
MTH742P: Advanced Combinatorics 24/10/2016

Lecture 5: Forbidding Cycles

Lecturer: Heng Guo

1 Finishing Erdős-Stone Theorem

The Erdős-Stone theorem states the following.

Theorem 1. Let r ∈ N and ε > 0. Then there exists n1 ∈ N such that the following holds.
For any graph H with χ(H) = r + 1 and n ≥ n1, we have that

ex(n,H) ≤
(
1− 1

r
+ ε

)(
n

2

)
.

The proof of Theorem 1 consists of the following two lemmas. Recall that Kp
r is the

complete r-partite graph with p vertices in each class. In other words, Kp
r = Tr(pr), the

Turán graph with pr many vertices. It is easy to see that χ(Kp
r ) = r.

Lemma 2. For all c, η > 0, n > 8/η, if G is a graph on n vertices with e(G) ≥ (c + η)
(
n
2

)
,

then G has a subgraph G′ with n′ ≥ 1
2

√
ηn vertices such that δ(G′) ≥ cn′.

Lemma 3. Let r, p ∈ N and ε > 0. There exists n0 ∈ N such that if n ≥ n0 and G is a
graph of order n such that

δ(G) ≥
(
1− 1

r
+ ε

)
n,

then G contains a copy of Kp
r+1 as a subgraph.

We have shown Lemma 2 in the last lecture and we will finish the proof of Lemma 3.
The overall proof strategy is the following:

We do an induction on r. The induction hypothesis allows us to find a copy of Kq
r , where

q is a suitably chosen integer. (q will be much larger than p, and doing this only bumps n0.)
Suppose for contradiction that G does not contain a Kp

r+1. Then we can use the minimum
degree condition to give a lower bound on the number of edges from U to U := V (G)\U ,
where U is the vertex set of Kq

r we found. On the other hand, the fact that G is Kp
r+1-free

bounds from above the total number of such edges. Conflicting lower and upper bounds will
yield the contradiction.

Proof of Lemma 3. We do an induction on r. The base case is r = 1. Then we have
δ(G) ≥ εn and want to show that G contains a copy of Kp

2 , or equivalently a bipartite
complete graph Kp,p.
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Assume for contradiction that G contains no Kp,p. Let U ⊆ V (G) be a subset of vertices
such that |U | = q where we will choose q > p later. The lower bound on e(U,U) is easy.
Since δ(G) ≥ εn, we have that

e(U,U) =
∑
v∈U

∣∣Γ(v) ∩ U
∣∣

≥
∑
v∈U

(d(v)− |U |)

≥ (εn− |U |) |U |
= εnq − q2. (1)

For the upper bound, for each v ∈ U , let dU(v) = |Γ(v) ∩ U |, the number of neighbours
of v in U . Our goal is to show that not too many vertices v ∈ U have very large dU(v).

Let S be a subset of U such that |S| = p. Given S, say a vertex v ∈ U is completely
joined to S if every vertex in S is adjacent to v. Note that for any S, there can be at most
p − 1 many vertices that are completely joined to S. (Otherwise they form a Kp,p.) There
are

(
q
p

)
many such sets S. Each vertex v ∈ U with dU(v) ≥ p is completely joined to at least

one such S.
Let

N :=
∣∣{(v, S) | v ∈ U, S ⊂ U and |S| = p, v is completely joined to S}

∣∣ .
Then we have that

N ≥
∣∣{v ∈ U | dU(v) ≥ p}

∣∣ .
On the other hand, we have that

N ≤
(
q

p

)
(p− 1).

Hence, ∣∣{x ∈ U | dU(v) ≥ p}
∣∣ ≤ (

q

p

)
(p− 1).

This gives us the upper bound on e(U,U):

e(U,U) =
∑
v∈U

|Γ(v) ∩ U | =
∑
v∈U

dU(v)

≤
(
q

p

)
(p− 1) |U |+

(∣∣U ∣∣− (
q

p

)
(p− 1)

)
p

≤
(
q

p

)
(p− 1)q +

(
n−

(
q

p

)
(p− 1)

)
p

= pn+

(
q

p

)
(p− 1)(q − p). (2)
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Combining (1) and (2) gives:

pn+

(
q

p

)
(p− 1)(q − p) ≥ εnq − q2.

However, this cannot hold if we pick εq > p and n sufficiently large. Contradiction. This
finishes the base case.

For the induction step, the overall strategy is exactly the same as the base case, except
that we need tweak a few details. Let r ≥ 2 and the lemma holds with r − 1. Since r ≥ 2,(

1− 1

r
+ ε

)
n >

(
1− 1

r − 1
+ ε

)
n.

Thus by the induction hypothesis, if n is large enough, then G contains a copy of Kq
r where

we set q so that q > p and εrq > p. Let U be the vertex set of this copy of Kq
r . Then

|U | = qr.
For the lower bound,

e(U,U) =
∑
v∈U

∣∣Γ(v) ∩ U
∣∣

≥
∑
v∈U

(d(v)− |U |)

≥
((

1− 1

r
+ ε

)
n− |U |

)
|U |

= (r − 1 + εr) qn− r2q2. (3)

For the upper bound, we cannot simply choose S with |S| = q. Instead, call a subset S
special if S contains exactly p vertices from each of the r classes of U . Again, call v ∈ U
completely joined to S if every vertex of S is adjacent to v. Let

N :=
∣∣{(v, S) | v ∈ U, S is special, v is completely joined to S}

∣∣ .
Then we have that

N ≥
∣∣{v ∈ U | dU(v) ≥ (r − 1)q + p}

∣∣ .
This is counting from the vertex side: if dU(v) ≥ (r − 1)q + p, then v is adjacent to at least
one special S. On the other hand, we have that

N ≤
(
q

p

)r

(p− 1).

This is counting from the special sets side. There are exactly
(
q
p

)r
many special sets, and

each special set is completely joined by at most (p− 1) many vertices as otherwise G is not
Kp

r+1-free. Hence, ∣∣{v ∈ U | dU(v) ≥ (r − 1)q + p}
∣∣ ≤ (

q

p

)r

(p− 1).
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Thus we have our upper bound:

e(U,U) =
∑
v∈U

|Γ(v) ∩ U | =
∑
v∈U

dU(v)

≤
(
q

p

)r

(p− 1) |U |+
(∣∣U ∣∣− (

q

p

)r

(p− 1)

)
((r − 1)q + p)

≤
(
q

p

)r

(p− 1)qr +

(
n−

(
q

p

)r

(p− 1)

)
((r − 1)q + p)

= ((r − 1)q + p)n+

(
q

p

)r

(p− 1)(q − p). (4)

Combining (3) and (4) gives:

((r − 1)q + p)n+ c1 ≥ ((r − 1)q + εrq)nq − c2,

where c1 =
(
q
p

)r
(p− 1)(q − p) and c2 = r2q2. In other words,

(εrq − p)n ≤ c1 + c2. (5)

Note that c1 and c2 are independent of n. Moreover, we have chosen q so that εrq > p. Hence
if n sufficiently large, (5) cannot hold. This is a contradiction and finishes the proof.

2 Asymptotics and the Big O notation

The Erdős-Stone theorem gives us an exact answer to π(H) for any graph H. Namely,

π(H) = 1− 1

χ(H)− 1
,

where χ(H) ≥ 2 is the chromatic number of H.
When χ(H) > 2, then we know that π(H) is strictly positive. Thus, from the fact that

lim
n→∞

ex(n,H)(
n
2

) = π(H),

we can deduce that

lim
n→∞

ex(n,H)

π(H)/2 · n2
= 1.

In this case, we say that π(H)/2 · n2 is asymptotic to ex(n,H).
When talking about these limiting behaviours, the Big O notations are usually useful.

For two non-negative functions f(n) and g(n),
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1. we write f = O(g) if there exists constants n0 and C such that f(n) ≤ Cg(n) for all
n > n0;

2. we write f = Ω(g) if there exists constants n0 and C such that f(n) ≥ Cg(n) for all
n > n0;

3. we write f = Θ(g) if there exists constants n0, C1, and C2, such that C1g(n) ≤ f(n) ≤
C2g(n) for all n > n0.

If f = Θ(g), we say f and g have the same order of magnitude. Moreover, say f = o(g) if
for any C > 0, there exists nC such that f(n) ≤ Cg(n) for all n > nC .

There are three kind of answers in extremal graph theory:

1. We can determine the exact answer to ex(n,H). For example, Mantel’s theorem states
that ex(n,K3) = ⌊n2/4⌋.

2. We can determine the asymptotic of ex(n,H). For example, Erdős-Stone theorem
states that if χ(H) ≥ 3, then π(H)/2 ·n2 is asymptotic to ex(n,H). Another example:
(k − 1)/2 · n is asymptotic to ex(n, Pk).

3. We can determine the order of magnitude of ex(n,H). For example, Erdős-Stone the-
orem states that if χ(H) ≥ 3, then ex(n,H) = Θ(n2). Another example: ex(n, Pk) =
Θ(n).

Thus, if χ(H) ≥ 3, then Erdős-Stone theorem can give satisfactory answers to the second
and the third questions. However, if χ(H) = 2, then all we know is that ex(n,H) = o(n2).
Next we will look at the simplest bipartite graph C4.

3 Forbidding a cycle of length 4

We will look at ex(n,C4) in this section. There is no obvious guess, and the trivial lower
bound is that ex(n,C4) ≥ n−1 as trees have n−1 edges. So we know that ex(n,C4) = Ω(n).
However, the correct order of magnitude is Θ(n3/2).

First let’s show an upper bound, due to Reiman 1958, answering a question raised by
Erdős in 1938.

Theorem 4 (Reiman 1958).

ex(n,C4) ≤
n

4

(√
4n− 3 + 1

)
.

Proof. Let G be a C4-free graph with n vertices and m edges. Let N be the number of paths
of length 2 in G.

On one hand, each vertex v is the middle vertex of
(
d(v)
2

)
paths of length 2, and so

N =
∑

v∈V (G)

(
d(v)

2

)
.
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On the other hand, each unordered pair of vertices are the endpoints of at most one path of
length 2. Indeed, for a pair (u, v) if there are two different paths u − x − v and u − y − v,
then we have a C4: u− x− v − y − u. Hence we see that

N ≤
(
n

2

)
.

Put these two facts together, we have that∑
v∈V (G)

(
d(v)

2

)
= N ≤

(
n

2

)
.

We can rewrite the left hand side as∑
v∈V (G)

(
d(v)

2

)
=

∑
v∈V (G)

d(v)(d(v)− 1)

2
=

1

2

∑
v∈V (G)

d(v)2 − 1

2

∑
v∈V (G)

d(v).

Similar to the proof of Mantel’s theorem, we have that∑
v∈V (G)

d(v) = 2m,

and

∑
v∈V (G)

d(v)2 ≥ 1

n

 ∑
v∈V (G)

d(v)

2

=
4m2

n
.

The second inequality is due to the Cauchy-Schwarz inequality. Putting everything together,
we get that

n(n− 1)

2
≥

∑
v∈V (G)

(
d(v)

2

)
≥ 2m2

n
−m,

or equivalently,

4m2 − 2nm− n2(n− 1) ≤ 0.

Solving this quadratic inequality, we get

m ≤ n

4

(√
4n− 3 + 1

)
.

Theorem 4 gives us the desired upper bound. However, the lower bound is not as easy.
We will construct a C4-free graph using projective planes later.

The situation is much less clear for general k. There are upper bounds of the form
ex(n,C2k) = O(n1+1/k), but the matching lower bound ex(n,C2k) = Ω(n1+1/k) is only known
for C6 and C10.
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4 Finite projective planes

Let d ∈ N. A finite projective plane of order d is a pair (P,L), where P and L are disjoint
finite sets together with a symmetric relation I (called ’incidence’) between elements of P
and elements of L, satisfying the following axioms.

1. For any element p ∈ P , there are exactly d+ 1 elements ℓ ∈ L such that p is incident
to ℓ;

2. For any element ℓ ∈ L, there are exactly d + 1 elements p ∈ P such that ℓ is incident
to p;

3. For any two elements p1, p2 ∈ P , there is a unique elements ℓ ∈ L such that ℓ is incident
to both p1 and p2;

4. For any two elements ℓ1, ℓ2 ∈ L, there is a unique elements p ∈ P such that p is incident
to both ℓ1 and ℓ2;

You should imagine P as points, and L as lines. Then incidence is that a point is on a
line.

If (P,L) is a finite projective plane of order d, then we can construct a bipartite graph G
from (P,L) as follows: Let P and L be two vertex classes of the bipartite graph. If p ∈ P is
incident to ℓ ∈ L, then draw the edge (p, ℓ). This is a C4-free graph due to the 3rd or the 4th
axiom. If there is a C4, then there are two points p1, p2 that have two common neighbours
ℓ1 and ℓ2, which violates the 3rd axiom.

What we are going to argue is that the graph G has many edges. Since the graph G is
(d+ 1)-regular, e(G) = (d+ 1) |P | = (d+ 1) |L|. Thus we just need to determine |P | = |L|.

First we make the following observation.

Lemma 5. Let (P,L) be a finite projective plane of order d. Then

|P | = |L| = d2 + d+ 1.

Proof. Let G be the bipartite graph obtained from (P,L). Let N be the number of paths
of length 2 in G with middle vertex in P . For each p ∈ P , there are exactly

(
d+1
2

)
paths of

length 2 in G with middle vertex p, so

N = |P |
(
d+ 1

2

)
.

On the other hand, for any (unordered) pair of distinct elements ℓ1, ℓ2 ∈ L, there is exactly
one path of length 2 in G whose middle vertex is in P and whose vertices are ℓ1 and ℓ2, so

N =

(
|L|
2

)
.
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Therefore we have that

|P |
(
d+ 1

2

)
= N =

(
|L|
2

)
.

But we know that |P | = |L|. It implies that

|P |
2

· d(d+ 1) =
|P |
2

(|P | − 1).

Cancelling |P |
2

yields

|P | − 1 = d2 + d.

This finishes the proof.

If d ∈ N and such a finite projective plane of order d exists, then we can construct such
a bipartite C4-free graph G with n = 2(d2 + d + 1) vertices and e(G) = (d2 + d + 1)(d + 1)
edges. Since

d2 + d+ 1− n/2 = 0,

we have that

d =
−1 +

√
2n− 3

2
.

Thus,

e(G) = n/2(d+ 1) =
n

4

(√
2n− 3 + 1

)
.

This is roughly 1/
√
2 of the upper bound we get in Theorem 4.

Of course, all of the above is assuming that such a finite projective plane does exist. The
next step is to construct these objects when d is a prime power.

8


	Finishing Erdős-Stone Theorem
	Asymptotics and the Big O notation
	Forbidding a cycle of length 4
	Finite projective planes

