Advanced Combinatorics - 2016 Fall Exercise 1

You should be able to attempt the following problems after lecture 1. Comments and corrections are welcome.

> Heng Guo h.guo@qmul.ac.uk

- 1. Prove that for each $n \in \mathbb{N}$, if G is a triangle free graph with n vertices and $e(G) = \lfloor n^2/4 \rfloor$ then G is isomorphic to $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$.
- 2. Show that if G is a graph with n vertices, m edges, and t triangles, then

$$t \ge \frac{m}{3n}(4m - n^2).$$

Find an infinite family of graphs such that the above equality holds; that is,

$$t = \frac{m}{3n}(4m - n^2).$$

- 3. For each integer $n \ge 3$, what is the maximum possible number of edges in a graph with n vertices which contains exactly one triangle. Prove your answer.
- 4. Suppose that n and d are positive integers. Suppose that x_1, \dots, x_n are vectors in \mathbb{R}^d with $|x_i| > 1$ for all $1 \le i \le n$. Show that the number of pairs (i, j) with i < j and $|x_i + x_j| < 1$ is at most $\lfloor n^2/4 \rfloor$.

(Here, |x| is the Euclidean length of the vector $x \in \mathbb{R}^d$; namely

$$|x| = \sqrt{\sum_{k=1}^{d} x(k)^2}$$

where x(k) is the kth entry of the vector x.)