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1 Alteration

Sometimes merely randomization is not enough to show what we want. A common strategy
is then to alter the instance we construct via randomness. For example, if the expectation
of the parameter X of a random object is EX, then we have an instance with parameter
≤ EX. However, what we are after might be a “perfect” object with X = 0. Thus, what
we do is to “correct bad properties”. Once again, this is best shown by examples.

An independent set of a graph is the complement of a clique; that is, S is an independent
set, if there is no edge between vertices of S.

Theorem 1. Let G = (V,E) be a graph of n vertices and m ≥ n/2 edges. Then G contains
an independent set of size at least n2

4m
.

Proof. We choose vertices independently and with probability p to get a subset S ⊆ V . Let
X = |S|. Then EX = np by making an indicator variable for each vertex and using linearity
of expectation.

For each e ∈ E, let Ye be the indicator variable of the event that both endpoints of e is
occupied. Thus for e = (u, v),

EYe = Pr(u ∈ S, v ∈ S) = p2.

Let Y =
∑

e∈E Ye. Thus, an independent set is one with Y = 0. By linearity of expectation,
we have that

EY =
∑
e∈E

EYe = mp2.

Clearly a random subset will not give us an independent set. However, we can use the
alteration method. What we are going to do is to “fix” these occupied edges. A simple fix is
to just unselect a vertex of the occupied edge. Thus we need to remove at most one vertex
from each chosen edge, leaving an independent set of size at least X−Y . Again, by linearity
of expectation,

E(X − Y ) = np−mp2.

Thus, there exist an independent set I of size at least np −mp2. Maximizing this function
yield p = n

2m
(here we use m > n/2) and np−mp2 = n2

4m
.

Theorem 1 shows the basic idea of alteration. We want to construct a “perfect” object,
and a random choice usually leaves X many “faults”. Thus, we perform some deterministic
operations to fix these faults and find a (usually smaller) perfect object.
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2 Ramsey number revisited

Let us revisit the Ramsey numbers. Recall that R(k, ℓ) is the smallest size n such that any
2-colouring of Kn must contain a blue clique of size k or a red clique of size ℓ. Using the
basic method, we have shown that R(k, k) > 2⌊k/2⌋. In fact, if we do a more careful analysis,
the bound using the basic method is

R(k, k) >
1

e
√
2
(1 + o(1))k2k/2. (1)

We will show that using alteration, we can get a different bound, that leads to a slight
improvement of the one above.

Theorem 2. For any integer n, R(k, k) > n−
(
n
k

)
21−(

k
2).

Proof. As before, consider a uniformly random 2-colouring of Kn. Let X be the number
of monochromatic cliques of size k. Thus, X =

∑
S⊂[n], |S|=k XS, where XS is the indicator

variable that S is monochromatic for a subset S of vertices of size k. Then we have that

EXS =
2

2(
k
2)
,

as there are two such colourings among 2(
k
2) total possibilities. Due to linearity of expectation,

EX =
∑

S⊂[n], |S|=k

EXS =

(
n

k

)
21−(

k
2).

Here comes the idea of alteration. We know that there must exist a colouring such

that the number of monochromatic cliques is at most EX =
(
n
k

)
21−(

k
2). Thus, to fix these

“undesired” events, we can keep this colouring, but remove one vertex from each such clique
to ensure that the final graph does not have any monochromatic cliques. It is easy to see
that we need to remove at most one vertex for every clique, and thus the final graph has size

at least n−
(
n
k

)
21−(

k
2). This finishes the proof.

There is still some calculus to do to find the best n to optimize the bound in Theorem 2.

Since
(
n
k

)
≤

(
ne
k

)k
, Theorem 2 implies that

R(k, k) > n−
(ne
k

)k

21−(
k
2).

Taking the derivative of n on the right hand side yields

1− knk−1
( e
k

)k

21−(
k
2).
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It implies that n = k
e
·2k/2 · (2e)−1/k maximizes n−

(
ne
k

)k
21−(

k
2). Indeed, if we use the tighter

Stirling’s approximation, we will find out that n = (1−o(1))k
e
·2k/2 maximizes n−

(
n
k

)
21−(

k
2),

in which case

R(k, k) >
1

e
(1 + o(1))k2k/2.

This is a
√
2 improvement upon (1). Later we will see yet another

√
2 improvement using

the Lovász Local Lemma.
For off-diagonal Ramsey numbers, the alteration method is in fact stronger. Recall that

using the basic method, we can get a bound R(k, ℓ) > n if there exists p ∈ (0, 1) such that(
n

k

)
p(

k
2) +

(
n

ℓ

)
(1− p)(

ℓ
2) < 1.

Theorem 3. For any integer n and p ∈ (0, 1),

R(k, ℓ) > n−
(
n

k

)
p(

k
2) −

(
n

ℓ

)
(1− p)(

ℓ
2).

Proof. Consider a random colouring such that every edge is coloured blue with probability
p and red with probability 1− p independently. Let X be the number of blue cliques of size
k plus the number of red cliques of size ℓ (“bad” objects). Then by linearity of expectation
again,

EX =

(
n

k

)
p(

k
2) +

(
n

ℓ

)
(1− p)(

ℓ
2).

Thus there exists a colouring such that X is at most EX. Using the alteration idea, we
keep the colouring and remove at most one vertex from each such “bad” clique to obtain
a complete graph of size at least n − EX and there is no blue Kk nor red Kℓ under this
2-colouring.

Comparing Theorem 3 with the bound derived from the basic method can get quite
complicated. However, usually Theorem 3 is an improvement. For example, the basic method

yields R(4, k) ≥ Ω

((
k

log k

)3/2
)

whereas Theorem 3 yields R(4, k) ≥ Ω

((
k

log k

)2
)
.

3 Girth and the chromatic number

The next theorem shows the surprising power of the probabilistic method. We have con-
structed graphs of chromatic number k that are not isomorphic toKk. However, those graphs
have girth 3. One natural question is: does the chromatic number obey some upper bound
if the girth is large enough? Intuitively this is not at all obvious — high girth means locally
tree-like, and trees have chromatic number 2! Thus, for a graph of high girth to have high
chromatic number, we cannot hope it is because of some local properties.
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The answer to this question is no. For any two integers ℓ and k, there exists a graph
of girth > ℓ and chromatic number > k. The construction is via alteration after randomly
choosing edges.

Here we need to construct a random graph. We use the Erdő-Renyi random graph
G(n, p), which is constructed on n vertices by choosing every possible edge with probability
p independently. In other words, we start with Kn and then remove edges with probability
1− p independently.

In order to obtain high chromatic number, we will look at the maximum independent set
in the graph. Let α(G) be its size. Suppose that χ(G) = k and there is a proper k-colouring.
Vertices of a particular colour form an independent set. Let ni be the number of vertices
coloured i. Hence ni ≤ α(G), which implies that n =

∑k
i=1 ni ≤ kα(G). In other words,

χ(G) ≥ n

α(G)
. (2)

We will use this fact later.
Another ingredient we will need is the Markov inequality.

Theorem 4. Let X be a non-negative random variable. Then for any C > 0,

Pr(X ≥ C) ≤ EX

C
.

Proof. Let IX≥C be the indicator variable for the event X ≥ C. Since X is non-negative,

X ≥ CIX≥C .

Take the expectation,

EX ≥ C E IX≥C = C Pr(X ≥ C).

Rearranging finishes the proof.

Now we are ready to prove the main result.

Theorem 5 (Erdős 1959). For any two integers ℓ and k, there exists a graph G with
girth(G) > ℓ and χ(G) > k.

Proof. Consider a random graph G = (V,E) drawn from G(n, p) with p = nθ−1 where
θ < 1/ℓ. Thus np = nθ. The reason behind this choice will become clear soon. Let X be
the number of cycles of sizes at most ℓ. For an ordered set C = {v1, · · · , vt}, let XC be the
indicator variable of the event that C is a cycle; that is, vivi+1 ∈ E for all 1 ≤ i ≤ t where
vt+1 = v1 by convention. As edges a chosen independently, we have that

EXC = Pr(XC = 1) = pt.
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Each cycle of size t in G corresponds to 2t ordered set C (t choices for the start and 2 choices
for the direction). Hence,

EX =
∑

C, |C|≤ℓ

1

2 |C|
EXC .

The number of ordered set C of size t is n(n − 1)(n − 2) · · · (n − t + 1) ≤ nt (n choices for
the first, n− 1 for the second, and so on). Recall that θℓ < 1, implying

EX =
ℓ∑

t=1

n(n− 1)(n− 2) · · · (n− t+ 1) · p
t

2t

≤
ℓ∑

t=1

(np)t

2t
=

ℓ∑
t=1

nθt

2t
< ℓnθℓ = o(n).

To get a graph with girth > ℓ, one way is to remove one vertex from each cycle, leaving a
graph with at least n− ℓnθℓ vertices. Instead, we use the Markov inequality here; that is, by
Theorem 4,

Pr(X ≥ n/2) ≤ EX

n/2
= 2ℓnθℓ−1 = o(1).

Thus, there is a sufficiently large n such that Pr(X ≥ n/2) ≤ 1/4.
On the other hand, we want to obtain a graph with large chromatic number. We will

upper bound α(G) and use (2). This is fine because when we remove vertices, the size of
maximum independent set will not increase. If we bound the chromatic number directly
instead, it may go down when we remove some vertices.

Set t = ⌈3/p · log n⌉ ≥ 3/p · log n. Then ne−p(t−1)/2 < 1 and

Pr(α(G) ≥ t) ≤
(
n

t

)
(1− p)(

t
2) ≤ nte−pt(t−1)/2

=
(
ne−p(t−1)/2

)t
= o(1).

Again, there is a sufficiently large n such that Pr(α(G) ≥ t) ≤ 1/4.
By a union bound,

Pr(X < n/2 ∧ α(G) < t) = 1− Pr(X ≥ n/2 ∨ α(G) ≥ t)

≥ 1− Pr(X ≥ n/2)− Pr(α(G) ≥ t)

≥ 1− 1/2 = 0.5 > 0.

In particular, there exists a graph G such that X < n/2 and α(G) < t = ⌈3/p · log n⌉.
For each cycle of length at most ℓ, we remove at most one vertex to destroy it and get a
new graph G′ such that girth(G′) > ℓ. The size of G′ is at least n − X ≥ n/2. Moreover,
α(G′) ≤ α(G) < ⌈3/p · log n⌉. By (2),

χ(G′) ≥ |G′|
α(G′)

≥ n/2

3/p · log n
=

nθ

6 log n
.

Thus, when n is sufficiently large, χ(G′) > k.
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