
MTH742P: Advanced Combinatorics 31/10/2016

Lecture 6: Forbidden Bipartite Cycles and Cliques

Lecturer: Heng Guo

1 Constructing finite projective planes

In the last lecture we showed the following theorem.

Theorem 1 (Reiman 1958).

ex(n,C4) ≤
n

4

(√
4n− 3 + 1

)
.

To get a matching lower bound, we showed that as long as we can construct a finite
projective plane of order d, then we have a bipartite graph that is C4-free and has Θ(n3/2)
edges where the number of vertices n = d2 + d + 1. In this lecture we will construct such
objects when d is a prime power. This construction is also due to Reiman 1958.

Let q be a prime power, i.e. q = pa where p is a prime and a ∈ N. Then there exists a
finite field Fq with q elements. (If q is a prime, then we can simply take the set of integers
modulo q. Otherwise to construct Fq requires a little bit of algebra. We won’t do it here
but it can be found in almost any algebra textbooks.) In fact, for what we are going to do
below, it is enough to simply think q as a prime number.

We build a projective plane of order q as follows. Let V = F3
q, the vector space of size

q3 over the field Fq. So an element x ∈ V has the form of (a, b, c) where a, b, c ∈ Fq. Recall
that a linear subspace S is defined by the following three properties.

1. 0 ∈ S;

2. If x,y ∈ S, then x+ y ∈ S;

3. If x ∈ S, then c · x ∈ S for any c ∈ Fq.

Let P be the set of all 1-dimensional subspaces of V . That is, if p ∈ P , then p is of the
form

p = {c · x | c ∈ Fq},

where x is some fixed element in F3
q. Let L be the set of all 2-dimensional subspaces of V .

Any element ℓ ∈ L has the form

ℓ = {a · x1 + b · x2 | a, b ∈ Fq},
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where x1,x2 are two fixed element in F3
q that are not linearly dependent. For any p ∈ P and

ℓ ∈ L, p and ℓ are incident if the 1-dimensional space of p is contained in the 2-dimensional
space of ℓ. Then we claim that (P,L) is a finite projective plane of order q.

Let us first calculate |P | and |L|. Note that |V \{0}| = q3 − 1, and

{U\{0} | U is a 1-dimensional subspace of V }

is a partition of V \{0} into |P | sets, each of size q − 1. Hence,

|P | (q − 1) = |V \{0}| = q3 − 1,

so |P | = (q3 − 1)/(q − 1) = q2 + q + 1.
For |L|, let’s count the number N of ordered linearly independent vectors (x,y) in V .

There are q3 − 1 choices for x and fixing x, there are q3 − q many choices for y. Thus,
N = (q3 − 1)(q3 − q). Each such pair is a basis of exactly one element of L, and every
element of L has (q2 − 1)(q2 − q) ordered pairs of vectors that form a basis. Hence,

|L| (q2 − 1)(q2 − q) = N = (q3 − 1)(q3 − q).

It implies that

|L| = (q3 − 1)(q3 − q)

(q2 − 1)(q2 − q)
=

q(q3 − 1)(q2 − 1)

q(q2 − 1)(q − 1)
= q2 + q + 1.

Hence we see that |P | = |L|.
Then we verify the axioms. Let us repeat the axioms here.

1. For any p ∈ P , there are exactly q + 1 elements ℓ ∈ L such that p is incident to ℓ;

2. For any ℓ ∈ L, there are exactly q + 1 elements p ∈ P such that ℓ is incident to p;

3. For any p1, p2 ∈ P , there is a unique ℓ ∈ L such that ℓ is incident to both p1 and p2;

4. For any ℓ1, ℓ2 ∈ L, there is a unique p ∈ P such that p is incident to both ℓ1 and ℓ2;

We verify axiom 2 first. Thus we just need to count the number of 1-dimensional sub-
spaces of a fixed 2-dimensional subspace, say W , in V . There are q2 − 1 many elements in
W\{0}, but for each element, there are q− 1 many element (including itself) that spans the
same subspace. Hence there are (q2−1)/(q−1) = q+1 many such 1-dimensional subspaces.
This also implies that G is regular on L’s side with degree q + 1.

For axiom 1, we need to count the number of 2-dimensional subspaces that contain a fixed
1-dimensional subspace in V . Clearly this number is the same for every fixed 1-dimensional
subspace, say ∆. Hence the bipartite graph G is regular on P ’s side. However axiom 1
already tells us that G is regular on L’s side with degree q + 1. Thus,

e(G) = |L| (q + 1) = ∆ |P | .
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We have shown that |P | = |L|, implying that ∆ = q + 1 as well.
For axiom 3, we need to show that any two 1-dimensional subspaces of V spans a unique

2-dimensional subspace of V . This is straightforward.
For axiom 4, we need to show that the intersection of two 2-dimensional subspaces is a

1-dimensional subspace. It is not hard to verify that the intersection of linear subspaces is
still a linear subspace. To count the dimension, say the two subspaces are W1 and W2. Let
W1 +W2 be the span of W1 ∪W2. Since W1 and W2 are distinct, dim(W1 +W2) ≥ 3. On
the other hand, W1 +W2 is a subspace of V , and so dim(W1 +W2) ≤ dim(V ) ≤ 3, implying
dim(W1 +W2) = 3. Thus we see that

dim(W1 ∩W2) = dim(W1) + dim(W2)− dim(W1 +W2)

= 2 + 2− 3 = 1.

We conclude that (P,L) constructed above is indeed a finite projective plane of order q.
This is called the Desarguesian projective plane of order q. When q = 2, it is also called the
Fano plane, with |P | = |L| = 7.

Thus, we see that if n = 2(q2 + q + 1) for some prime power q, then ex(n,C4) ≥
n
4
(
√
2n− 3 + 1) = Ω(n3/2). The lower bound is about 1/

√
2 of the upper bound in The-

orem 1. We still need to deal with those n’s that do not have this form. In that case,
we will choose some n1 < n of the above form but close to n, and then use the fact that
ex(n,C4) ≥ ex(n1, C4) = Ω(n

3/2
1 ). If n1 = Θ(n), then although the constant will increase,

the order of magnitude will still be correct!
Let’s do this in detail. By Bertrand’s postulate, for any real number x > 2, there exists

a prime number p such that x < p < 2x. If n ∈ N with n ≥ 17, then choose a prime number
p such that

√
n/4 < p <

√
n/2 such that n1 = 2(p2 + p+ 1). Then,

n1 = 2(p2 + p+ 1) < 2(n/4 +
√
n/2 + 1) = n/2 +

√
n+ 2 < n,

and

n1 = 2(p2 + p+ 1) > 2n/16 = n/8.

Thus n1 = Θ(n).
In fact, we see that if n ≥ 17, then

ex(n,C4) ≥ ex(n1, C4) = (p2 + p+ 1)(p+ 1) > n3/2/64.

If 2 ≤ n ≤ 17, then ex(n,C4) ≥ n − 1 and one can verify that n3/2

64
≤ n − 1. Thus we can

conclude that for any n ≥ 2,

ex(n,C4) ≥
1

64
n3/2.

This demonstrates one of the advantage of the Big Oh notation — under the Big Oh notation,
we only need to consider large enough n’s.
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For example, assume we want to bound a function f(n), and we can show that f(n) ≤ n3/2

when n > n0 for some large enough n0. Then we immediately know that f(n) = O(n3/2).
Let

C := max
1≤n≤n0

f(n).

Then we see that for all n ≥ 1,

f(n) ≤ Cn3/2.

Thus in the Big Oh notation, there is no real difference between considering all integers n
and considering only large enough integers.

2 Forbidding even cycles

Another extreme bound along the same vein is forbidden even cycles. (Recall that forbidding
an odd cycle, the number of edges can still be as large as roughly n2/4.) The following result
is due to Bondy and Simonovits 1974.

Theorem 2. Let t ≥ 2. Then there exists a constant c > 0 such that

ex(n,C2t) ≤ cn1+1/t.

The proof is rather complicated. We will show a weaker result, for graphs that do not
contain any cycle of length at most 2t. Indeed, the length of shortest cycle is a graph G is
called its girth.

Theorem 3. Let t ≥ 2 and G be a graph of order n. If G has girth at least 2t+ 1, then

e(G) ≤ n
(
n1/t + 1

)
= n1+1/t + n.

Proof. Suppose, for contradiction, that e(G) > n
(
n1/t + 1

)
. The average degree of G is

D :=

∑
v∈V d(v)

n
=

2e(G)

n
> 2

(
n1/t + 1

)
.

The 4th question in Exercise 4 shows that there exists a subgraph G′ of G such that the
minimum degree of G′, δ(G′) ≥ D/2 > n1/t + 1.

On the other hand, the girth of G′ is also at least 2t+1. Pick an arbitrary vertex v in G′,
the neighbourhood of v of distance t must be a tree, as otherwise we have a cycle of length
at most 2t.

To be specific, let

Nℓ(v) := {u | u ∈ V, dist(u, v) = ℓ},
where dist(u, v) is the shortest length of path from u to v. Notice that if u ∈ Nℓ(v) for any
2 ≤ ℓ ≤ t, then u is not adjacent to any vertex in Nk(v) for any k ≤ ℓ − 2 (if so, then
the distance should be shorter). Moreover, u can be adjacent to only one of Nℓ−1(v), since
otherwise we create a cycle of length 2ℓ ≤ 2t.

Thus, we see that |Nℓ+1(v)| ≥ (δ(G′) − 1) |Nℓ(v)| > n1/t |Nℓ(v)|. This implies that
|Nt(v)| ≥ (n1/t)t = n, which contradicts to that G′ is a subgraph of G.
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3 Forbidding bicliques

Notice that C4 is also a K2,2. Thus we can also generalize Theorem 1 to forbidden bipartite
complete graphs. The argument originates from Kővári, Sós, and Turán 1954.

We need to first prove a few facts about convex functions for Jensen’s inequality. We will
need it in place of the Cauchy-Schwarz inequality.

Definition 1. A function f(x) is said to be convex if for any λ ∈ [0, 1] and any x, y, we
have that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Lemma 4 (Jensen’s inequality). If f(x) is convex, then for any λ1, · · · , λn ≥ 0 with∑n
i=1 λi = 1 and x1, · · · , xn ∈ R, we have

f

(
n∑

i=1

λixi

)
≤

n∑
i=1

λif(xi).

Proof. We prove it by induction on n. For n = 1 it is trivial. For n = 2 it is Definition 1.
For the induction step, if λn = 0, then it is the same as the case of n − 1. Otherwise

λn > 0 and we have that

f

(
n∑

i=1

λixi

)
= f

(
λnxn + (1− λn)

n−1∑
i=1

λi

1− λn

xi

)

≤ λnf (xn) + (1− λn)f

(
n−1∑
i=1

λi

1− λn

xi

)
(by Def 1)

≤ λnf (xn) + (1− λn)
n−1∑
i=1

λi

1− λn

f (xi) (by IH)

=
n∑

i=1

λif(xi).

In particular, Lemma 4 implies that if we fix
∑n

i=1 xi = S, then the sum 1
n

∑n
i=1 f(xi) is

minimized at xi =
S
n
where f(x) is convex (apply Lemma 4 with λi = 1/n).

To verify convexity, we need the following.

Lemma 5. If f(x) is twice differentiable with f ′′(x) ≥ 0, then f(x) is convex.

This can be easily proved using the Mean Value Theorem.
We extend the definition of

(
n
t

)
for a fixed integer t. If x ≥ t is not necessarily an integer,

let

ht(x) :=

{
x(x−1)(x−2)···(x−t+1)

t!
if x ≥ t− 1;

0 otherwise.

Note that if x is an integer then ht(x) coincides with the normal
(
n
t

)
. We can verify that

ht(x) is convex for all positive x using Lemma 5.
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Theorem 6. Let t ≥ 2. Then there exists a constant c > 0 such that

ex(n,Kt,t) ≤ cn2−1/t.

Proof. Let G be a graph without Kt,t of order n and m edges. The neighbourhood of vertex

v contains
(
d(v)
t

)
many t-tuples of vertices. Let’s count such t-tuples over the neighbourhoods

of all vertices. Note that any particular t-tuple can be counted at most t − 1 times in this
way, since the lack of Kt,t. It implies that,∑

v∈V

(
d(v)

t

)
≤ (t− 1)

(
n

t

)
.

The left hand side is a sum of functions
∑

v∈V ht(d(v)). Due to the convexity of ht(x) and
Lemma 4, the left-hand side is minimized if all degrees are equal, d(v) = 2m/n. Note that
2m/n is the average degree of G and it should be much larger than t, which is a constant.
Therefore, ∑

v∈V

(
d(v)

t

)
≥ nht(2m/n).

It is not hard to see that for any two x ≥ t ≥ 1,

ht(x) =
x(x− 1)(x− 2) · · · (x− t+ 1)

t!
≥ (x− t)t

t!
;

ht(x) =
x(x− 1)(x− 2) · · · (x− t+ 1)

t!
≤ xt

t!
.

Put these facts together,

n · (2m/n− t)t

t!
≤ nht(2m/n) ≤

∑
v∈V

(
d(v)

t

)
≤ (t− 1)

(
n

t

)
≤ (t− 1)

nt

t!
.

Simplifying the equation, we get,

2m/n− t ≤ (t− 1)1/tn1−1/t,

or equivalently,

m ≤ (t− 1)1/t

2
n2−1/t +

tn

2
.
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