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1 Linearity of expectation

Now let us see some extensions of the basic method.

Theorem 1 (Linearity of expectation). Let X1, · · · , Xn be random variables and X = c1X1+
· · ·+ cnXn, where ci’s are constants. Then

EX = c1 EX1 + · · ·+ cn EXn.

Proof. We prove it by induction. The base case of n = 1 is trivial.
For the inductive step, it is sufficient to show that E[X + Y ] = E[X] + E[Y ] for two

random variables X and Y . Indeed,

E[X + Y ] =
∑
x,y

Pr(X = x, Y = y)(x+ y)

=
∑
x,y

Pr(X = x, Y = y)x+
∑
x,y

Pr(X = x, Y = y)y

=
∑
x

x
∑
y

Pr(X = x, Y = y) +
∑
y

y
∑
x

Pr(X = x, Y = y)

=
∑
x

xPr(X = x) +
∑
y

y Pr(Y = y)

= EX + EY,

where the summation over x and y are over all possible values of them. To finish the proof,
let X ′ =

∑n−1
i=1 ciXi and Y ′ = cnXn and apply the equation above.

To apply the result, we often use the fact that there must exist a point in the probability
space such that X ≥ EX or X ≤ EX.

Theorem 1 is rather simple but it turns out to be surprisingly strong, mainly because
that we have no requirement on the dependence Xi.

Let us do a warm up. Let σ be a random permutation on {1, 2, · · · , n}, uniformly
chosen. Let X(σ) be the number of fixed points; that is i = σ(i). Define Xi to be the
indicator variable of the event i = σ(i). Then X(σ) =

∑n
i=1Xi. It is easy to see that

EXi = Pr(i = σ(i)) =
(n− 1)!

n!
=

1

n
.
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Thus by Theorem 1,

EX =
n∑

i=1

Xi = 1.

1.1 Hamiltonian paths in tournaments

The following result is often considered the first use of the probabilistic method. It is due
to Szele (1943).

Theorem 2. There is a tournament T with n players and at least 2n!
2n

Hamiltonian paths.

Proof of Theorem 2. We still randomize every edge uniformly to get a random tournament.
Let X be the number of Hamiltonian paths in such a tournament. For each permutation σ,
let Xσ be the indicator variable for the event that σ gives a Hamiltonian path. It is easy to
see that Xσ is 1 if and only if (σ(i), σ(i+ 1)) is oriented this way for every 1 ≤ i < n. Each
individual orientation happens with probability 1/2 and they are independent. As there are
n− 1 edges on a Hamiltonian path, we have that

EXσ = Pr(Xσ = 1) · 1 + Pr(Xσ = 0) · 0 = Pr(Xσ = 1) =
1

2n−1
.

In addition, there are n! permutations. Therefore by Theorem 1,

EX =
∑
σ

EXσ =
2n!

2n
.

It implies that there must exist one tournament with at least EX Hamiltonian paths.

Note that by Stirling’s approximation, n! =
√
2πn

(
n
e

)n
, implying that 2n!

2n
grows (super)

exponentially in n.
Szele also conjectured that the maximum possible number of Hamiltonian paths is at

most n!
(2−o(1))n

. This is proved by Alon in 1990.
As shown in the examples, the basic argument involving expectations goes as follows.

We want to construct an object that maximizes (or minimizes) a certain parameter X.

1. First define a random object.

2. Calculate the expectation of EX. To do so, we usually decompose X into atomic
indicator variables Xi such that X =

∑N
i=1 Xi and apply linearity of expectation.

3. We conclude that there must exist an object with X ≥ EX (or X ≤ EX).
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2 Splitting Graphs

Theorem 3. Let G = (V,E) be a graph with n vertices and m edges. Then G contains a
bipartite subgraph with at least m/2 edges.

Proof. For every v ∈ V , we choose it with probability 1/2 and independently. This yields
a random subset L ⊂ V and let R = V \ L. Let X denote the number of “crossing” edges
which are between L and R.

We shall decompose X =
∑

uv∈E Xuv , where Xuv is the indicator variable of the event
that the edge uv is a crossing edge. For any such edge uv, it is crossing in two cases: u ∈ L,
v ∈ R or u ∈ R, v ∈ L. Thus,

Pr(Xuv = 1) = Pr(u ∈ L, v ∈ R) + Pr(u ∈ R, v ∈ L)

= 1/4 + 1/4 = 1/2.

In other words,

EXuv = Pr(Xuv = 1) · 1 + Pr(Xuv = 0) · 0 = 1/2.

By Theorem 1,

EX =
∑
uv∈E

Xuv =
m

2
.

Hence, there must exist some L such that the number of crossing edges is at least m/2.

If G is a complete graph K2n, then the largest bipartite subgraph is to split V evenly. The
number of edges, in this case, is m′ = n2 whereas m = 2n(2n−1)

2
. Thus m′

m
= n

2n−1
> 1/2. We

can actually also achieve this slightly better bound by considering a more subtle probability
space.

Theorem 4. If G = (V,E) is a graph with 2n vertices and m edges, then G contains a
bipartite subgraph with at least n

2n−1
·m edges.

If G = (V,E) is a graph with 2n + 1 vertices and m edges, then G contains a bipartite
subgraph with at least n+1

2n+1
·m edges.

Proof. Suppose G has 2n vertices. Instead of choosing every vertex independently and
uniformly at random, we choose L from all subsets of size n uniformly at random. In other
words, we choose every possible L with probability 1

(2nn )
. Define X in the same way as in the

proof of Theorem 3. We do the same decomposition as well; that is X =
∑

uv∈E Xuv.
The difference is the calculation of Pr(Xuv = 1). In fact, the probability that u ∈ L for

any vertex u is still

Pr(u ∈ L) =

(
2n−1
n−1

)(
2n
n

) =
(2n− 1)!

(n− 1)!n!
· n!n!
2n!

=
n

2n
=

1

2
.
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However, the probability that u ∈ L and v ∈ R is changed. In fact,

Pr(u ∈ L, v ∈ R) =

(
2n−2
n−1

)(
2n
n

) =
(2n− 2)!

(n− 1)!(n− 1)!
· n!n!
2n!

=
n2

2n(2n− 1)
=

n

2(2n− 1)
.

Here the term
(
2n−2
n−1

)
is the number of subsets of vertices which contains u but not v. As

before, there are two possibilities for the edge uv to be crossing. Thus,

Pr(Xuv = 1) = Pr(u ∈ L, v ∈ R) + Pr(v ∈ R, u ∈ L)

=
n

2n− 1
.

Therefore, by Theorem 1, we have that

EX =
∑
uv∈E

EXuv =
n

2n− 1
·m.

Hence, there must exist some X that is larger than EX. This finishes the proof of the 2n
case.

For the case of 2n + 1, we still choose L as a random subset of size n. In this case,
R = V \ L has n + 1 many vertices. The only difference from the above is that for any
uv ∈ E,

Pr(u ∈ L, v ∈ R) =

(
2n−1
n−1

)(
2n+1
n

) =
(2n− 1)!

(n− 1)!n!
· n!(n+ 1)!

(2n+ 1)!
=

n(n+ 1)

2n(2n+ 1)
=

n+ 1

2(2n+ 1)
.

Hence,

Pr(Xuv = 1) = Pr(u ∈ L, v ∈ R) + Pr(v ∈ R, u ∈ L)

=
n+ 1

2n+ 1
.

The rest of the argument is exactly the same.

3 Unbalancing Lights

The next theorem has an amusing interpretation. Suppose we have an n× n array of lights,
either switched on or off. Suppose that we have a switch for each row (or each column) so that
it toggles all lights in this row (or column). The question is, given any initial configuration,
what is the maximum number of lights on by pulling these switches for rows and columns?

We will formalize this problem as follows. We associate each light at (i, j) with aij = ±1,
where, say, +1 means that the light is on. If we pull a switch of row i, then we set xi = −1
and otherwise let xi = +1. Similarly, if we pull a switch of column j, then we set yj = −1
and otherwise let xi = +1. The final state of a light is aijxiyj. The quantity

S :=
∑
i∈[n]

∑
j∈[n]

aijxiyj (1)
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is equal to the difference between lights on and off. Thus, to maximize the number of lights
on, it is equivalent to maximize S.

Theorem 5. Let aij = ±1 for 1 ≤ i, j ≤ n. There exists xi, yj = ±1, 1 ≤ i, j ≤ n such that

S ≥

(√
2

π
+ o(1)

)
n3/2,

where S is defined in (1).

It is easy to see that if we choose xi and yj uniformly at random, then ES = 0. Thus,
we need to be more clever when picking xi and yj.

Proof. We will choose y1, · · · , yn = ±1 independently and uniformly at random. Let

Ri :=
n∑

j=1

aijyj.

Notice that yj is uniformly at random. Regardless of aij being +1 or −1, aijyj is uniformly at
random. We still have ERi = 0. The reason for this is that Ri can be positive and negative
where these values cancel out. However, recall that we still have the freedom to choose xi so
that it has the same sign as Ri. Thus, we should calculate the expectation of |Ri|.

Let Xt be a uniform ±1 and X =
∑n

t=1Xt. Thus E |X| = E |Ri| for any i ∈ [n]. We
claim that

E |X| = n21−n

(
n− 1

⌊(n− 1)/2⌋

)
.

This is because, if the number of −1 is k < n/2 from all Xi, then X = n− k − k = n− 2k.
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If the number of +1 is k < n/2, we also have |X| = |k − (n− k)| = n− 2k. Thus,

E |X| = 2

2n

⌊(n−1)/2⌋∑
k=0

(
n

k

)
(n− 2k)

= 21−n

⌊(n−1)/2⌋∑
k=1

((
n

k

)
(n− k)−

(
n

k

)
k

)
+ 21−nn

= 21−n

⌊(n−1)/2⌋∑
k=1

(
n!

k!(n− k)!
· (n− k)− n!

k!(n− k)!
· k
)
+ 21−nn

= 21−n

⌊(n−1)/2⌋∑
k=1

(
n!

k!(n− k − 1)!
− n!

(k − 1)!(n− k)!

)
+ 21−nn

= 21−n

⌊(n−1)/2⌋∑
k=1

(
n

(
n− 1

k

)
− n

(
n− 1

k − 1

))
+ 21−nn

= n21−n

⌊(n−1)/2⌋∑
k=1

((
n− 1

k

)
−
(
n− 1

k − 1

))
+ 21−nn

= n21−n

((
n− 1

⌊(n− 1)/2⌋

)
− 1

)
+ 21−nn

= n21−n

(
n− 1

⌊(n− 1)/2⌋

)
.

The claim holds.
Using the claim and Stirling’s approximation (n! = (1 + o(1))

√
2πn

(
n
e

)n
), we have that

E |Ri| = E |X| = n21−n

(
n− 1

⌊(n− 1)/2⌋

)
=

2n

2n
· (n− 1)!

⌊(n− 1)/2⌋! ⌈(n− 1)/2⌉!

= (1 + o(1)) · 2n
2n

·
√
2πn

(
n−1
e

)n−1

πn
(
n−1
2e

)n−1

=

(√
2

π
+ o(1)

)
√
n.

Now let R =
∑n

i=1 |Ri|. We apply the linearity of expectation, Theorem 1,

ER =
n∑

i=1

ERi =

(√
2

π
+ o(1)

)
n3/2.
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Thus, there must exists y1, · · · , yn = ±1 such that R is at least this value. Finally, we pick
xi as the same sign as Ri. In this case,

S =
n∑

i=1

n∑
j=1

aijxiyj =
n∑

i=1

xi

n∑
j=1

aijyj

=
n∑

i=1

xiRi =
n∑

i=1

|Ri|

= R ≥

(√
2

π
+ o(1)

)
n3/2.

This finishes the proof.

In fact, the order of magnitude n3/2 cannot be improved in the bound above.

7


	Linearity of expectation
	Hamiltonian paths in tournaments

	Splitting Graphs
	Unbalancing Lights

