γ(v) ∩ U
∣∣

≥
∑
v∈U

(d(v)− |U |)

≥
((

1− 1

r
+ ε

)
n− |U |

)
|U |

= (r − 1 + εr) qn− r2q2. (3)

For the upper bound, we cannot simply choose S with |S| = q. Instead, call a subset S
special if S contains exactly p vertices from each of the r classes of U . Again, call v ∈ U
completely joined to S if every vertex of S is adjacent to v. Let

N :=
∣∣{(v, S) | v ∈ U, S is special, v is completely joined to S}

∣∣ .
Then we have that

N ≥
∣∣{v ∈ U | dU(v) ≥ (r − 1)q + p}

∣∣ .
This is counting from the vertex side: if dU(v) ≥ (r − 1)q + p, then v is adjacent to at least
one special S. On the other hand, we have that

N ≤
(
q

p

)r

(p− 1).

This is counting from the special sets side. There are exactly
(
q
p

)r
many special sets, and

each special set is completely joined by at most (p− 1) many vertices as otherwise G is not
Kp

r+1-free. Hence, ∣∣{v ∈ U | dU(v) ≥ (r − 1)q + p}
∣∣ ≤ (q

p

)r

(p− 1).

Thus we have our upper bound:

e(U,U) =
∑
v∈U

|Γ(v) ∩ U | =
∑
v∈U

dU(v)

≤
(
q

p

)r

(p− 1) |U |+
(∣∣U ∣∣− (q

p

)r

(p− 1)

)
((r − 1)q + p)

≤
(
q

p

)r

(p− 1)qr +

(
n−

(
q

p

)r

(p− 1)

)
((r − 1)q + p)

= ((r − 1)q + p)n+

(
q

p

)r

(p− 1)(q − p). (4)
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Combining (3) and (4) gives:

((r − 1)q + p)n+ c1 ≥ ((r − 1)q + εrq)nq − c2,

where c1 =
(
q
p

)r
(p− 1)(q − p) and c2 = r2q2. In other words,

(εrq − p)n ≤ c1 + c2. (5)

Note that c1 and c2 are independent of n. Moreover, we have chosen q so that εrq > p. Hence
if n sufficiently large, (5) cannot hold. This is a contradiction and finishes the proof.
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